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Abstract
The concept of Industrial IoT encompasses the joint applicability of operation and information 
technologies to expand the efficiency expectation of automation to green and flexible processes with 
innovative products and services. Future industrial networks need to accommodate, manage and 
guarantee the performance of converged traffic from different technologies. The network infrastructures 
are transforming to enable data availability for advanced applications and enhance flexibility. 
Nonetheless, the pace of IT–OT networks development has been slow despite their considered benefits 
in optimising performance and enhancing information flows. The hindering factors vary from general 
challenges in performance management of the diverse traffic for greenfield configuration to the lack 
of outlines for evolving from brownfield installations without interrupting the operation of ongoing 
processes. One tangible gap is the lack of insight into the brownfield installation in operation. This 
dissertation explores the possible evolutionary steps from brownfield installations to future industrial 
networks.The goal is to ensure the uninterrupted performance of brownfield installations on the path 
of evolving to the envisioned smart factories. It addresses the gap between the state of the art and 
state of practice, and the technical prerequisites of the integrated traffic classes for the development 
of an IIoT monitoring mechanism. A novel lightweight learning algorithm at the sensor level for an 
IIoT compliance monitoring system, together with a case study of traffic collected from a brownfield 
installation, provides the baseline of comparative analysis between the common assumptions and the 
state of practice. The identified gaps and challenges to address them directs the research for proposing 
a two-step aggregated traffic modelling by introducing new measurement method and performance 
indicator parameters for capturing the communication dynamics. Lastly, the sensor-level learning 
algorithm is refined with the knowledge gained from practice and research contributions to propose an 
in-band telemetry mechanism for monitoring aggregated network traffic.
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and enhancing information flows. The hindering factors vary from general
challenges in performance management of the diverse traffic for greenfield
configuration to the lack of outlines for evolving from brownfield installations
without interrupting the operation of ongoing processes. One tangible gap is the
lack of insight into the brownfield installation in operation. This dissertation
explores the possible evolutionary steps from brownfield installations to future
industrial networks. The goal is to ensure the uninterrupted performance of
brownfield installations on the path of evolving to the envisioned smart facto-
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the technical prerequisites of the integrated traffic classes for the development
of an IIoT monitoring mechanism. A novel lightweight learning algorithm
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baseline of comparative analysis between the common assumptions and the
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research for proposing a two-step aggregated traffic modelling by introducing
new measurement method and performance indicator parameters for capturing
the communication dynamics. Lastly, the sensor-level learning algorithm is
refined with the knowledge gained from practice and research contributions to
propose an in-band telemetry mechanism for monitoring aggregated network
traffic.
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Sammanfattning
Industriell IoT omfattar tillämpbarheten för operativ- och informationsteknolo-
gier som utökar förväntningarna på automation av både grönare och flexiblare
processer till innovativa tjänster och produkter. Framtidens industriella nätverk
bör innefatta, hantera och garantera prestanda hos den samlade trafiken från
flertalet teknologislag. Infrastrukturen för industriella nätverk genomgår en
transformering för datatillgänglighet i avancerade applikationer och förbättrad
flexibilitet. IT-OT-nätverk har utvecklats i långsam takt, detta trots ansedda
fördelar rörande prestandaoptimering och förbättrade av informationsflöden.
Begränande faktorer omfattar allt från utmaningar i prestanda till hantering
av diversitet i datatrafik från nya installationer (greenfield) och brister i hur
man uppdaterar medärvda installationer (brownfield) utan att störa processen
under tiden. Ett påtagligt tillkortakommande är bristande insyn i nuvarande
installationer under användning. Denna avhandling utforskar möjligheterna
att utveckla stegen från existerande industriella installationer till framtidens
industriella nätverk. Målet är att säkerställa oavbruten prestanda hos nuvarande
installationer under övergångsfasen till framtidens smarta fabriker. Avhandlin-
gen tar upp klyftan mellan toppmoderna metoder och de tekniska kraven för de
integrala klasserna av trafik för utvecklingen av en mekanism för övervakning
av IIoT. En fallstudie av trafik på en brownfield installation utgör grunden
för att jämföra antagandena och rådande praxis (state of practice) med hjälp
av en nyskapande maskininlärningsalgoritm på sensornivå för att övervaka
funktionaliteten i ett IIoT-system. De identifierade klyftorna och utmaningarna
leder till ett forskningsuppslag med en två-stegs samlad trafikmodell med nya
mätmetoder och egenskaper för att fånga trafikens dynamiska beteende. In-
lärningsalgoritmer direkt på sensornivå förädlas med insikter från praktiska
experiment samt bidrag från forskningsresultat resulterar i utvecklingen av en
mekanism för att övervaka samlad in-bandtelemetri i nätverkstrafik.
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1. Introduction

Advances in Industrial IoT, enabled by innovations in Information Technology
(IT) and Operation Technology (OT), are drastically changing the eco-system
of industrial manufacturing with technological advances that aim to direct the
path for a higher level of digitalisation, sustainability and efficiency. These
premises of the future industries are tied to the assumption of communication
infrastructures that guarantee the collaboration of all communication entities
for reliable and timely information exchange.

In the current industrial network infrastructures, the IT and OT networks are
architected separately, with bridges that enable communication between these
networks, Figure 1.1. Consequently, to ensure coherent system performance
and avoid costly downtime, any technological changes within these networks
require cumbersome procedures to confirm the availability of resources, inter-
operability of the new technology with the existing system, and re-orchestration
of the whole system to adapt to the new network configuration.

The importance and benefits of consolidated networks have been discussed
from various aspects, and their challenges have been addressed from different
technical perspectives [2, 3, 4]. A network infrastructure that can unify the
IT and OT networks can potentially reduce deployment costs in terms of
integration time and complexity and, therefore, positively contribute to the
performance and efficiency of future industries.

The future industrial networks pose demanding requirements, and in some
cases unpredictable challenges, on network infrastructure and management.
One dominant challenge for industrial networks to overcome is satisfying
the diverse and, in some cases, contradictory requirements of the IT and OT
systems, like real-time performance and high throughput. Time-Sensitive Net-
working [5] provides a toolbox to provide mechanisms for any possible traffic
type that is predicted to coexist in future industrial networks. The orches-
tration of various applications in industrial ecosystems, with heterogeneous
industrial communication protocols such as Open Platform Communication
(OPC), MTConnect and message queue telemetry transport (MQTT), raises a
significant obstacle for system integration. The works more concerned with
the interoperability of different systems by providing a communication middle-
ware satisfying control systems requirements are primarily presented in Open
Platform Communications Unified Architecture (OPC-UA) [6, 7].

Network resource management is one of the impacted domains by these
challenges, where integration of new technologies and applications into the
existing networks translates to scaling-up communication and flexibility for
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Figure 1.1. Industrial transition from Industry 3.0 to Industry 4.0. The arrows show
how the functionalities of each network level are envisioned to be distributed to the
new flattened architecture.

new configuration with no negative impacts on the performance of the ongoing
processes and performance of the existing systems.

1.1 Motivation and Purpose Statement
Recently, the academic and industrial communities started the conversation on
the importance of studying brownfield installations and the need to support the
legacy systems to guarantee the performance when transforming industrial net-
works [4, 8]. The additional insights from the traffic of existing installations are
prerequisites for integrating new technologies and providing the intermediate
steps required for the evolutionary transformation of the industrial automa-
tion networks. That is with considerations for overcoming the challenges in
automation for future industrial networks [4].

The additional insight from the state of ongoing processes can identify the
current resource plan of the ongoing network communication in terms of band-
width, dynamic throughput, delay boundaries, and scheduled traffics. This
insight can contribute to the development of integration strategies that ensure
adequate outcomes based on predefined performance metrics in the complex
integrated networks for network management tasks such as provisioning and
dimensioning [9, 10]. In other words, resource estimation for network manage-
ment with respect to the new integration characteristic and required resources
while safeguarding the performance of legacy systems and ongoing processes.
Hereof, a clear view of the operational state of the existing network is an unde-
niable prerequisite. However, this prerequisite is not a trivial goal to achieve
due to the unavailability of data from industrial plants, the complexity of their
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traffic, and the lack of sophisticated monitoring systems that provide insight
into the network performance rather than a representation of the flow-based raw
data. The gap becomes even more apparent considering the lack of performance
indicators suitable for the aggregated traffic to be measured for performance
monitoring.

The ultimate purpose of this study is to investigate methods that ensure
the uninterrupted and timely performance of brownfield industrial network
installations on the path of evolving into the envisioned smart factories of the
future. More specifically, the focus of this study is twofold (1) addressing the
gap between the state-of-the-art and state of practice that has been slowing the
pace of innovation in industrial plants, and (2) technical prerequisites of the
integrated traffic classes for the development of an IIoT monitoring mechanism
considering performance requirements of the future industrial networks, as
well as the required support of the existing systems. In pursuing so, we also
touch on distributed monitoring and resource management using data-driven
methods as an enabler of AI for networks and a neglected area within research
and industry that demands more attention.

Figure 1.2. Elements and processes in Industrial IoT.

1.2 Scope
The research presented in this dissertation lies within the cross-disciplinary field
of communication systems, industrial automation networks and data science.
It addresses the existing challenges of transforming industrial networks under
the vision of industry 4.0 for future smart factories by adapting Industrial IoT
solutions. Figure 1.2 illustrates a simplified representation of the components
of any IIoT solution.

The research plan was built on the hypothesis that data-driven modelling
can provide additional insight into the operational networks [11], which can be
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utilised for various network management-relevant tasks, including monitoring
aggregated network traffic.

The domain of interest is industrial network traffic management in industrial
applications and smart factories where common IT monitoring mechanisms
are not applicable or fall short of fulfilling the required performance criteria
of operational systems. To have a better understanding of the research goals
and answer the research questions to achieve the main goal of this research,
telecommunication technologies, communication systems, standards and proto-
cols were studied. However, the details of them and related topics are out of
the scope of this dissertation, even though they are mentioned in Chapter 2 and
Chapter 3 to provide perspective for the research presented in this dissertation.

