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Abstract: The extraction of relevant features from the photoplethysmography signal for estimating
certain physiological parameters is a challenging task. Various feature extraction methods have been
proposed in the literature. In this study, we present a novel fiducial point extraction algorithm to detect
c and d points from the acceleration photoplethysmogram (APG), namely “CnD”. The algorithm
allows for the application of various pre-processing techniques, such as filtering, smoothing, and
removing baseline drift; the possibility of calculating first, second, and third photoplethysmography
derivatives; and the implementation of algorithms for detecting and highlighting APG fiducial
points. An evaluation of the CnD indicated a high level of accuracy in the algorithm’s ability to
identify fiducial points. Out of 438 APG fiducial c and d points, the algorithm accurately identified
434 points, resulting in an accuracy rate of 99%. This level of accuracy was consistent across all the
test cases, with low error rates. These findings indicate that the algorithm has a high potential for
use in practical applications as a reliable method for detecting fiducial points. Thereby, it provides
a valuable new resource for researchers and healthcare professionals working in the analysis of
photoplethysmography signals.

Keywords: photoplethysmography; PPG features; fiducial points; PPG derivatives; APG; c and d
points; APG fiducial points; acceleration photoplethysmogram

1. Introduction

Photoplethysmography (PPG) is a non-invasive technique for measuring vital signs,
whose principle of work is detecting changes in blood volume in the microvasculature of
the skin through the absorption of light [1]. PPG has been explored in a number of studies
as a tool for monitoring heart rate, blood pressure, and respiratory rate [2–5], as well as
for the identification of individuals with disease risk [6–9]. However, extracting relevant
features from the PPG signal is a challenging task, and various feature extraction methods
have been proposed in the literature [10–12].

The PPG waveform has been widely studied for decades and is now commonly used
in various wearable devices [13]. However, despite the wide range of applications, there is
a lack of agreement on an appropriate pre-processing framework that can be used without
limitations for applications [14]. Researchers have employed a wide range of techniques
for sensor interfacing, data recording, segmentation, filtration, and smoothing, from the
choice of location for PPG signal acquisition to the features that can be extracted from the
signal [15].

PPG signal processing has been investigated in both the time and frequency domain,
and the use of PPG derivatives has also been reported upon in the literature [16–18]. The
first PPG derivative represents the velocity photoplethysmography (VPG), while the second
derivative is known as the acceleration photoplethysmography (APG). Elgendi et al. [10]
have attempted to standardize the PPG fiducial points by utilizing VPG and APG sig-
nals in order to enhance the extraction of diagnostic features. However, as reported by
Suboh et al. [19], the use of the third and fourth derivatives of the PPG waveform has also
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been studied and applied in extracting fiducial points for individuals with ischemic heart
disease. Despite the identification of fiducial points [10–13,20], there is a lack of consistency
in the terminology used to refer to these waveform types and their corresponding fiducial
points. Therefore, this article follows the fiducial point name-convention identified by
Elgendi et al. [10] as shown in Figure 1.
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APG signal analysis is a subject of importance for clinicians and researchers [18,21–23].
The c and d fiducial points of the APG are known to be sensitive indicators of arterial
stiffness [24], with the c point corresponding to the onset of the reflected wave and the d
point representing the end of the reflected wave [16,18]. The amplitude and the timing
of the c and d points have been found to provide important information about the aging
process and in assessing cardiovascular disease [16,18,22,24–26]. Currently, there is no
widely accepted standard for the automatic detection of the c and d points in APG signals,
which can make it difficult to compare results across different studies.

In this work, a novel CnD algorithm has been introduced for the automatic detection
of c and points to eliminate the need for human intervention and eradicate the error
in detecting the presence of APG fiducial c and d points in APG waveforms without
the need of generating a block of interest as previously proposed by Li et al. [27] and
Elgendi et al. [23]. The performance evaluation of the CnD algorithm has been carried out
using the publicly available PPG-BP Database [28].

