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Abstract
We consider a market model of financial engineering with three factors represented by three correlated 
Brownian motions. The volatility of the risky asset in this model is the sum of two stochastic volatilities.
The dynamic of each volatility is governed by a mean-reverting process. The first stochastic volatility of
mean-reversion process reverts to the second volatility at a fast rate, while the second volatility moves 
slowly to a constant level over time with the state of the economy.

The double mean-reverting model by Gatheral (2008) is motivated by empirical dynamics of the variance 
of the stock price. This model can be consistently calibrated to both the SPX options and the VIX options. 
However due to the lack of an explicit formula for both the European option price and the implied 
volatility, the calibration is usually done using time consuming methods like Monte Carlo simulation 
or the finite difference method.

To solve the above issue, we use the method of asymptotic expansion developed by Pagliarani 
and Pascucci (2017). In paper A, we study the behaviour of the implied volatility with respect to 
the logarithmic strike price and maturity near expiry and at-the-money. We calculate explicitly the 
asymptotic expansions of implied volatility within a parabolic region up the second order. In paper B 
we improve the results obtain in paper A by calculating the asymptotic expansion of implied volatility 
under the Gatheral model up to order three. In paper C, we perform numerical studies on the asymptotic
expansion up to the second order. The Monte-Carlo simulation is used as the benchmark value to check 
the accuracy of the expansions. We also proposed a partial calibration procedure using the expansions.
The calibration procedure is implemented on real market data of daily implied volatility surfaces for 
an underlying market index and an underlying equity stock for periods both before and during the 
COVID-19 crisis. Finally, in paper D we check the performance of the third order expansion and compare 
it with the previous results.
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Populärvetenskaplig sammanfattning

Finansiell matematik är en gren av sannolikhetsteorin som fokuserar på ma-
tematisk modellering på finansiella marknader. Varje gång när beteendet hos
finansiella instrument på finansmarknaden förändras, utvecklas också mot-
svarande matematiska modeller som beskriver priserna. Till exempel var fi-
nansmarknadskraschen i oktober 1987 en vändpunkt för den berömda Black–
Scholes-modellen från 1973. I efterdyningarna av finanskraschen var Black–
Scholes modellantaganden starkt i konflikt med empiriska rön.

Spridningen av avkastningen för ett givet värdepapper eller marknadsin-
dex mäts vanligtvis med en statistisk egenskap som kallas volatiliteten eller
standardavvikelsen. Ju högre volatilitet, desto mer riskfyllt är värdepappret.
Genom att jämföra marknadspriset för ett givet finansiellt instrument med det
teoretiska priset som ges av Black–Scholes modellen får vi ett slags mått som
kallas implicit volatilitet. Efter kraschen visade optionsmarknaderna ett vola-
tilitetsleende: genom att rita den implicita volatiliteten för en grupp optioner
mot lösenpriserna så fås en graf som ser ut som en leende mun. Black-
Scholes-modellen förutsäger inte ett sådant beteende, eftersom den är baserad
på antagandet om konstant volatilitet.

Att modellera volatilitet som en stokastisk process är lösningen! År 2009
genomfördes empiriska studier av Christoffersen et al. som visade att införan-
det av två tidsskalor i volatilitet, en snabb och en långsam, är effektiv för att
fånga huvuddragen i de observerade termstrukturerna för implicit volatilitet.
En populär teori som används inom finans antyder att både tillgångsprisvola-
tiliteten och den empiriska avkastningen så småningom återgår till det långa
medelvärdet eller genomsnittsnivån. Följaktligen överväger vi Gatheral mo-
dellen där slumpmässiga faktorer beskrivs av en stokastisk volatilitetsmodell
av medelåtergångstyp. Ingen lösning i sluten form för vare sig europeiskt
optionspris eller implicit volatilitet finns i Gatheral modellen. Således, med
hjälp av metoden av Pagliarani och Pascucci (2017), beräknar vi den så kal-
lade asymptotiska expansionen av den implicita volatiliteten under Gatheral
modellen upp till tredje ordningen. Med andra ord får vi en serie funktio-
ner som har följande egenskap: trunkering av serien efter ett ändligt antal
termer ger en approximation till en given funktion, i vårt fall till den impli-
cita volatiliteten. Expansionen utförs med hänsyn till de två oberoende små
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parametrarna: det logaritmiska lösenpriset och optionens löptid. Den tredje
ordningen innebär att approximationsfelet blir obetydligt med avseende på
kuben för den första parametern och 1,5 potensen för den andra när både
parameter går mot 0. Vi hittar den ekonomiska meningen med expansionen,
utför numeriska studier och validerar vår resultat genom att jämföra dem med
Monte Carlo-simuleringen.