The research investigates the role of data-driven approaches that can aid net-
work management. Decentralised and localised decision-making for resource
management for enabling AI-network is also discussed. The statistical methods,
machine learning algorithm and AI solutions are considered as means to realise
the contributions of this dissertation. Nonetheless, comprehensive surveys of
these fields and the associated topics fall out of the scope of this research.

In the design of IIoT compliance solutions, there are application-dependent
technological choices and technical concerns that need to be addressed. The
Industrial Internet Consortium (IIC) maintains foundation frameworks for IIoT
architecture [12], analytics [1], connectivity[13] and networking [14]. It pro-
vides practical guidance for the development, documentation, communication,
and deployment of IIoT solutions. This research is placed in the cross-section
of the IIoT connectivity, analytics, and networking frameworks within the func-
tional viewpoint of IIoT reference architecture. It partially covers the control
and information domain, but other viewpoints or domains within the reference
frameworks are out of scope and are not included.

1.3 Research Goals and Questions
To fulfil the overall goal, this research is conducted in several phases, where
each phase addresses a concrete goal by finding answers to a set of research
questions. In summary, the research goals (RG) and research questions (RQ)
are formulated as follows:

• RG1: "Investigate the role of data-driven methods in enabling information
exchange in IIoT solutions, considering required scalability and energy
efficiency of communication systems."

– RQ1.1 How can the behaviour of a communication flow be modelled
with basic data analytics at the sensor level?

– RQ1.2 To what extent the communication overhead can be reduced
by deploying sensor-level modelling and information exchange in
an IIoT monitoring system?
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• RG2: "Identify the gaps between the state-of-the-art and state of practice
for the realisation of IT-OT consolidated networks and to address the
challenges of network resource management."

– RQ2.1 What are the disparities between the theoretical assumptions
and real industrial deployments that can pose a challenge to the
realisation of the future consolidated IT-OT networks?

– RQ2.2 Which traffic measurement method can facilitate resource
management of aggregated network traffic?

• RG3:"Propose a method for modelling and profiling the aggregated traffic
classes of brownfield installations."

– RQ3.1 What are the important parameters to capture temporal and
spatial communication dynamics?

– RQ3.2 How can the dynamic behaviour of the aggregated network
traffic be efficiently modelled?

• RG4:"Propose a data-driven mechanism for aggregated traffic monitor-
ing that can provide sufficient insight into the network state through
information exchange while maintaining the communication QoS."

– RQ4.1 Can modelling of the aggregated traffic be deployed at the
switch level for network monitoring purposes?

– RQ4.2 What would be the benefits of an in-band telemetry-based
monitoring mechanism for resource management of aggregated
traffic classes in industrial networks?

Figure 1.3. A mapping of research goals and publications included in this dissertation.
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1.4 Contributions
The achieved goals and answered research questions are presented in the
publications that were listed previously. Figure 1.3 illustrates the mapping
of research goals and publications. The contributions of this dissertation are
detailed in Chapter 4. The general topics of the contributions are as follows:

• A light-weight flow-based learning method at sensor-level (C1)

• An online learning algorithm for IIoT compliance monitoring system
(C2)

• An overview of challenges towards managing IT-OT consolidated net-
works with aggregated traffic classes (C3)

• A comparative analysis of industrial network traffic to identify the dis-
parity between theoretical assumptions and real industrial use-case and
practice (C4)

• A method for measurement of aggregated traffic classes in brownfield
installations (C5)

• Two performance indicators for characterisation of aggregated traffic
classes (C6)

• A two-step approach for modelling the communication dynamics and
profiling the aggregated traffic classes (C7)

• An in-band telemetry monitoring mechanism for aggregated traffic classes
in industrial networks (C8)

• A preliminary approach for distributed network monitoring to enable AI
for in-band telemetry (C9)

1.5 Research Methodology
The research followed a pragmatic approach in conversation with industrial
partners to identify the needs and shape the research goals and questions
based on the gaps between state-of-the-art and state-of-practice. It started
with reviewing the literature and identifying directions in the research areas
surrounding IIoT technology from a post-positivist perspective. Hence, the
efforts put into this research aimed to provide probabilistic but incomplete
knowledge about the reality of the complex phenomena of study. The case
study methodology was adapted for both exploratory and evaluation purposes in
the second phase of the study. The choice of methodology is due to the research
goal that is rooted in industrial needs for evaluating the research contributions.

The experiments were designed and conducted either on data collected from
real industrial systems in operation or the generated data from SCADA labs.
Quantitative evaluations, such as mathematical analysis, were used to examine
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Figure 1.4. Illustration of the research process for this dissertation.

the results of simulations or implementation of the proposed solutions, to draw
relevant conclusions with respect to the research goals, and to answer the
research questions.

Research Process
The research was planned and carried out in four iterations. It started by
identifying the reliable exchange of information in industrial networks as an
open issue that has a direct effect on developing IIoT solutions for industrial
scenarios. Each part of the research led to the formulation of a goal and a
set of questions and was carried out as small projects whose results built the
basis of the next phase. This iterative process provides the opportunity to gain
deeper knowledge about the active research areas and identify the research gaps
in both literature and the state of practice, and seek answers to the research
questions from different perspectives in a different light. Figure 1.4 illustrates
the order in which this research was conducted.

Experiment Data
Four datasets were used to carry out the experiments and evaluate the methods
presented in the contributions of this dissertation. Two of the datasets are
publicly available, one from a SCADA system testbed for a wind turbine [15]
and the other measurement from a SCADA lab with industrial equipment [16].

The experiments of Paper I were carried out on the data from a hydraulic
fluid control unit of industrial machinery in production. The raw data was the
log file of time-indexed readings from 21 sensors residing in the control unit.
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The brownfield installation traffic for Paper II, III and IV experiments was
captured from a paperboard machinery network. The choice was justified since
the machinery network is considered a typical control network environment
for production networks. The communication backbone for two paperboard
machines in the factory comprises three marshalling rooms and a number
of switches located across the factory. The collected data covers a part of
the operational network consisting of five control systems with 43 stations
connected to the server network and 32 process controllers.

The traffic was captured by enabling port mirroring to the traffic recorder
connected to one of the core switches in the production network. The phys-
ical distance between the control rooms was the reason for limiting the data
collection to one switch. Hence, the captured data represent the traffic of one
of the machinery communications. The captured traffic contains both primary
and secondary network traffic, not simultaneously, for a duration of almost 12
hours. The result of the data collection was 60 files, each with more than 3
million records and 0.99 GB in size. The initially captured traffic flows are
huge files containing packet dumps from the network, in .pcap format. After a
preliminary packet-level investigation, to create a suitable format for further
traffic analysis and characterisation, each file was converted to .csv format,
where each consists of header fields and payload data of more than 3 million
packets.

1.6 Outline
This dissertation presents the research work and the contributions in the follow-
ing structure: The general background of industrial networks and related topics
to network management is briefly reviewed in Chapter2. Chapter 3 positions
the presented research with respect to the related works and active research
domain. The contributions presented in this dissertation are summarised in
Chapter 4. Chapter 5 summarises the presented research work and concludes
this dissertation by discussing the potential future directions.
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2. Background

The overarching goal of industrial automation has been to make processes more
efficient [17, 18, 19]. Process efficiency is defined in terms of saving energy and
materials, lowering costs, and reducing or even eliminating human intervention.
For an automation system to work continuously and autonomously, reliable
exchange of information is the essential requirement[18].

In automation systems with various isolated network levels and bridges that
enable cross-level information exchanges, Figure 2.1, the successful operation
depends on a well-designed communication system [20]; a system that guar-
antees network availability, device connectivity and transmission reliability to
predict congestion and avoid downtime.

Reliability in industrial networks is defined in terms of timely and determin-
istic data transmission and processing. To ensure reliability, the communication
state of the network needs to be monitored, and the quality of service needs to
be maintained regardless of the different requirements of applications residing
in the system. The administration of network functionalities and services to
achieve these goals is known as network management.

Figure 2.1. In automation networks, data is collected from field-level networks and
processed on higher levels. The commands and instructions based on the centralised
analysis at the supervisory level are sent to lower network levels.
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2.1 Network Management
Network management has decades of support in theory and practice. It has
various objectives such as configuration, fault detection, accounting and secu-
rity [21], all of which contribute to the main goal of maintaining the perfor-
mance of the network.

Networks performance is the measure of how well the network is with respect
to the predetermined requirements of applications’ traffic. The behaviour of a
network is quantitatively defined by measuring a set of metrics that, individually
or in combination, can be used to evaluate the performance[22]. It comprises
configuration, monitoring and management of network traffic and resources to
maintain the overall network performance aligned with the expected quality of
service. Figure 2.2 illustrates a simplified workflow of network performance
management.

Figure 2.2. A simplified workflow of network performance management, from perfor-
mance metrics measurements to continuous monitoring and evaluation of the network
performance.

2.1.1 Key Performance metrics
The following key performance metrics characterise network traffic by a set of
measurements.

Bandwidth is a measure of the number of bits per second that can be transmitted
over a network, on a link or a channel that is the maximum data transmission
rate of a network at a specific time unit. Bandwidth is the potential measure of
link capacity. Various applications need different bandwidths that the network
must accommodate, but they do not necessarily reach the link bandwidth
capacity.

Throughput is the measure of the actual and successful data transmission rate
between a source and a destination. It can be defined as bit and packet per
second, where second is the unit of time.

Latency or delay is the measure of data transmission from a source to a
destination. It consists of propagation, transmission, queuing and processing
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delays. In networks with hard-deadline performance requirements, such as
closed-loop control systems, the worst-case delay is the parameter of interest,
which is the largest value of the end-to-end delay.

Jitter is another performance metric of interest in the network. It gives the
measure of variety in packet transmission delay. This metric is of importance
in applications with time-sensitive requirements. It indicates disruptions in data
transmission that can be caused by network congestion.