The rest of the article is organized as follows: The database selection is presented
in Section 2, the detailed explanation of the CnD algorithm can be found in Section 3,
and the performance evaluation is presented in Section 4 followed by the Discussion
and Conclusion.

2. Materials
Database Selection

Few available online databases offer a variety of PPG signals, i.e., PPG signals col-
lected from both healthy and sick volunteers. The University of Queensland Vital Signs
dataset [29] provides a wide range of patient monitoring data and vital signs gathered
during 32 surgical instances where patients underwent anesthesia at the Royal Adelaide
Hospital, Australia. Another database, the MIMIC II Database from PhysioNet [30] includes
121 segments of 10 min recordings of ECG, respiratory rate, arterial blood pressure, and
PPG signals from 90 intensive care unit patients. In the MIMIC II Database, systolic peak
annotations are provided, but they are only available for selected records.

In this work, we used the publicly available PPG-BP Database [28]. The database
integrates the identified, comprehensive clinical data of patients admitted to the Guilin
People’s Hospital, Guilin, China. The openness of the data allows researchers to explore and
improve the understanding of relationships between cardiovascular health and PPG signals,
with the goal of creating an effective non-invasive and wearable detection technology
that is easy to use. The dataset includes data collected from 219 subjects, aged between
21–86 years, with a median age of 58 years, and the distribution of the data between male
and female is 48% and 52%, respectively. The dataset covers several diseases including
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hypertension, diabetes, cerebral infarction, and insufficient brain blood supply. During the
signal acquisition, Liang et al. [28] used a sampling frequency of 1 kHz, and three PPG
segments were recorded and saved per subject. Each segment included 2100 sampling
points. During the 3 min data collection phase, every PPG segment of a particular subject
scored a Skewness SQI (Ssqi) value; values greater than zero [28] were saved in the PPG-BP
Database, while the user was prompted to retake the PPG signal if the value was less
than zero. This step was implemented to reduce the inclusion of segments with a high
proportion of noise and motion artifacts [28].

3. Detection Method
3.1. Data Preparation

Figure 2 presents the necessary elements to select the most accurate raw PPG segments
with acceptable Ssqi values [28]. Out of the three PPG segments for each subject in the
database, the PPG segments with a Ssqi value exceeding the threshold of 0.41 were selected
and their corresponding raw values were stored in a new matrix. This process was then
repeated for all subjects and two matrices were generated. The first matrix contains the raw
values of the segments for each subject with Ssqi higher than 0.41, and the second matrix
contains the Ssqi values and subject IDs for data recording purposes.
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3.2. Pre-Processing

Previous studies in the field of PPG signal analysis have extensively discussed the
selection of suitable filters and the corresponding bandpass frequency ranges necessary
for the analysis of various segments of the PPG waveform [31–36]. In the study by Liang
et al. [32], the authors aimed to determine the optimal filter and filter order to be used for
PPG signal processing. Nine types of filters with ten different filter orders were used to
filter short PPG signals. Results of this study indicate that the 4th order Chebyshev II filter
with 20 dB configuration can more effectively improve the PPG signal quality compared
to other types of filters. The proposed CnD algorithm incorporates the same filter design
for the purpose of APG fiducial point extraction, where a 4th order, 20 dB, Chebyshev II
filter with a bandpass frequency range of 0.4–8 Hz was applied to the selected PPG data to
remove high- and low-frequency noise. A moving average filter was then applied using
the MATLAB function movmean to further reduce random noise and improve the quality of
the signal. The governing mathematical Equation (1) of the moving average can be written
as follows:

y[i] = 1/N
n

∑
i=0

xi+j (1)

where x is the raw PPG signal; y denotes the filtered PPG signal; and N denotes the average
number of points.
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3.3. PPG Derivatives (VPG, APG, JPG)

The derivatives of PPG up to the third level are calculated using governing Equations (2)–(4),
where y(t) is a filtered PPG signal, y(t − 1) and y(t + 1) represent the previous and the next
sample, respectively. The VPG, APG and JPG of the denoised PPG signal are calculated
using the MATLAB diff function, which follows Equations (2)–(4):

VPG =
d
dt
(PPG) =

d
dt
[y(t + 1)− y(t)] (2)

APG =
d
dt
(VPG) =

d
dt
[y(t + 1) + y(t − 1)− 2y(t)] (3)

JPG =
d
dt
(APG) =

d
dt
[y(t + 2)− 2y(t + 1) + 2y(t)− y(t − 1)] (4)

Typically, the first derivative of a signal is thought to be comparable to a high pass
filter. It boosts the high slope areas of the signal and improves the detection accuracy of
various characteristics points in addition to eliminating any low-frequency components of
the signal.