Resultaten av vår forskning kan användas av både finansinstitutioner och
enskilda handlare för att optimera sina inkomster.
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Popular science summary

Financial mathematics is a branch of probability theory that focuses on math-
ematical modelling in financial markets. Each time when the behaviour of
financial instruments in financial market evolves, the corresponding mathem-
atical models describing the prices evolve as well. For instance, the financial
market’s crash of October 1987 was a turning point for the famous 1973
Black–Scholes model. In the aftermath of the financial crash, the assumptions
of the Black–Scholes model were strongly conflicting with empirical findings.

The dispersion of returns for a given security or market index is usually
measured by a statistical property called the volatility, or the standard devi-
ation. The higher the volatility, the riskier the security. By comparing the
market price of a given financial instrument with the theoretical price given
by the Black–Scholes model, we obtain a kind of measure called the implied
volatility. After the crash, option markets displayed a volatility smile: while
plotting the implied volatility of a group of options against the strike prices,
one obtains a graph looking as a smiling mouth. The Black–Scholes model
does not predict such a behaviour, because it is based on the assumption of
constant volatility.

Modeling volatility as a stochastic process is the solution! In 2009,
empirical studies by Christoffersen et al. show that the introduction of two
timescales in volatility, a fast and a slow, is efficient to capture the main
features of the observed term structures of implied volatility. A popular
theory used in finance suggests that both the asset price volatility and the
empirical returns eventually return to the long-time mean value or average
level. Accordingly, we consider the Gatheral model where random factors are
described by a stochastic volatility model of mean-reversion type. No closed-
form solution for either European option price or implied volatility exists in the
Gatheral model. Thus, using the method by Pagliarani and Pascucci (2017),
we calculate the so called asymptotic expansion of the implied volatility under
the Gatheral model up to the third order. In other words, we obtain a series
of functions which has the following property: truncating the series after
a finite number of terms provides an approximation to a given function, in
our case, to the implied volatility. The expansion is performed with respect
to the two independent small parameters: the logarithmic strike price and
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time to maturity of the option. The third order means that the error of the
approximation becomes insignificant with respect to the cube of the first
parameter and the 1.5 power of the second one as both tend to 0. We found the
financial sense of the expansion, performed numerical studies and validated
our results by comparing them to the Monte Carlo simulation.

The results of our research can be used by both financial institutions and
individual traders for optimisation of their incomes.
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Chapter 1

Introduction

Financial Engineering is a part of applied mathematics that studies market
models. We do not give here an exact definition of a market model, but rather
consider several examples.

Historically, the first market model has been created in the PhD thesis by
Bachelier (1900), reprinted in Bachelier (1995, 2012). To explain his model,
we introduce the Brownian motion in Section 1.2. The Bachelier model is
described in Section 1.3.

1.1 A Brief History

• Brown (1828) observes Brownian motion.

• Fick (1855) derives the diffusion equation.

• Einstein (1905) explains Brownian motion.

• Langevin (1908) derives his equation (the second Newton law) offering
a Newtonian explanation of Brownian motion.