2.1.2 Traffic Characterisation and Measurements
An essential part of networks management, independent of the objective, is the
characterisation of traffic data, which provides the basis for network perfor-
mance assessment. Traditionally, each flow in the network is characterised by
measuring the key performance metrics [22]. A network management system
monitors the measured metrics to predict congestion, provide data availability
and maintain the data flow between each source and destination. The metrics
are measured and monitored for an individual source at a specific time or with
dynamic temporal dependency consideration, as well as a pair of source and
destination and the dynamic of their communication patterns.

In the configuration, measuring the state of resources and the relationship
between them is the focal point. The communication patterns between each
pair of source and destination give an estimate of traffic volume for resource
provisioning and capacity planning. The detailed measurement for all commu-
nication pairs provides the information required to study network tomography
and the impact of faults on network capacity.

To understand the changes in traffic and identify abnormalities, the total
traffic of a flow is measured. In this measurement, generated traffic by a source,
packet counts and sizes are monitored regardless of possible destinations.

Traffic dynamic measurements provide a temporal variation of traffic gener-
ated by a source. The aim is to measure the dynamics and provide information
to be utilised in configuration management, specifically for link estimation and
allocation. Delay and bandwidth are the two metrics that are usually monitored
in this type of measurement [23].

Mixture measurements aim to aggregate the measurement of the temporal
dynamic with the performance metrics of each communication pair. The
emphasis of this measurement is the importance of extracting features from a
flow over time, which can be used for performance and security management.
The delay and throughput are the commonly monitored performance parameters.
The extracted features from the flows are the product of the performance metrics
for the formulation of inter-arrival time and correlation attributes for modelling
each flow and detecting anomalies.
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2.1.3 Network Measurements and Monitoring
Monitoring networks traffic ensures information availability for enhancing
network performance. That is by providing visibility over the communication
states with respect to the previously mentioned key performance criteria to
predict and prevent congestion and downtime.

Network monitoring is based on measuring various performance parameters
to evaluate the operation of the network. Consequently, it can broadly be di-
vided into highly interlinked communication and network condition monitoring
tasks. Communication monitoring ensures the connectivity and availability of
the devices and entities in different parts of the network. In network condition
monitoring, the concern is QoS and network performance.

Traditional Network Measurements
Traditionally, measurements for network monitoring are classified into active,
passive and hybrid methods [24, 25], based on their impact on the network
traffic.

Active measurement methods are the dedicated monitoring of a data stream.
These methods either generate packets with a data stream’s measured metrics
and add the packet to the data stream or add the measurements to the dedicated
fields of the packets in the data stream. In both cases, active methods add traffic
to the network for measurement. The influence of the additional traffic is an
essential factor that needs to be quantified and minimised.

The methods of passive measurement do not add to the traffic and are
based on observing and collecting information that passes through an obser-
vation point. Several observation points, depending on the number of existing
data streams, are required for assessing the network condition and perfor-
mance. Communication and collection of the observed measurements add to
the network traffic and is an essential factor with a potential effect on network
performance that needs to be considered in passive methods.

The hybrid methods combine, to some degree, the observation of the passive
methods and field modification of the active methods. To reduce the effect on
network traffic and performance while enhancing characterisation, some of the
hybrid methods are deployed on more than one flow or data stream with some
degree of mutual coordination [24].

Software-Defined Measurements
More recent approaches are defined after the introduction of software-defined
networking (SDN). The software-defined measurement scheme is built on the
reconstruction of the control plane and data plane by SDN. This centralised
approach utilises the traditional collection of network measurements and pro-
vides network performance flexibility through reprogramming of the control
plane. Consequently, the software-defined-based methods improve the open-
ness, transparency and programmability of traditional measurements [25].
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In-Band Network Telemetry
The most recent measurement techniques are aligned with the emergence of
network telemetry [26], which refers to the new way of data collection and pro-
cessing in the network [25, 27]. In in-band network telemetry, business packets
are utilised to carry the telemetry instruction or data. The tags embedded in
each packet by source nodes indicate which metrics need to be measured.

The business packets share the same link or packet with network data streams.
The measured metrics are accumulated as metadata in the packet payload after
passing through each device. Through the real-time collection of data from
the network, the INT methods provide sufficient network visibility and en-
hance scalability, accuracy, coverage and performance compared to traditional
network measurements [25, 26, 27].

Network measurement and monitoring provide the information required
for network performance management. Nonetheless, the collected data and
measurement need to be analysed to provide additional insight for decision-
support to maintain or improve the network performance.

2.2 Industrial Analytics
The idea of knowledge discovery from industrial data dates back to the early
60s [28]. Initially, the focus was on adding value to business models and
increasing revenues through service and product demand prediction using
historical data sets. Later, knowledge discovered from the data has been used
for cost reduction, quality control, and inventory management in industrial
plants [29, 30]. Advances in information technologies led to exponential
growth in deploying new methods and mechanisms in industrial systems and
expanding their deployment from business decision-support ends to process
optimisation and automation [30]. Data analytics in industrial applications

Figure 2.3. An overview of industrial analytics, tasks and main purposes. Based on
different analytic purposes, their deployment can be mapped from left to right to the
industrial automation hierarchy from top to down.

refers to the process of discovering insightful, interesting, and novel patterns,
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as well as descriptive, understandable, and predictive models from large-scale
data [31]. Figure 2.3 illustrates a summary overview of industrial analytics.
It can be carried out within three concepts of big data analysis, statistics, and
machine learning [32, 33] to perform knowledge discovery[34], knowledge
representation [35], basic data analysis and advanced operation optimisation [1].
A simplified data processing pipeline is presented in Figure 2.4

Figure 2.4. A simplified data processing pipeline, from collection to useful knowledge
for decision-support.

2.2.1 Traffic Data
The goal of network management is to avoid congestion and provide QoS,
which are directly linked to network traffic [22]. Industrial network traffic
constitutes data flows between sources and destinations from machinery and
environment of the field-level network as well as management, process and
control of higher network levels.

The field-level network traffic of industrial automation comes from con-
tinuous measurements of devices as well as the control from the higher-level
networks, which ideally remain in the same state without interruption. Hence,
it exhibits unique characteristics such as high correlation and projection of
patterns that show operational cycles of the underlying system. This traffic data
is also sensitive to time order [1], and needs to be processed in real-time to
provide information for performance monitoring purposes.

Each data from the network with respect to any of the network performance
metrics can be formulated as a time-series X = x1,x2,x3, ...,xT where each xt
is the transmitted data of a recorded packet at time t.

2.2.2 Data-driven Approach
In the data-driven approach, the goal is to reduce or remove the role of ground
truth and prior knowledge about the data under the study from the system
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identification and modelling process. The more complex the underlying system,
the more evident impact of missing knowledge about the characteristics. The
industrial network data are not stationary data sets. They project the dynamics
of the underlying systems and their various operational states. Simultane-
ously, the multi-mode nature of the industrial settings and the repetition of
automation tasks have gained a great interest in the scientific community to
drive models based on fewer governing states for various applications, such
as machinery fault detection [36, 37, 38, 39, 40], state identification [41], and
traffic prediction [42].

2.2.3 Multi-Mode Modelling
Let Y1:T = {y1,y2, ...,yT} be an observed stream of data generated in a net-
work at time t = 1,2, ...T , where each yt is the joint reading of all features
in the system, i.e., yt ⊂ Rn; and X1:T = {x1,x2, ...,xT} is a set of features or
characteristics that the data streams project in various instances of time. The
first step in modelling the data streams is to identify the state space that the
system can obtain. In other words, to partition the time into k consecutive and
non-overlapping segments {t1:k,s1:k}, where tk represents kth segment of time
with state sk = i, i = 1, ..,m, that ends at time tk. The independent structure of
a multi-mode model is presented in Figure 2.5.

Figure 2.5. The independence structure of a multi-mode system model.

Hidden Markov Model (HMM) is a tool to represent the probability distri-
butions over a sequence of observations [43]. In a complex system where the
changes in the processes are not observable, HMM models the observations as
a probabilistic function of the hidden states. It is formulated as λ = (A,B,π),
where π = {πi} is the initial state distribution, A = {ai j} is the state transition
probability, and B = {b j}, 1 ≤ i, j ≤ m is the probability of the observation
in the current hidden state. HMM can evaluate the probability of association
between an observed sequence and a state. In addition, it can identify the best
model that describes the observed sequence or optimise the model parameters
that describe the observed sequence. A comprehensive introduction to the
HMM is presented in [43].
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Multi-mode formulation of the network traffic simplifies the modelling
process by reducing the possible state space. The next step is to find the order
of a model that can best describe the data without prior knowledge about the
system’s operational modes or labels that indicate the association of data to
specific states.

2.2.4 Model Selection with Unlabelled Data
In a data-driven approach, the knowledge about the true model of the system
is missing. Hence, the first step is to find the model that provides the closest
estimate of the system and gives the best fit for the available data.

Likelihood-based methods that consider the number of model parameters
have been proven to be more accurate in model parameter estimation [44, 45, 46,
47, 48]. Such models limit the number of states and model parameters based on
the information gain to address the overfitting problem - increasing the number
of states leads to a higher likelihood, without additional information gain [49].
The Akaike’s Information Criterion (AIC) [44], Bayesian Information Criterion
(BIC) [45], and Efficient Determination Criterion are commonly applied model
selection methods.

Akaike Information Criterion’s model selection is an optimisation problem
to minimise AIC. AIC is an estimator of expected relative information based
on the maximised log-likelihood function:

AIC =−2log(L̂)+2k, (2.1)

where k is the number of estimated parameters in the approximated model.
For small sample data where n

k ≤ 40, AICc [50] is calculated as :

AICc =−2log(L̂)+2k+
2k(k+1)
(n− k−1)

. (2.2)

Then, the model selection is the process of fitting the HMM with various
orders to the data and choosing the model with the smallest AIC value:

r̂ = arg min
0≤k≤K

AIC(K), (2.3)

or in case of small sample size:

r̂ = arg min
0≤k≤K

AICc(K). (2.4)

Bayesian information criterion is closely related to AIC model selection
methods but introduces the sample size in the penalty term that provides

BIC =−2log(L̂)+ k logn (2.5)
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Efficient determination criterion encompasses AIC and BIC and introduces a
strictly increasing function that results in a strongly consistent order estimation.