3.4. Fiducial Points

The waveforms shown in Figure 3 provide additional information related to the PPG
waveform in Figure 3a, by including four prominent points in the systolic phase (a–d) and
two in the diastolic phase (e and f) as shown in Figure 3b. These points correspond to the
points of maximum acceleration in the waveform during the systolic and diastolic phases,
respectively, they also provide additional information about the dynamics of blood flow
during these phases of the cardiac cycle [37].
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Figure 3. PPG and APG waveforms, (i) Filtered PPG waveform, (ii) APG waveform, consisting of
overall six fiducial points, where four points are in the systolic phase (a–d) which corresponds to the
point of maximum acceleration, and two points are in the diastolic phase (e, f) which correspond to
the dicrotic notch and diastolic peak of the PPG waveform.

3.5. Novel Fiducial Point Extraction Algorithm to Detect C and D Points from the Acceleration
Photoplethysmogram (CnD)

The flowchart in Figure 4 presents the working of the CnD algorithm for identifying
c and d points in different types of APG waveforms. A raw PPG signal with a high Ssqi
is provided as an input to the CnD algorithm, which is followed by pre-processing of the
signal to obtain a filtered PPG signal, as explained in Section 3.2. The second derivative
of the filtered PPG signal is then calculated followed by the moving average using the
MATLAB functions diff and movmean functions, to obtain the APG waveform.
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Identifying points c and d in the APG waveform can be challenging due to variability
in their characteristics caused by stationary and non-stationary effects in blood circulation.
To address this challenge, the CnD algorithm examines the region between the systolic
peak (b point) and diastolic peak (e point) of the APG waveform as shown in Figure 5A.
Based on this examination, the waveform is classified into one of three cases: Case I, Case
II, and Case III as shown in Figure 5.

Case I: When there are no prominent c and d points in the APG as shown in Figure 5
(Case IA): The examination of the APG waveform provided information that there was no
distinguishable point found between point b and e of the APG waveform, therefore, the
CnD algorithm will examine the JPG waveform [19] and locate the zero-crossing points
as well as the first maximum point of JPG waveform which occur after the second zero-
crossing point in JPG as shown in Figure 5 (Case IC). The first maxima point in the JPG
waveform corresponded to the APG waveform’s c point, while the d point was the APG
waveform’s second zero-crossing point (Figure 5 (Case IB,C)). Similarly, the e point in the
APG waveform corresponded to the third zero-crossing point of the JPG waveform or the
second maxima of APG waveform, and the f point corresponded to the fourth zero-crossing
point of JPG waveform or the second minima of the APG waveform (Figure 5 (Case IB,C).

Case II: When the c and d points are undetectable in the APG waveform as shown
in Figure 5 (Case IIA): This is a crucial condition for the CnD algorithm because a visual
inspection of the APG waveform can provide evidence of the presence of c and d points,
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but they are not prominent enough to be detected directly by the analysis of the APG
waveform. Therefore, the JPG waveform was studied and from experimental analysis, it
was found that the second minima of the JPG waveform was the central point of the c and
d points as shown in Figure 5 (Case IIC). Therefore, the CnD algorithm takes the second
minima of the JPG waveform and calculates the corresponding c and d point in the APG
waveform. The location of the c point is the second minima of the JPG waveform minus
2.5% of the total wavelength of the APG waveform (T), and the location of the d point was
the second minima of the JPG waveform plus 2.5% of T as shown in Figure 5 (CaseIIB,C).
The e point in the APG waveform corresponds to the third zero-crossing point of the JPG
waveform or the second maxima of the APG waveform, and the f point corresponded
to the fourth zero-crossing point of the JPG waveform or the second minima of the APG
waveform (Figure 5 (Case IIB,C)).
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Figure 5. APG fiducial point extraction through Cases I–III, where (A) is the APG waveform examined
by the algorithm between points b and e and it is classified into Case I–III based on this, (B) is the
output waveform from the algorithm highlighting the fiducial point c and d, whereas (C) is the JPG
waveform used to extract fiducial points for APG waveform.