• Fokker (1914) and Planck (1917) derive a general forward equation
(Einstein’s 1905 derivation treats only a free Brownian particle)
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• Wiener (1923) proves the existence of Brownian motion i.g. the math-
ematical existence of stochastic process satisfying the Einstein’s 1905
postulates. This process we call today the standard Brownian motion
or the Wiener process.

• Uhlenbeck and Ornstein (1930) develop the theory of Brownian motion
based on the 1908 Langevin equation. It leads to a process which we
call today the Ornstien-Uhlenbeck process.

• Kolmogoroff (1931) derives his forward and backward equations (the
forward equation is the same as the one derived by Fokker (1914) and
Planck (1917)).

• Itô (1944) introduces the Ito integral which leads to the development of
stochastic differential equation as a mathematical mean of constructing
and representing diffusion processes.

1.2 The Brownian Motion
Economy is uncertain. To construct a mathematical model of uncertainty in
economy, we suppose that all possible states of economy form a set. Call it
Ω. Certain subsets of the set Ω are called events. We suppose that the set of
events is a 𝜎-field.

Definition 1 (𝜎-field). A set of events 𝔉 is called a 𝜎-field if and only if

F1 The impossible event, ∅, is an event.

F2 If 𝐴 ⊆ Ω is an event, then the set “not 𝐴”,

Ω \ 𝐴 = {𝜔 ∈ Ω : 𝜔 ∉ 𝐴 }

is an event.

F3 If { 𝐴𝑛 : 𝑛 ≥ 1 } is a sequence of events, then its union is an event.

A pair (Ω,𝔉) has its own name.
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Definition 2 (sample space). A sample space is the set of all possible outcomes
(Ω).
Definition 3 (measurable space). A measurable space is a pair (Ω,𝔉), where
Ω is a set, and 𝔉 is a 𝜎-field of subsets of Ω.

Next, we equip the measurable space with a filtration and a probability
measure.

Definition 4 (filtration). A filtration is a non-decreasing family {𝔉𝑡 : 𝑡 ≥ 0 }
of sub-𝜎-fields of 𝔉: if 0 ≤ 𝑠 < 𝑡 < ∞, then 𝔉𝑠 ⊆ 𝔉𝑡 ⊆ 𝔉.

Definition 5 (probability measure). A probability measure on a measurable
space (Ω,𝔉) is a function P : 𝔉 → [0, 1] satisfying

P1 P(∅) = 0, P(Ω) = 1.

P2 If { 𝐴𝑛 : 𝑛 ≥ 1 } is a sequence of pairwise nonintersecting events, then

P
(∪∞

𝑛=1𝐴𝑛
)
=

∞∑︁
𝑛=1

P(𝐴𝑛).

The triple (Ω,𝔉,P) has a special name.

Definition 6 (probability space). A triple (Ω,𝔉,P) is called a probability
space if ad only if (Ω,𝔉) is a sample space and P is a probability measure on
𝔉.

The following definition is a technical requirement.

Definition 7 (usual conditions). A filtration {𝔉𝑡 : 𝑡 ≥ 0 } satisfies the usual
conditions if and only if

U1 The filtration is right-continuous: for every 𝑡 ≥ 0

𝔉𝑡+ = ∩Y>0𝔉𝑡+Y = 𝔉𝑡 .

U2 The 𝜎-field 𝔉0 contains all subsets of all negligible events 𝐴 ∈ 𝔉, that is,
the events 𝐴 with P(𝐴) = 0.
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Definition 8 (filtered probability space). A filtered probability space is a
quadruple (Ω,𝔉,𝔉𝑡 ,P), where (Ω,𝔉,P) is a probability space and {𝔉𝑡 : 𝑡 ≥
0 } is a filtration satisfying the usual conditions.

Let 𝑇 be a topological space.

Definition 9 (Borel set). The 𝜎-field of Borel sets, 𝔅(𝑇), is the smallest
𝜎-field containing all open sets of the space 𝑇 . A Borel set is an element of
𝔅(𝑇).