EDC =−2log(L̂)+ k log logn (2.6)

2.3 Industrial IoT
Industry 4.0 started a paradigm shift with impacts on both business models
and technical perspectives in existing industries. In this respect, Industrial IoT
encapsulates the technical responses that are needed to realise the envisioned
future industries and smart factories by Industry 4.0.

IIoT pursues the digital transformation of industries by facilitating the com-
munication, collection, aggregation and analysis of data into various system
functionalities for different purposes and applications. An IIoT compliance sys-
tem needs to orchestrate a wide range of technologies, such as communication
and networking, data analytics, cloud computing and smart control, to ensure
coherent industrial system performance [12, 51, 52].

In the design of an IIoT system, many application-specific technological,
technical, and functional choices must be made. Still, an IIoT system abstract
requirement for interoperability, connectivity and flexibility is the common
ground for any use-case scenarios and applications.

Industrial Internet Consortium (IIC) aims to provide the technical foundation
for developing, documenting, communicating and deploying industrial IoT sys-
tems based on a unified framework. Over the years and with the accumulated
lessons learnt from developed or under-development IIoT systems, new frame-
works and practical guidelines have been developed and maintained by the IIC.
The frameworks cover the integration of IIoT enabler technologies, methods
and mechanisms and new use cases and applications, as well as recently arising
challenges and best practices to address them.

The IIoT reference architecture [53] defined an overall architectural view
for technology-agnostic system development. It identified viewpoints as the
core building blocks of IIoT systems that address different concerns in any
IIoT system development process, namely, business, usage, functional and im-
plementation viewpoints. The interoperability of IIoT systems was addressed
in the industrial Internet connectivity framework (IICF) [13]. The analytics
framework [1] documented guidelines for the deployment and integration of
industrial analytics systems concerning different purposes or expected impacts
on the system as a whole. The requirements, technologies, standards and solu-
tions for diverse applications in industrial networks are detailed in the industrial
Internet of things networking framework [54]. The diverse requirements, char-
acteristics and performance requirements of IT-OT networks are one of the
open issues highlighted in the report.

The cross-cutting of different frameworks with the reference architecture
provides the scope of the architecture design and helps to narrow down and
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acteristics and performance requirements of IT-OT networks are one of the
open issues highlighted in the report.
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Figure 2.6. Industrial analytics mapping to the reference architecture to identify the
viewpoints and domains to be included in the design process [1].

prioritise the most important criteria for system development. Figure 2.6
illustrates scoping for the analytic and reference architecture.
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3. Related Work

The paradigm shift with the rise of Industry 4.0 triggered defining of many
creative use-case scenarios and innovative applications to expand the traditional
business models in the industry. The technological requirements for enabling
these applications are pursued within the IIoT framework. The changes in
industrial ecosystems promise higher degrees of productivity, efficiency and
profitability. Concurrently, the changes pose new challenges to industrial
network management that must provide QoS while going through the transition.

3.1 Evolving Industrial Networks
The future industrial networks are envisioned to accommodate both IT and
OT traffic. Design, management and configuration of network traffic for each
of the technologies have decades of support in theory and practice. However,
the availability, connectivity, scalability, flexibility, heterogeneity, and inter-
operability requirements of IIoT solutions pose new challenges to industrial
network management that requires new approaches to overcome.

3.1.1 Enablers and Challenges
Ongoing works are trying to address the associated challenges of network
management in future industrial networks from different perspectives. Protocols
such as message queuing telemetry transport (MQTT), MTConnet and open
platform communication (OCP), provide specifications for higher connectivity
and interoperability in industrial applications. However, the orchestration
and integration of applications compliance with various protocols in the new
industrial ecosystem is a significant challenge for network management [6].
Recent works in open platform communications unified architecture (OPC-UA)
try to address this concern with a communication middleware that satisfies OT
requirements [6, 7].

Data availability from everywhere to anywhere is one presumption of IIoT
solutions, which in industrial networks translates to the coexistence of IT and
OT traffic in one network. The benefits of consolidated networks have been
discussed from various perspectives. The challenges they introduced to network
management have also been pointed out in some recent studies [2, 3, 4]. One
dominant challenge for managing consolidated networks is QoS and perfor-
mance management when the applications have different requirements, and the
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Figure 3.1. For the realisation of future industries and the transition from the hierarchi-
cal model of Industry 3.0 to the pillar of Industry 4.0, there are various challenges and
technical requirements to be addressed.

traffic exhibits distinct characteristics. To fulfil the application performance
guarantees, Time-sensitive networking (TSN) [5] provides a set of protocols
and mechanisms to handle various traffic classes based on their traffic char-
acteristics and application requirements. Each of the introduced protocols is
an active research area to expand the deployment of new services in industrial
systems.

There is a lack of knowledge about the configuration and QoS of consoli-
dated networks, and there is no initial information or data that can be used to
define the performance parameters for managing the aggregated traffic. There
is also a long path for integrated networks to reach technological maturity for
the deployment of new services and unlocking the benefit of utilising integrated
traffics. Moreover, while consolidated IT-OT networks are the prerequisite
for many IIoT solutions and services, they are yet to become the dominant
infrastructure in the industrial environment. In industrial setups, it is highly un-
expected that the existing and functioning brownfield installations be removed
and replaced by the new infrastructure with a high risk of downtime.

Considering the reviewed challenges and existing gaps a revolutionary act
for the realisation of future industries, is implausible. An evolutionary transi-
tion road map is needed to provide a mapping of the state of practice to the
envisioned future and provide engineering guidelines through the transition
phase, Figure 3.1.

A prerequisite for developing any transitional road map is understanding the
beginning and the intended destination. In the scope of an industrial network,
it means starting with insight from the operational state of the brownfield in-
stallations, configuration and characteristics that are administered by network
management. The guideline then can be developed by comparing the perfor-
mance parameters, requirements and traffic characteristics of future changes
and new configurations.

Nonetheless, the available works for industrial network management are still
sparse. There are still substantial gaps in the quantification of performance
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criteria, the granularity of measurement scope, or even the level of abstraction
of which a network should be monitored.

In the following section, the most recent valuable research that has touched
upon the network performance management problem and tried to bring an
applied perspective to the state-of-the-art research is reviewed. Figure 3.2
summarises the reviewed related work in relation to the research domain.

Figure 3.2. The figure gives an overview of a mapping of simplified steps in network
performance management to the related work. The contributions of this dissertation
are indicated in various colours. The areas with strong foundations in literature but not
an active research domain are coloured grey.

3.2 Network Traffic Measurements
Monitoring and characterisation of network traffic are the essential steps in
various network management functions such as configuration, performance,
fault, accounting, and security management [21].

3.2.1 Measurements Objectives
Network traffic monitoring and analysis are generally categorised depending
on the context of the network management objectives [23].

The state of resources and the relationship between them is the main focus
of configuration management. The process follows a detailed view analysis,
where communication patterns are studied for each pair of communicating com-
ponents. The purpose is to estimate the traffic volume for resource provisioning
and capacity planning. Traffic matrix measurement with a general approach of
network tomography and direct management is the analysis approach for this
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objective. This approach, with a detailed view of the system, can even assist in
understanding the impact of faults on network capacity.

A more abstract approach measures traffic volume to determine the total
traffic of a network flow. This measurement is of use in network performance
and security management to understand changes in traffic and identify abnormal
flows. This type of measurement monitors traffic generated by any of the
sources, using IP addresses independent of possible destinations, and analysis
packet counts and sizes for heavy usage.

Networks are dynamic systems where the temporal variation of traffic rep-
resents their various operational states. Traffic dynamics measurements aim
to monitor the dynamics and extract knowledge that can be used in configu-
ration management for link capacity estimation and allocation. This type of
measurement is also used in performance measurement to test the stability of
the network. The monitored parameters usually include packet delay, packet
loss, and available bandwidth [23].

A more recent network monitoring and analysis approach aims to measure
traffic mixture. That is to aggregate the detailed flow of a source and destination
pair with the abstract view of the temporal dynamics. The emphasis here is
on the importance of extracted features in aggregated traffic data over time for
performance and security management. The extracted features with respect to
performance are flow attributes such as delay, throughput or packet drop rate.
In security management, frequent patterns in inter-arrival time and correlation
attributes are extracted to model the flows and to detect anomalies [10, 55,
56, 57]. A comprehensive survey of research works for the measurement
and characterisation of traffic networks based on the objectives of analysis is
presented in [23].

The active body of research identifies networks as complex dynamic systems.
Still, in the related works, there are not yet any objectives defined to bring
system identification to the whole network behaviour modelling. Networks are
still studied for various purposes and objectives, and from their flows, but not
as a coherent system where indirect interaction of any entities might impact
another. One example can be, failed transmission in one flow and the packet
regeneration that might add to the delay of packet transmission of another flow.

3.2.2 Measurements Scope
Similar to the various management purposes, there are different scales and
measures for setting the analysis framework of the network traffic. A network
can be considered a number of sub-systems grouped together to carry out a
pre-defined task. The network traffic can be studied separately for each flow or
as accumulated traffic of each sub-system. Equivalently, the network traffic can
also be studied from the topological structure, either physical or logical, that
is, sub-systems and monitoring points or VLANs and virtual communication
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groups. The choices on the level of abstraction for the scope of the analysis can
set the appropriate methods to be applied in the process, while itself is derived
from the study’s objectives.

However, the theoretical material associated with different levels of network
abstraction commonly limits the dynamic and stochastic nature of real applica-
tions to single-class traffic. The disparities between theory and practice need
to be identified and utilised for modification of the theoretical approaches that
can provide accurate outcomes when deployed on data from the real world.