Case III: When the c and d points are prominent in the APG waveform as shown in
Figure 5 (Case IIIA): The analysis of the APG waveform provides sufficient information to
the CnD algorithm to accurately locate c and d points in the APG waveform, therefore the
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c point is the second maxima of the APG waveform, whereas the d point was the second
minima of the APG waveform (Figure 5 (Case IIIB). The e point in the APG waveform
corresponded to the third zero-crossing point of the JPG waveform or the second maxima
of the APG waveform, and the f point corresponded to the fourth zero-crossing point of
the JPG waveform or the second minima of the APG waveform (Figure 5 Case IIIB,C).

4. Performance Evaluation of the CnD Algorithm

To evaluate the identification of the APG waveform and the detection of c and d
points, four performance parameters were calculated, which follow Equations (5)–(8) and
include accuracy (Acc), error rate (Err), sensitivity (S), and positive predictivity (PP). Table 1
summarizes the complete results of the performance evaluation.

Acc =
(

TP
(TP + FP + FN)

)
× 100 (5)

Err =
(
(FP + FN)

N

)
× 100 (6)

S =

(
TP

TP + FN

)
× 100 (7)

PP =

(
TP

TP + FP

)
× 100 (8)

where
TP = True positive (Correctly detected points).
FP = False positive (Incorrectly detected points).
FN = False negative (Missing points).
N = Number of subjects.

Table 1. Performance evaluation of the CnD algorithm for 219 samples.

Algorithm N TP FP FN SN% PPV% Err% Acc%

Case I 140 139 0 1 99.29 100 0.71 99.29
Case II 54 53 1 0 100 98.15 1.85 98.15
Case III 25 25 0 0 100 100 0 100

In order to evaluate the performance of the CnD algorithm, it is essential to have a
wide range of data that encompass a variety of conditions. This is typically achieved by
using a large number of PPG signals that represent different pathological conditions to test
the CnD algorithm’s capability to handle diverse conditions.

A total of 219 PPG waveforms were processed through the CnD algorithm. The process
was divided into two stages: in the first stage, the manual marking of fiducial points was
performed using the MATLAB functions islocalmax and islocalmin, where each point was
selected manually, and its corresponding value was recorded.

In the second stage, the same set of raw PPG segments were examined using the
CnD algorithm that automatically extracts the fiducial points of PPG and its derivatives.
Simultaneously, a manual assessment was performed to evaluate the CnD algorithm’s
accuracy. The proposed CnD algorithm was tested on a dataset that contained a total
of 438 c and d fiducial points; of which the CnD algorithm accurately identified 434 of
these points, resulting in an accuracy of 99.09%. This indicates that the CnD algorithm can
effectively and accurately extract fiducial points, which is crucial for the feature extraction
process in PPG signal analysis. The high precision of the CnD algorithm demonstrates its
potential as a reliable tool for PPG signal analysis in various medical applications.

Table 1 summarizes the detailed evaluation of the CnD algorithm for 219 samples where:
Case I: A total of 140 samples were classified as Case I, which includes 280 c and d

points. Out of 140 samples, 139 samples were accurately classified as Case I (TP) and one
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sample was not detected by Case I (FN). This results in a sensitivity of 99.29%, a positive
predictivity of 100%, an error rate of 0.71%, and an accuracy of 99.29% for Case I. This
means that out of the 280 c and d points, 278 were accurately detected and 2 points were
missed by the CnD algorithm.