Let 𝑑 be a positive integer. Next, we consider some important mappings
from Ω to ℝ𝑑 .

Definition 10 (random vector). A mapping X : Ω → ℝ𝑑 is called a random
vector if and only if it is measurable, that is, for any 𝐵 ∈ 𝔅(ℝ𝑑), its inverse
image

X−1(𝐵) = {𝜔 ∈ Ω : X(𝜔) ∈ 𝐵 }
is an event. A random vector X is called a random variable if and only if
𝑑 = 1.

In what follows, we denote random variables by capital Roman Latin
letters 𝑋 , 𝑌 , . . . . Now we introduce stochastic processes.

Definition 11 (stochastic process). A stochastic process is a collection of
random variables { 𝑋 (𝑡) : 0 ≤ 𝑡 < ∞ }.

The argument 𝑡 ∈ [0,∞) of the random variables 𝑋 (𝑡) has an interpretation
as time.

The most important example of a stochastic process is as follows.

Definition 12 (Brownian motion). A Brownian motion is a stochastic process
{ 𝐵(𝑡) : 0 ≤ 𝑡 < ∞ } defined on a filtered probability space (Ω,𝔉,𝔉𝑡 ,P) such
that

B1 𝐵(𝑡) is adapted: for all 𝑡 ≥ 0 the random variable 𝐵(𝑡) is 𝔉𝑡 -measurable.

B2 𝐵(𝑡) is continuous: for P-almost all 𝜔0 ∈ Ω the function 𝐵(𝑡, 𝜔0) of the
variable 𝑡 ∈ [0,∞) is continuous.
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B3 P(𝐵(0) = 0) = 1.

B4 For 0 ≤ 𝑠 < 𝑡, the increment 𝐵(𝑡) − 𝐵(𝑠) is independent of 𝔉𝑠 and is
normally distributed with mean 0 and variance 𝑡 − 𝑠.

Does such a process exist? The answer is positive, three different ex-
plicit constructions of a filtered probability space and a Brownian motions
on it can be found in Karatzas and Shreve (1991, Chapter 2, Sections 2–4).
The first one is based on the Kolmogorov Extension Theorem, see Dani-
ell (1919), Kolmogoroff (1933) and subsequent editions and translations
Kolmogorov (1950), Kolmogorov (1956), Kolmogoroff (1973), Kolmogorov
(1974), Kolmogoroff (1977), and on the Kolmogorov–Čentsov Continuity The-
orem, see Čentsov (1956). The second explicit construction is based on the
original construction by Wiener (1923) with additions by Lévy (1948) and
Ciesielski (1961). The third one is based on the ideas by Donsker (1951) and
Prokhorov (1956).

In what follows, we replace the name “Brownian motion” with “Wiener
process” and the notation 𝐵(𝑡) with 𝑊 (𝑡) because of the historically first
explicit construction given by Wiener (1923).

1.3 The Bachelier Model
The Bachelier model contains two securities: the stock and the bank account.
The stock price 𝑆(𝑡) is given by

𝑆(𝑡) = 𝑆(0) + `𝑡 + 𝜎𝑊 (𝑡), 𝑡 ∈ [0,∞),

where ` ∈ ℝ and 𝜎 ∈ (0,∞) are two constants, see Musiela and Rutkowski
(2005, Subsection 3.3). The bank account is given by

𝐵(𝑡) = 1.

1.3.1 Trading Strategies
Let (Ω,𝔉,𝔉𝑡 ,P) be a filtered probability space on which the Wiener process
𝑊 (𝑡) is defined. To discuss trading strategies, we need a technical definition.
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The stock price 𝑆(𝑡) is given by

𝑆(𝑡) = 𝑆(0) + `𝑡 + 𝜎𝑊 (𝑡), 𝑡 ∈ [0,∞),

where ` ∈ ℝ and 𝜎 ∈ (0,∞) are two constants, see Musiela and Rutkowski
(2005, Subsection 3.3). The bank account is given by

𝐵(𝑡) = 1.