3.3 Networks Traffic Characterisation
The matrix and dynamic mixture measurement is a method that is more com-
monly used for the characterisation and profiling of network traffic. The matrix
of performance parameters and their changes in time [58], or the matrix of
communication between a pair of components [55] in time, is proposed in the
literature. The process follows a down-top approach, where communication
patterns are studied with respect to the network components. The initial efforts
are to either classify or model the behaviour of the traffic flows in order to
create flow profiles. The dominant communication patterns of flows are mod-
elled using various probabilistic and mathematical models, and the anomalous
activities are identified where deviation happens from the tuned parameters
of the initial learned model. The packet-level investigation is the commonly
applied method to learn the normal communication in the network. As a general
flow-based approach, all packets are considered, and values of various fields
in the header and payload are extracted. These values are then used to profile
individual communication flows based on either source, or destination [57], or
protocols [55, 56, 58, 59]. The created profiles are used to learn and classify
each flow and further model the network traffic communication pattern to find
abnormal behaviours.

Flow-based modelling is proposed in [57] to profile communication patterns
in industrial IP networks for intrusion detection. However, the flow-based
modelling proved unpractical because of the complex communication patterns.

In [9], a methodology is proposed for evaluating the availability of resources
for new traffic integration for network configuration management. Inter-arrival
time and packet size were the measured parameters for flow-based resource
estimation.

The deep packet investigation for profiling data traffic is a costly process
with very high complexity. The complexity comes from the variance of the
recorded values in the packets, which makes the flow-based classification and
anomaly detection inaccurate. Moreover, the flow-based method performance
will degrade with an increased number of flows due to new services or added
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traffic of new devices in the network. Further investigation is required to ensure
addressing the scalability issues of flow-based methods for characterisation and
profiling the network data.

3.3.1 Network Traffic Modelling
One approach to reducing the complexity of the flow-level characterisation and
modelling aims for a more abstract view of the network and targets different
types of traffic and their grouped flow characteristics. This approach profiles
traffic either based on the type of services and traffic class or based on network
virtualisation traffic. The focus here changes from probing individual packets
of each communication flow to general communication patterns of a specific
traffic class in the network. The network traffic is usually classified into three
categories: cyclic or time-triggered, stochastic and burst. The profiling of traffic
classes considers the characteristics of each class, such as packet size and time
intervals between transmissions. Cyclic traffics are small-size packets with
fixed generation time intervals, whereas stochastic traffic is event-triggered
with small packet size and short duration and unknown transmission interval.
The burst traffic flows are defined with large data transmissions for short
intervals and self-similar transmission patterns in longer time intervals. Several
recent studies tried to tackle the challenges associated with brownfield traffic
modelling from various angles.

Inter-arrival time and correlation models were defined as additional key
parameters for traffic characterisation and flow-based modelling of different
traffic classes in SCADA networks in [59]. The method showed promising
results for anomaly detection on lab-generated data [55], but the result and
performance of the method on real traffic were not satisfactory [56].

Four on-off-based models were proposed in [10] to model the communi-
cation flows. The application of this approach was discussed in relation to
different traffic classes in industrial networks. The results were promising on
traffic data considering the prior knowledge and classification of the data into
different traffic.

Even though characteristics of different traffic priority classes are considered
for the classification of the recorded traffic, the research efforts are focused on
flow-based characterisation and modelling and not aggregated traffic. Conse-
quently, no performance metrics are proposed or considered for modelling the
aggregated traffic classes. Moreover, prior knowledge is required for categoris-
ing the flows based on the classes to avoid packet probes for the classification
of traffic.
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3.4 Traffic Data Analysis
The methods applied for analysing network traffic and developing monitoring
systems highly depend on the scope of the study and available data. More
traditional approach analysis of the data using statistical and mathematical
methods. In [60], a survey of methods found in the literature for network traffic
analysis is presented. Recent years also witnessed applying various machine
learning methods on network data to learn the behaviour of the system from
the data. Machine learning methods are used for flow-based characterisation or
modelling [23, 61, 62, 11]. Classification methods for network flow analysis
are surveyed in [63]. The objectives are commonly directed to anomaly and
intrusion detection by flow characterisation and traffic profiling. Supervised
learning, and classification methods, have been more favourable since the
results show higher accuracy in comparison to unsupervised learning.

Regardless, due to the unavailability of data, the methods are usually carried
out on simulated and emulated data.

3.5 Networks Traffic Monitoring

Figure 3.3. Deployment locations of different analytics elements for various network
management purposes are mapped from the hierarchical to the flattened architecture.
Other than prognostic analytics for networks management, which has been an active
research area for the last decade, the other areas have recently gained the attention of
academic and industrial communities.

Networks performance monitoring encompasses identifying key perfor-
mance parameters to be measured, characterisation of traffic based on the
measured parameters of interest for profiling them, modelling the dynamic be-
haviour of the traffic and continuous measuring for monitoring the performance
based on any predefined objectives.
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The network management challenges associated with integrating IIoT so-
lutions and new applications have been addressed in various recent works [3,
4, 64]. It poses new challenges since the deployment location of analytics
types and purposes of utilising the data are changing in the new architecture,
Figure 3.3.

The importance of determining the key parameters of existing industrial
traffic to understand future challenges is emphasised in [4, 9]. In [9], a method-
ology is also proposed to evaluate the availability of resources for new traffic
integration for network configuration management. The methodology based on
best engineering practice considers inter-arrival time and packet size measures
for flow-lever estimation.

Case studies for 5G systems [65] in production networks emphasised exper-
imental evidence for disparities between common characteristics and traffic
class-based modelling assumptions and the data from the brownfield installation
networks.

Flow-based communication pattern profiling in industrial networks was pro-
posed for intrusion detection [57] but fell short in practice due to the complexity
of the communication patterns. The addition of inter-arrival time and correla-
tion models were considered as key parameters for traffic characterisation and
flow-based modelling in SCADA networks. But it also showed underwhelming
results when deployed on real traffic [56].

In recent years, many academic and industrial research studies have focused
on enabling and utilising INT as a network measurement method that can pro-
vide information for various network management tasks such as performance
monitoring, congestion avoidance, fault detection and load balancing. The ac-
tive research areas, recent works, emerging applications and research gaps were
surveyed in [25, 27, 66]. Addressing the INT overhead impact on networks’
QoS, the balance between accuracy and network resource consumption, and
methods to increase the information gained from INT are some of the most
discussed topics.

A novel network telemetry framework for software-defined networking was
proposed in [67]. The rate and granularity level at which the data should be
transmitted is dynamically adjusted based on the traffic type. [68] proposed the
design of SDN-based INT management architecture. Two main components
of the architecture are meant to control the commodity devices and flow-level
INT data collection. The network monitoring mechanism in [69] proposes
graph partitioned INT to find balance paths to forward INT for minimising the
overhead. A cross-layer telemetry architecture was proposed and implemented
on a testbed in [70] to combine INT with microservices tracing for application
performance management.

To increase the performance and reduce the computational costs at the sink,
and address the reduced QoS degradation, a monitoring platform is presented
in [71]. The platform offloads some critical INT processing functions, such as
path and packet header probes, to smart network interface cards.
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monitoring, congestion avoidance, fault detection and load balancing. The ac-
tive research areas, recent works, emerging applications and research gaps were
surveyed in [25, 27, 66]. Addressing the INT overhead impact on networks’
QoS, the balance between accuracy and network resource consumption, and
methods to increase the information gained from INT are some of the most
discussed topics.

A novel network telemetry framework for software-defined networking was
proposed in [67]. The rate and granularity level at which the data should be
transmitted is dynamically adjusted based on the traffic type. [68] proposed the
design of SDN-based INT management architecture. Two main components
of the architecture are meant to control the commodity devices and flow-level
INT data collection. The network monitoring mechanism in [69] proposes
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overhead. A cross-layer telemetry architecture was proposed and implemented
on a testbed in [70] to combine INT with microservices tracing for application
performance management.

To increase the performance and reduce the computational costs at the sink,
and address the reduced QoS degradation, a monitoring platform is presented
in [71]. The platform offloads some critical INT processing functions, such as
path and packet header probes, to smart network interface cards.
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PINT [72] bounds the amount of information added to each packet to address
the QoS degradation due to INT overhead. The INT data is probabilistically
encoded on several packets considering the maximum allowed overhead, and
query over a flow provides the probed data.

An accuracy-adaptive and lightweight INT mechanism is proposed in [73],
to address the INT overhead impact on network performance. The method
leverages model-driven data acquisition to make a decision to report telemetry
data. The decision is made by a predictor function-based, and reports take
place if the current value was not recorded in all the historical observations.
LINT-flow, as an extension of LINT, applies the prediction function on each
flow to leverage the expected flow self-similarity. DeltaINT framework [74]
achieves low bandwidth overhead by limiting the INT reports to detection of
significant change at packet or flow level. The significance of the state change
is determined by calculating the absolute difference between the current value
and current states and comparing it against a predefined threshold.

While recent studies highlight the importance of overall network perfor-
mance status as the first step for integrating new applications and IIoT solutions,
there are only flow and packet-level monitoring mechanisms in the INT-related
literature.

Many methods are being investigated to be added as mechanisms for reduc-
ing the impact of telemetry overhead on network performance. While the focus
is commonly on bandwidth saving for enhancing scalability, adaptivity and
flexibility requirements are not considered. In other words, the mechanisms
do not address the network’s responses to the changes nor potential localised
reconfiguration that will not require network-level re-orchestration. In addition,
integrating a data-driven approach to facilitate localised insight for enhancing
information generation and exchange in the network is a less investigated area.

INT is considered a new measurement for networks that can enable network
AI, but utilising AI for telemetry is still an area that needs to be explored.

In the following chapter, the contributions of this dissertation with respect to
the related work, research gaps and open research questions are summarised.
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4. Contributions

This chapter presents a summary of the included contributions to the evolving
industrial network domain. The contributions summarised in this dissertation
are presented in four published articles, three journals and one conference.
The full manuscripts are presented in Part II of this dissertation. This chapter
briefly covers each article’s key contributions and maps their connection to the
research goals and questions.

4.1 Concrete Contributions
The list of contributions was presented previously in the Introduction, Chapter 1.
Here, the contributions are elaborated on and mapped to the respective article,
research goals and questions. Table 4.1 presents an overview of this mapping.

Table 4.1. Overview of the contributions and corresponding research goals. Y indicates
the indirect impact of contributions on research goals.