Case II: A total of 54 samples were classified as Case II, which includes 108 c and
d points. Out of 54 samples, 53 samples were correctly classified as Case II (TP) and
1 was incorrectly classified as positive (FP). This results in a sensitivity of 100%, a positive
predictivity of 98.15%, an error rate of 1.85%, and an accuracy of 98.15%. This means that
out of the 108 c and d points, 106 were accurately detected and 2 points were incorrectly
identified by the CnD algorithm.

Case III: A total of 25 samples were classified as Case III, which includes 50 c and d
points. All of these were correctly classified as Case III (TP), and none was misclassified.
This results in a sensitivity of 100%, a positive predictivity of 100%, an error rate of 0%, and
an accuracy of 100%. This means that out of the 50 c and d points, all of the points were
accurately detected by the CnD algorithm.

5. Discussion and Conclusions

Statistical analyses of APG fiducial points provide clinicians and researchers with
important information related to arterial stiffness, aging, and essential hypertension. Sev-
eral research efforts have been reported on this matter; however, so far there is no widely
accepted standard method for automatically detecting the c and d points in APG signals.
The detection is not trivial since the c and d points are not always visually observable in
the APG.

This article has presented a novel fiducial point extraction algorithm to detect c and d
points from the acceleration photoplethysmogram (CnD). The algorithm is a valuable and
new resource for researchers and healthcare professionals working on the analysis of PPG
signals. The CnD algorithm significantly reduces the risk of errors in identifying fiducial
points, and an experimental evaluation has shown that the CnD algorithm provides accurate
results at a high degree of consistency. The algorithm has a high potential to become a
powerful tool in the field of non-invasive vital sign monitoring and in the identification of
individuals at risk for cardiovascular diseases [7].

To evaluate an algorithm’s performance as a feature extraction algorithm, a sufficiently
large and diverse dataset is required. The CnD algorithm was evaluated using the PPG-
BP Database [28]. This dataset, which contains data from 219 subjects of equal gender
distribution of a varying age, covers subjects with several diseases including hypertension,
diabetes, cerebral infarction, and insufficient brain blood supply. The dataset, hence,
includes PPG samples in which: (Case I) there are no prominent c and d points in the APG,
(Case II) the c and d points are undetectable in the APG, and (Case III) the c and d points
are prominent in the APG.

Overall, the evaluation shows that the CnD algorithm performs well in all three cases,
with the highest performance seen for Case III where all samples were correctly classified
as Case III with a 100% accuracy, sensitivity, and positive predictivity. For Case I, the
algorithm performed well with an accuracy of 99.29% for detecting c and d points with a
very low error rate. For Case II, the algorithm showed an accuracy of 98.15% for detecting
c and d points with an error rate of 1.85%. Overall, this suggests that the CnD algorithm is
robust and can effectively detect fiducial points in various cases.

The CnD algorithm handles PPG samples for which c and d points are indistinct
or undetectable in the APG by extracting additional information through the JPG. This
information is essential for accurately determining the position of the c and d points in
the APG. In this work, an overall accuracy of 99.09% was obtained for the extraction of
c and d points. This distinguishes the CnD algorithm from prior work that either has
primarily focused on using the first and second derivative [10], or first–fourth derivate of
the PPG [19] to extract the fiducial points either by generating a block of interest [23,27], or
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by using only a peak detection method [19] on a very limited dataset of subjects with no
physiological variations.

While the proposed CnD algorithm is a promising method for the automatic detection
of the c and d points, it is crucial to remember that machine learning-based techniques have
already been used to analyze the PPG waveform. Commonly used methods for classifying
the PPG include neural networks, support vector machines, and random forests [38,39].
The proposed CnD algorithm has the benefit of being a rule-based approach as compared
to machine learning approaches which require training on substantial datasets. The CnD al-
gorithm is capable of analyzing new datasets without significant pre-processing or training,
thus making it highly efficient.

In order to support researchers and healthcare professionals, a MATLAB Toolbox is
currently being developed. The toolbox will incorporate the algorithm presented in this
article and thereby provide an important further step in the automatic detection of c and d
points in APG signals.
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