1.3.1 Trading Strategies
Let (Ω,𝔉,𝔉𝑡 ,P) be a filtered probability space on which the Wiener process
𝑊 (𝑡) is defined. To discuss trading strategies, we need a technical definition.
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Definition 13 (progressive measurability). A stochastic process 𝑋 (𝑡) defined
on a filtered probability space (Ω,𝔉,𝔉𝑡 ,P) is called progressively measurable
if and only if for every 𝑡 ∈ [0,∞), the mapping [0, 𝑡] × Ω → ℝ, (𝑢, 𝜔) ↦→
𝑋 (𝑢, 𝜔) is measurable with respect to the 𝜎-field 𝔅( [0, 𝑡]) × 𝔉𝑡 , that is, for
any 𝐵 ∈ 𝔅(ℝ), the inverse image

𝑋−1(𝐵) = { (𝑢, 𝜔) ∈ [0, 𝑡] ×Ω : 𝑋 (𝑢, 𝜔) ∈ 𝐵 }
belongs to the 𝜎-field 𝔅( [0, 𝑡]) × 𝔉𝑡 .

Definition 14 (trading strategy). A trading strategy is a pair (𝑋1(𝑡), 𝑋2(𝑡)) of
progressively measurable stochastic processes.

At any time moment 𝑡, the random variable 𝑋1(𝑡) is the number of units
of the stock in the trader’s portfolio, while 𝑋2(𝑡) is the number of units of the
bank account there. We have that the time 𝑡 price of the portfolio is given by
the wealth process or portfolio process

𝑉 (𝑡) = 𝑋1(𝑡)𝑆(𝑡) + 𝑋2(𝑡)𝐵(𝑡). (1.1)

The most important trading strategies or portfolio processes are self-
financing ones. Intuitively, a trading strategy or the corresponding portfolio
process (1.1) is self-financing on a finite trading interval [0, 𝑇] if at any time
moment 𝑡 ∈ (0, 𝑇] there are no cash flows inside or outside the portfolio. It
turns out that this condition can be easily formulated mathematically.

Theorem 1. A trading strategy (𝑋1(𝑡), 𝑋2(𝑡)) is self-financing if and only if

𝑉 (𝑡) = 𝑉 (0) +
∫ 𝑡

0
𝑋1(𝑢) 𝑑𝑆(𝑢) +

∫ 𝑡

0
𝑋2(𝑢) 𝑑𝐵(𝑢), 𝑡 ∈ [0, 𝑇] . (1.2)

In Equation (1.2), the second integral is the pathwise Lebesgue integral,
while the first integral is the Itô integral constructed by Itô (1944). The
construction of Itô integral can be found in many sources, see Karatzas and
Shreve (1991), Musiela and Rutkowski (2005), among many others. In some
sources, for example, Musiela and Rutkowski (2005, Definition 3.3.1), the
conclusion of Theorem 1 serves as the definition of a self-financing trading
strategy.

Some self-financing trading strategies can produce money from nothing.
Mathematically, such a trading strategy is called an arbitrage opportunity.
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Definition 15 (arbitrage opportunity). A self-financing trading strategy is
called an arbitrage opportunity if and only if its wealth process (1.1) satisfies
the following conditions.

A1 𝑉 (0) = 0.

A2 𝑉 (𝑇) ≥ 0.

A3 P(𝑉 (𝑇) > 0) > 0.

The corresponding portfolio process (1.1) is often called a free lunch portfolio.

How to check if a given market model, in particular, the Bachelier one,
contains an arbitrage opportunity? We need more theory.

1.3.2 Martingale Measures
Let P1 and P2 be two probability measures on a measurable space (Ω,𝔉).
Definition 16 (equivalent measures). The probability measures P1 and P2 are
called equivalent if and only if they have the same null events, that is, for any
event 𝐴, we have P1(𝐴) = 0 if and only if P2(𝐴) = 0.