RG1 RG2 RG3 RG4
C1 X
C2 X
C3 X Y
C4 X
C5 X
C6 X
C7 X Y
C8 X
C9 X

C1 - A lightweight flow-based learning method at sensor-level
The first contribution of this dissertation is to explore data-driven methods
integration into communication networks to address the scalability and energy
efficiency of an IIoT monitoring system. This contribution sets the direction
of the research work and activities presented in this dissertation. C1, together
with C2, provided answers to research questions that fulfil the first research
goal of this dissertation, RG1.

The scalability objective is addressed by saving spectrum for the most urgent
communications, and energy efficiency is achieved by preventing unnecessary

28

4. Contributions

This chapter presents a summary of the included contributions to the evolving
industrial network domain. The contributions summarised in this dissertation
are presented in four published articles, three journals and one conference.
The full manuscripts are presented in Part II of this dissertation. This chapter
briefly covers each article’s key contributions and maps their connection to the
research goals and questions.

4.1 Concrete Contributions
The list of contributions was presented previously in the Introduction, Chapter 1.
Here, the contributions are elaborated on and mapped to the respective article,
research goals and questions. Table 4.1 presents an overview of this mapping.

Table 4.1. Overview of the contributions and corresponding research goals. Y indicates
the indirect impact of contributions on research goals.

RG1 RG2 RG3 RG4
C1 X
C2 X
C3 X Y
C4 X
C5 X
C6 X
C7 X Y
C8 X
C9 X

C1 - A lightweight flow-based learning method at sensor-level
The first contribution of this dissertation is to explore data-driven methods
integration into communication networks to address the scalability and energy
efficiency of an IIoT monitoring system. This contribution sets the direction
of the research work and activities presented in this dissertation. C1, together
with C2, provided answers to research questions that fulfil the first research
goal of this dissertation, RG1.

The scalability objective is addressed by saving spectrum for the most urgent
communications, and energy efficiency is achieved by preventing unnecessary

28

48



uplink transmission. On the sensor layer, we try to reduce energy consumption
and unnecessary uplink transmissions. We achieve this by first creating a model
on the sensor devices by mining the collected data that approximates the data
stream behaviour and then transmitting only the updated model parameters.

C2 - An online learning algorithm for IIoT compliance monitoring system
The second contribution of this dissertation is built on the outcome of the
C1 to further reduce energy consumption and investigate the benefits of IIoT
solutions to industrial monitoring systems. This contribution, together with C1,
provides answers to research questions that fulfil the first research goal of this
dissertation, RG1.

We propose a distributed modelling method in a three-layer framework for
Industrial IoT (IIoT) systems, consisting of a cloud back-end, a fog middle
layer, and a lower (wireless) sensor layer. To further enhance the sensor-level
reduced energy consumption, we utilise a distributed fog system to reduce the
amount of data required to be sent to a large cloud system. We also investigate
how introducing an IIoT solution can be beneficial to industrial monitoring
systems.

C3 - An overview of challenges towards managing IT-OT consolidated
networks with aggregated traffic classes
The third contribution presented in this dissertation is categorising the obstacles
to the realisation of converged IT-OT network traffic from a practical perspec-
tive. This contribution, together with C4 and C5, provides answers to research
questions that fulfil the second research goal of this dissertation, RG2.

Three categories are defined that cover the challenges due to (1) the IT and
OT traffic characteristics and requirements (2) the uncertainty of the consol-
idated IT-OT network traffic behaviour and performance requirements, and
(3) the lack of evolutionary steps to integrate IIoT solutions into brownfield
installation.

C4 - A comparative analysis of industrial network traffic to identify the
disparity between theoretical assumptions and real industrial use-case and
practice (C4)
The fourth contribution presented in this dissertation is to identify the disparity
between theoretical assumptions and real industrial use cases and practices.
This contribution provides answers to research questions that partially fulfil the
second research goal, RG2.

A comparative study highlights the disparities between the common as-
sumptions of network traffic flow characteristics in the literature and what is
projected by the collected brownfield traffic data. Extending deficiency of
the existing flow characterisation and traffic modelling for network configura-
tion and performance management concerning the scalability and flexibility
requirements of the converged networks.
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C5 - A method for measurement of aggregated traffic classes in brownfield
installations
The fifth contribution presented in this dissertation addresses the shortcomings
of theoretical methods due to the disparity between theory and practice by
proposing a new measurement method for network traffic. This contribution,
together with C5 and C6, provides answers to research questions that fulfil the
second research goal of this dissertation, RG2.

A new measurement method for characterisation and analysing the network
traffic is proposed that can potentially reduce the complexity of resource alloca-
tion and management of the scaled-up converged networks. It enables flexible
technological integration into brownfield installations. Furthermore, based
on the findings and the proposed method, possible future research directions
considering the existing challenges and open issues in the evolution to the
consolidated IT–OT networks are discussed.

C6 - Two performance indicators for characterisation of aggregated traffic
classes
The sixth contribution included in this dissertation defines novel performance
indicators suitable for the new measurement method, which can capture the
dynamic behaviour of aggregated traffic in the network. This contribution
provides answers to research questions that partially fulfil the third research
goal of this dissertation, RG3.

Two network parameter indicators, transmission volatility and transmitter
volatility, are introduced to capture the temporal and spatial dynamics in band-
width utilisation to formulate the communication intensity and identify the work
cycles. Work cycles are modelled, and their communication states are profiled
based on their statistical summary and dynamic characteristics, including the
introduced parameters.

C7 - A two-step approach for modelling the communication dynamics and
profiling the aggregated traffic classes
The seventh contribution included in this dissertation aims to provide additional
insight into the dynamics of the brownfield installation networks. This contri-
bution, together with C6, provided answers to research questions that fulfil the
third research goal, RG3.

A two-step approach is proposed to model the aggregated traffic classes
collected from brownfield with respect to transmission intensity and throughput,
utilising the introduced parameters. The proposed approach is validated through
comparative analysis of its performance in terms of prediction accuracy and
consistency of generated labels with a set of unsupervised learning algorithms.
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C8 - An in-band telemetry monitoring mechanism for aggregated traffic
classes in industrial networks
The eighth contribution aims at integrating data-driven methods into network
switches’ functionalities to enable localised monitoring of aggregated traffic
and information exchange. This contribution, together with C9, partially fulfils
the fourth research goal of this dissertation, RG4, by providing an answer to
RQ4.1.

An in-band telemetry monitoring method for aggregated traffic classes is
proposed that can be implemented at the switch level for monitoring commu-
nication conditions. The proposed data-driven learning algorithm provides
localised information from the network sub-view to the centralised monitoring
system to be used for prognostics and management purposes.

C9 - A preliminary approach for distributed network monitoring to enable AI
for in-band telemetry
The final contribution presented in this dissertation is directly impacted by
the C8 contribution and aims to go beyond data transmission. It outlines
the potential for QoS-aware transmission planning of telemetry data utilising
the generated information at the switch. This contribution, together with C8,
provides answers to research questions that fulfil the fourth research goal of
this dissertation, RG4.

The information generated from the proposed data-driven algorithm can
be utilised at a switch for transmission planning of the telemetry packets to
avoid degrading QoS due to increased delay or bandwidth consumption. The
generated information can be utilised to improve the system performance by
switch-level resource management. In-band network telemetry packets can be
planned to be transmitted at a switch during the less communication-intense
states for periodic or pull requests.

4.2 Included Papers
The following provides an overview of each of the articles included in this
dissertation. A mapping of the articles to the contributions they contain is
shown in Table 4.2, and Figure 4.1

Table 4.2. Each paper’s contributions pave the foundation for the next paper’s contri-
butions. The influenced contributions from other papers are indicated by Y.

C1 C2 C3 C4 C5 C6 C7 C8 C9
PI X X
PII X X X
PIII Y X X
PIV Y Y X X
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Figure 4.1. Mapping of research goals (RG) and contributions (C) to the paper they are
presented in.

Paper I - Combining Fog Computing with Sensor Mote Machine Learning
for Industrial IoT.

Abstract:
Digitalization is a global trend becoming ever more important to our connected
and sustainable society. This trend also affects an industry where the Industrial
Internet of Things is an important part, and there is a need to conserve spectrum
and energy when communicating data to a fog or cloud back-end system. In
this paper, we investigate the benefits of fog computing by proposing a novel
distributed learning model on the sensor device and simulating the data stream
in the fog, instead of transmitting all raw sensor values to the cloud back-end.
To save energy and communicate as few packets as possible, the updated pa-
rameters of the learned model at the sensor device are communicated in longer
intervals to a fog computing system. The proposed framework is implemented
and tested in a real-world testbed to make quantitative measurements and eval-
uate the system. Our results show that the proposed model can achieve a 98%
decrease in the number of packets sent over the wireless link, and the fog
node can still simulate the data stream with an acceptable accuracy of 97%.
We also observe an end-to-end delay of 180 ms in our proposed three-layer
framework. Hence, the framework shows that a combination of fog and cloud
computing with a distributed data modeling at the sensor device for wireless
sensor networks can be beneficial for Industrial Internet of Things applications.
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Paper contributions:
The main contribution of this paper is proposing a novel 3-layer monitoring
framework for Industrial IoT, utilising decentralised data-driven flow-based
modelling to reduce communication overhead. Specifically, the following
general topic contributions are presented:
C1 - A lightweight flow-based learning method at sensor level for monitoring
communication networks.
C2 - An online learning algorithm for IIoT compliance monitoring systems.

My role:
The idea and the article were a collaboration between all authors. My specific
responsibility was at the sensor level with the design of the solution, algorithms,
experiment setup, hardware implementation and analysis of the results and
drawing conclusions. The draft of the paper was a collaboration between all
authors; however, I have done the reviews, modifications and re-visioning of
the manuscript.

Status:
Published in the Sensors Journal 18, no. 5, 2018.

Paper II - From Brown-Field to Future Industrial Networks, a Case Study

Abstract:
The network infrastructures in the future industrial networks need to accom-
modate, manage and guarantee performance to meet the converged Internet
technology (IT) and operational technology (OT) traffics requirements. The
pace of IT–OT networks development has been slow despite their considered
benefits in optimizing the performance and enhancing information flows. The
hindering factors vary from general challenges in performance management of
the diverse traffic for green-field configuration to lack of outlines for evolving
from brownfields to the converged network. Focusing on the brownfield, this
study provides additional insight into a brownfield characteristic to set a base-
line that enables the subsequent step development towards the future’s expected
converged networks. The case study highlights differences between real-world
network behavior and the common assumptions for analyzing the network
traffic covered in the literature. Considering the unsatisfactory performance of
the existing methods for characterization of brownfield traffic, a performance
and dynamics mixture measurement is proposed. The proposed method takes
both IT and OT traffic into consideration and reduces the complexity, and conse-
quently improves the flexibility, of performance and configuration management
of the brownfield.

Paper contributions:
The deviation between the theoretical assumption of network traffic charac-
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teristics and those projected from real data of a brownfield installation is
investigated. A new measurement for aggregated traffic with a network-level
scope is introduced. Specifically, the following contributions are presented:
C3 - An overview of challenges towards managing IT-OT consolidated networks
with aggregated traffic classes.
C4 - A comparative analysis of industrial network traffic to identify the disparity
between theoretical assumptions and real industrial use-case and practice.
C5 - A method for measurement of aggregated traffic classes in brownfield
installations.

My role:
I was the main driver of the work under the supervision of the co-authors. The
plan for the paper was formed in joint discussions with the co-authors. I have
set up and executed the experiments, performed the analysis and wrote the
draft of the paper. The co-authors have reviewed the paper, after which I have
improved it.

Status:
Published in the Journal of Applied Sciences 11, no. 7, 2021.

Paper III: - Modeling and Profiling of Aggregated Industrial Network
Traffic.

Abstract:
The industrial network infrastructures are transforming to a horizontal archi-
tecture to enable data availability for advanced applications, and to enhance
flexibility for the integration of new technologies. The uninterrupted operation
of the legacy systems needs to be ensured by safeguarding their requirements
in network configuration and resource management. Network traffic modelling
is an important prerequisite for understanding ongoing communication for
resource estimation and configuration management. The presented work pro-
poses a two-step approach for modelling brownfield traffics. It firstly detects
the repeated work-cycles, and then aims to identify the operational states for
profiling their characteristics. The performance and influence of the approach
are evaluated and validated in two experimental setups with data collected
from an industrial plant in operation. The comparative results show that the
proposed method successfully captures the temporal and spatial dynamics of
the network traffic for the characterisation of various communication states in
the operational work-cycles.

Paper contributions:
A novel two-step approach for modelling the aggregated traffic of the brownfield
installation is proposed. Two performance indicator parameters, transmission
and transmitter volatility, are defined and used in the formulation of the through-
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put rate of change to capture the spatial and temporal behaviour of network
dynamics. Specifically, the following concrete contributions are presented:
C6 - Two performance indicators for the characterisation of aggregated traffic
classes.
C7 - A two-step approach for modelling the communication dynamics and
profiling the aggregated traffic classes.

My role:
I was the main driver of the work under the supervision of the co-authors. The
plan for the paper was formed in joint discussions with the co-authors. I have
set up and executed the experiments, performed the analysis and wrote the
draft of the paper. The co-authors have reviewed the paper, after which I have
improved it.

Status:
Published in Journal of Applied Sciences 12, no.2, 2022.

Paper IV - Data-driven Method for In-band Network Telemetry Monitoring
of Aggregated Traffic.

Abstract:
Under the vision of industry 4.0, industrial networks are expected to accom-
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used for prognostic and network management purposes. The decentralised
telemetry transmission planning by this method can enable AI for telemetry
networks with QoS-aware resource management. Specifically, the following
concrete contributions are presented:
C8 - An in-band telemetry monitoring mechanism for aggregated traffic classes
in brownfield installations.
C9 - A preliminary approach for distributed network monitoring to enable AI
for in-band telemetry
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I was the main driver of the work under the supervision of the co-authors and
contributed to planning for the paper in joint discussions with the co-authors. I
set up and executed the experiments, performed the analysis, wrote the draft,
and applied modifications and revisions to the paper.
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5. Conclusion

This chapter offers a comprehensive conclusion to this dissertation. An overview
of the research is presented by summarising the contributions with respect to
the research goals. The potential impacts of the data-driven approach on the
evolving industrial networks and intertwined ethical issues in the research field
are briefly discussed. This dissertation concludes with an outlook into possible
future work, including enhancements of the proposed monitoring system as
well as possibilities in new research fields.

5.1 Research Overview
Industry 4.0 envisions innovation and enhanced efficiency, productivity and
performance of future factories through joint applicability of the internet, infor-
mation and operation technologies in IIoT-compliance solutions. The realisa-
tion of these promises builds upon a unified infrastructure that accommodates
both IT and OT traffic.

As of today, the implementation of a consolidated IT-OT network is still a
challenge, which slows down the deployment of innovative solutions in indus-
trial plants. The characteristic differences between IT and OT traffic, in addition
to their diverse and sometimes contradicting performance requirements, pose
difficulties in network performance management. The lack of knowledge about
the characteristics, behaviour and requirements of IT-OT converged networks
induces a high level of uncertainty in network configuration and performance
management.

The new network infrastructure for IT-OT converged networks cannot be
realised in one revolutionary act since it is unexpected that a functioning
brownfield installation is replaced by new systems with a high risk of downtime.
A vital point to consider in the integration of new technologies is the continuous
operation of the existing systems, machinery and infrastructure. Integration
strategies need to be developed to consider safeguarding the performance
of brownfield installations at each step through the evolution of industrial
networks.

While there are many uncertainties surrounding the performance and con-
figuration management of under-transition industrial networks, one side of
any integration equation is the existing brownfield installations. Studying the
existing network traffic can provide valuable insights to establish a basis for
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network functional properties, admitting differences between each network
traffic due to overly tailored system design based on use-case and applications.

A novel distributed flow-based learning model for an IIoT-compliance mon-
itoring system was proposed in this research. It aimed to test the hypothesis
regarding the impact of data-driven modelling on aiding network management
tasks. The model decreased bandwidth consumption by 90% with acceptable
accuracy of 97% for the regenerated flows. A deeper analysis of the proposed
solution showed that it successfully showcased the benefits of data-driven
solutions and satisfied the energy efficiency target, but failed the scalability re-
quirement of IIoT solutions as well as the complexity of network configuration
and management.

The importance of understanding the underlying traffic of brownfield in-
stallations was brought to light by mapping the theoretical assumption to
the outcome of exploratory analysis of industrial network traffic. Hereafter,
the overall research purpose was set to investigate data-driven methods for
aggregated network traffic that can ensure the uninterrupted performance of
brownfield installations. Deploying data-driven methods provided additional
insights into the dynamics of network traffic, which were then quantified and
used for the characterisation and spatiotemporal modelling of the aggregated
traffic. A data-driven method was proposed for monitoring the aggregated
traffic at the switch level. The results showed the effectiveness of the method in
reducing bandwidth overhead due to telemetry data transmission. In addition,
the method is a step towards distributed monitoring and control and Network-AI
for future industrial networks.

5.1.1 Outcome
The ultimate purpose of this study is to investigate methods that ensure the unin-
terrupted and timely performance of brownfield industrial network installations
on the path of evolving into the envisioned smart factories of the future. The
research plan was built on the hypothesis that data-driven modelling can pro-
vide additional insight into the operational networks, which can be utilised for
various network management-relevant tasks, including monitoring aggregated
network traffic.

The research began by identifying reliable exchange of information in in-
dustrial networks as an open issue that has a direct effect on developing IIoT
solutions for industrial scenarios. Each part of the study led to the formulation
of a goal and a set of questions, presented in Section 1, and was carried out
as small projects whose results built the basis of the next phase. This iterative
process provided the opportunity to gain deeper knowledge about the active
research areas and gaps in the state of practice, and to seek answers to the
research questions from different perspectives.
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The research work presented in this dissertation is summarised in Figure 5.1,
including goals, questions, contributions and publications. Concrete outcomes
are as follows:

• RG1: "Investigate the role of data-driven methods in enabling information
exchange in IIoT solutions, considering required scalability and energy
efficiency of communication systems."
In Paper I, a three-layer IIoT monitoring framework consisting of a sen-
sor layer, fog computing layer and cloud back-end is designed. A novel
distributed learning model on the sensor device is proposed that replaces
raw sensor value transmission with information exchange to the fog node,
RQ1.1. To save energy and bandwidth, the sensor device communicates
in longer time intervals with the fog node, transmitting the updated param-
eters of the learned data stream model. The fog node simulates the data
stream using the updated parameters and updates the associated sensors’
values to the cloud back-end. Furthermore, the proposed framework is
implemented in a testbed in order to make quantitative measurements
and evaluate the system, including the implementation of the learning
algorithm on the sensor motes. The results show that the proposed model
can achieve a 98% decrease in the number of transmitted packets, and the
fog node can still simulate the data stream with an acceptable accuracy of
97%, RQ1.2. Hence, distributed data stream modelling and information
exchange can be beneficial for IIoT applications.

• RG2: "Identify the gaps between the state-of-the-art and state of practice
for the realisation of IT-OT consolidated networks and to address the
challenges of network resource management."
In a case study, Paper II provides additional insight into the characteris-
tics of network traffic in brownfield installations. It sets a baseline that
enables the subsequent development step towards the expected converged
networks. The comparative analysis highlights the differences between
real-world network behaviour and the common assumptions in the lit-
erature, RQ2.1. Additionally, a deeper study showed the unsatisfactory
performance of the existing network measurement and characterisation
methods for brownfield traffic. A novel performance and dynamics mix-
ture measurement is proposed that takes both IT and OT traffic into
consideration, RQ2.2. The network-level perspective provides a better
estimate of resource availability for network management. Furthermore,
the method can reduce the complexity of flow-based measurement and
improve the flexibility of performance and configuration management.

• RG3:"Propose a method for modelling and profiling the aggregated traffic
classes of brownfield installations."

40

The research work presented in this dissertation is summarised in Figure 5.1,
including goals, questions, contributions and publications. Concrete outcomes
are as follows:

• RG1: "Investigate the role of data-driven methods in enabling information
exchange in IIoT solutions, considering required scalability and energy
efficiency of communication systems."
In Paper I, a three-layer IIoT monitoring framework consisting of a sen-
sor layer, fog computing layer and cloud back-end is designed. A novel
distributed learning model on the sensor device is proposed that replaces
raw sensor value transmission with information exchange to the fog node,
RQ1.1. To save energy and bandwidth, the sensor device communicates
in longer time intervals with the fog node, transmitting the updated param-
eters of the learned data stream model. The fog node simulates the data
stream using the updated parameters and updates the associated sensors’
values to the cloud back-end. Furthermore, the proposed framework is
implemented in a testbed in order to make quantitative measurements
and evaluate the system, including the implementation of the learning
algorithm on the sensor motes. The results show that the proposed model
can achieve a 98% decrease in the number of transmitted packets, and the
fog node can still simulate the data stream with an acceptable accuracy of
97%, RQ1.2. Hence, distributed data stream modelling and information
exchange can be beneficial for IIoT applications.

• RG2: "Identify the gaps between the state-of-the-art and state of practice
for the realisation of IT-OT consolidated networks and to address the
challenges of network resource management."
In a case study, Paper II provides additional insight into the characteris-
tics of network traffic in brownfield installations. It sets a baseline that
enables the subsequent development step towards the expected converged
networks. The comparative analysis highlights the differences between
real-world network behaviour and the common assumptions in the lit-
erature, RQ2.1. Additionally, a deeper study showed the unsatisfactory
performance of the existing network measurement and characterisation
methods for brownfield traffic. A novel performance and dynamics mix-
ture measurement is proposed that takes both IT and OT traffic into
consideration, RQ2.2. The network-level perspective provides a better
estimate of resource availability for network management. Furthermore,
the method can reduce the complexity of flow-based measurement and
improve the flexibility of performance and configuration management.

• RG3:"Propose a method for modelling and profiling the aggregated traffic
classes of brownfield installations."

40

60



The objectives of this goal were to define parameter indicators that can
capture the communication dynamics, RQ3.1, and use them in modelling
the aggregated traffic behaviour, RQ3.2. A two-step approach for mod-
elling brownfield traffic is proposed in Paper III, which is fulfilling the
two objectives, respectively. The outcomes of previous goals revealed the
repeated pattern of system work-cycles in the traffic data and the necessity
of spatiotemporal measurement and characterisation of network traffic.
Building on these findings, the boundaries of the repeated work-cycles are
first identified, and then the existing operational states in the work-cycles
are profiled. The performance and influence of the approach are evaluated
and validated in two experimental setups with data collected from an
industrial plant in operation. The results show successful capturing of
the spatiotemporal dynamics of the network traffic. Furthermore, the
communication states in the operational work-cycles are identified, which
are incorporated in the characterisation and profiling of aggregated traffic.

• RG4:"Propose a data-driven mechanism for aggregated traffic monitor-
ing that can provide sufficient insight into the network state through
information exchange while maintaining the communication QoS."
The proposed data-driven in-band telemetry method for monitoring the
aggregated traffic of the network at the switch level is presented in Paper
IV. The method relies on the outcome of the previous research goals,
encapsulating the distributed learning model, spatiotemporal dynamic
measurement and aggregated traffic modelling. The main objectives
defined for this goal were distributed and localised network monitoring
and uninterrupted operation of ongoing processes, that is, to aid network
resource and configuration management upon integration of new tech-
nologies or systems. The method learns and models the communication
states by local network-level measurement of communication intensity
and transmits the information for network management, RQ4.1. This
information can be utilised in central monitoring and control systems for
prognostics purposes and congestion avoidance resource planning upon
new application integration. Localised resource planning and congestion
avoidance can be carried out at the switch utilising the same information.
Transmission of network telemetry data can be planned based on the cur-
rent state of the network and in low-intensity communication states. In
other words, a simple distributed decision-making process can be carried
out at the switch level to introduce more flexibility to the communication
system without a negative impact on QoS. The monitoring at the switch
level takes a step towards the Network-AI for future industrial networks,
RQ4.2.

The overall purpose of this research was to address the challenges of trans-
forming industrial networks for the realisation of future smart factories. The
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achieved research goals through the iterative process shaped the contributions
presented in this dissertation and fulfilled this purpose.

5.1.2 Limitations
The main limitation throughout this research was insufficient data from indus-
trial plants. Data from brownfield installations are scarce, and the industry is
not yet willing to share its data publicly for research purposes. This limited the
possibility of evaluating the proposed methods on diverse real data and deriv-
ing generalised conclusions. The lack of volatility and the highly simplified
patterns observed in the publicly available data from labs and testbeds made
them unsuitable substitutes for real data in the experiments.

The unavailability of data was not only limited to brownfield installations.
Since the IT-OT consolidated networks are not de facto infrastructure, there are
also no available integrated traffic data. This limited expansion of aggregated
traffic measurement and quantification of performance metrics.

Moreover, there are not many studies, or active research works addressing
the performance requirements of evolving industrial networks. This limited
finding support in the literature for some of the assumptions about the state of
practice. This limitation was addressed by deduction and reasoning, extracting
the information from the available data, or scoping the experiments, results and
conclusions of contributions within similar use-case scenarios.

In the following section, the impact and ethical considerations, as well as
possible future paths, are discussed.

5.2 Impacts and Ethical Considerations
The impact and ethical considerations of research can be discussed from both
scientific and social perspectives. The contributions of the presented research
to the research community are summarised previously. The outcomes are
aligned with the current active research in IIoT and relevant topics in the cross-
disciplines of industrial networks, computer science, communication systems
and data analytics. I hope that the presented research work can assist, even
slightly, the acceleration of the industrial transformation indirectly by being
disputed and becoming a part of the lesson learnt or directly with pursuing the
possible future direction.

The ethical considerations are close to any research conduct. In this respect,
I can assure abiding by the rules of ethical research practice throughout this
research. Special attention was given to the ethical reuse of any material
(written, results, statements and ideas). Nonetheless, in reality, one can never
be certain of achieving the totality of intention. I would appreciate it if I am
informed about any possible unintentional missing credits, so I can correct the
mistake immediately.
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Due to the nature of this work, which stays within the technical boundaries
of future industrial networks requirement, it is not expected to have a tangible
social impact, nor on the human involved other than providing a better perspec-
tive for carrying out the expected tasks. This research focused on methods for
information generation and transmission in industrial networks with machinery
data traffic. However, it is hard to predict what data will be handled for the new
applications.

The downside to the love of truth is that it may lead scientists to pursue it
regardless of unfortunate consequences. Scientists do bear the heavy responsi-
bility to warn society of those (unfortunate) consequences [75]. Accordingly,
the negative effects that the fourth industrial revolution might pose to society,
and the ethical issues which might follow, have justly been speculated in the
scientific community [76, 77, 78]. It has been discussed that the fourth indus-
trial revolution could yield great inequality for consumers as well as in the
labour market [78]; the benefits might be limited to those who can afford the
services, and the job market might shrink for the workforce with lower skills.
Furthermore, while future industries could be more efficient and productive
by integrating intelligent technologies into automation systems, the workforce
needs training to adopt the new mindset and to adapt to the new ecosystem [77].
While technological advances are accelerating, strategies to deal with the afore-
mentioned ethical concerns need to be set and carried out by economic and
political policymakers. Recent efforts are addressing these ethical concerns
by introducing new concepts like lifelong learners and putting humans at the
centre of sustainable development, such as the goal of Industry 5.0 [79] as
an amendment to the Industry 4.0 paradigm. From the technical perspective,
traceability of data-driven methods and human-machine interaction (HMI) are
some of the recent directions to develop dependable systems and create trust
between the operators and systems. Nonetheless, commitment to applying
the new concepts and investment in advancing them purposefully cannot be
taken lightly. After all, we have to win this race between the growing power of
technology and the growing wisdom with which we manage it. We do not want
to learn from mistakes [76].

5.3 Future Direction
Characterisation of the network traffic is the first step for configuration and
performance management of the network. The existing methods for characteri-
sation and profiling the traffic fall short of meeting the scalability requirements
of IT-OT converged traffic. A sophisticated network management system re-
quires an accurate and thorough analysis of the network components about the
resources and criteria for performance management, among other important
parameters. Affected by the previously discussed increased complexity, the
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accurate analysis of the network performance with flow-level measurement will
potentially be even more difficult.

In this work, the first step is taken to address the identified gaps within the
active research and state of practice in network resource management, namely
modelling and monitoring the traffic of industrial brownfield installations. It
is indisputable that in the cross-section of computer science and operational
technology, more sophisticated methods can be developed with acceptable
trade-offs between complexity and flexibility, as well as innovative solutions to
address the existing gaps and challenges.

We concluded this research by proposing and validating the data-driven
in-band telemetry monitoring method at the switch-level. However, there
are two evident possible directions from our presented work: decentralised
resource planning and decision-making to pursue AI for telemetry networks,
and expanding the switch-level monitoring method to address information
generation by integrating sub-views of various switches in the network and
their interactions. While both are interesting areas, our primary research focus
is on AI for telemetry networks.

In addition, the proposed methods aim to provide a new perspective on
possible new applications and approaches to enable the AI-network. The
methods are far from optimised or suitable for being deployed as a system.
Future investigations for optimising the information transmission processes
and information to knowledge transformation or decision support for adding
limited control at the switches are of evident directions.

While cross-disciplinary approaches to finding new solutions, use cases and
applications are promising, there are also various open areas for new research.
An evident open direction is the security concerns for integrated traffic of IT-OT,
dependent or independent of a use-case application.

A closer investigation also shows the missing energy efficiency discussions
in active research in academia and industry when various methods for network
management are developed. Considering the importance of energy reduction
and various parameters that can contribute to it from the network perspective,
e.g. transmissions and wireless communication, a precise study of methods
to formulate energy efficiency quantitatively should be added for evaluation
of the solution performance. So far, there are no such studies in literature or
active research work that are communicated with the industrial or academic
community.
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