Definition 17 (martingale). A stochastic process 𝑋 (𝑡) defined on a filtered
probability space (Ω,𝔉,𝔉𝑡 ,P) is called a martingale if and only if

M1 𝑋 (𝑡) is adapted, that is, the random variable 𝑋 (𝑡) is 𝔉𝑡 -measurable for
all 𝑡 ∈ [0, 𝑇].

M2 E[|𝑋 (𝑡) |] < ∞, 𝑡 ∈ [0, 𝑇].
M3 E[𝑋 (𝑡) |𝔉𝑠] = 𝑋 (𝑠), 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 .

Definition 18 (martingale measure). A probability measure P∗ defined on a
measurable space (Ω,𝔉𝑇 ) is called a martingale measure for the discounted
price process 𝑆∗(𝑡) = 𝑆 (𝑡 )

𝐵(𝑡 ) if and only if

MM1 The measure P∗ is equivalent to the restriction of P to 𝔉𝑇 .

MM2 The discounted price process 𝑆∗(𝑡) is a martingale on the filtered
probability space (Ω,𝔉,𝔉𝑡 ,P∗).
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Remark 1. It is possible to develop a more general theory, where the class of
martingales is replaced by a much wider class of local martingales, see, e,g.,
Musiela and Rutkowski (2005). In this thesis, we do not develop and never
use such a general theory.

The usefulness of the introduced notions is clarified by the following
result.

Theorem 2 (The Fundamental Theorem of Financial Engineering, part 1).
For a wide class of market models, including the Bachelier one, the following
conditions are equivalent.

• The market model does not contain arbitrage opportunities.

• There exists a martingale measure for the discounted price process
𝑆∗(𝑡).

Is the second condition of Theorem 2 hold true for the Bachelier model?
To give an answer to this question, we need a technical tool.

Let𝑊 (𝑡) be a Wiener process on a filtered probability space (Ω,𝔉,𝔉𝑡 ,P).
Let 𝛾 be a real number. The random variable 𝑌 = exp(𝛾𝑊 (𝑇)) is posit-
ive. Moreover, we have E[𝑌 ] = exp(𝛾2𝑇/2). The random variable 𝑍 =
exp(𝛾𝑊 (𝑇) − 𝛾2𝑇/2) is positive with E[𝑍] = 1. Let 𝐴 be an event in 𝔉𝑇 , and
let 𝟙𝐴 be the indicator of 𝐴:

𝟙𝐴(𝜔) =
{

1, if 𝜔 ∈ 𝐴,
0, otherwise.

It is easy to see that the probability measure P∗ given by

P∗(𝐴) = E[𝑍𝟙𝐴], 𝐴 ∈ 𝔉𝑇

is equivalent to P.

Theorem 3 (The Girsanov Theorem, Girsanov (1960)). The stochastic process
𝑊∗(𝑡) = 𝑊 (𝑡) − 𝛾𝑡, 0 ≤ 𝑡 ≤ 𝑇 , is a Wiener process on the filtered probability
space (Ω,𝔉,𝔉𝑡 ,P∗).
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In particular, consider the case of 𝛾 = −`/𝜎. The stochastic process
𝑊∗(𝑡) = 𝑊 (𝑡) − 𝛾𝑡 is a Wiener process under the measure P∗ with Radon–
Nikodym density

𝑑P∗

𝑑P
= exp

(
𝛾𝑊 (𝑇) − 1

2
𝛾2𝑇

)
.

Moreover, under P∗,
𝑆(𝑡) = 𝑆(0) + 𝜎𝑊∗(𝑡)

which is a martingale.

1.4 The Black–Scholes Model

According to Samuelson (2002),

As I expected, the 1914 popular Bachelier exposition was not in
the limited MIT library. But a greater treasure was there: the
1900 Paris thesis and the 1912 item.

In the above citation, “the 1914 popular Bachelier exposition” is Bachelier
(1914), reprinted in Bachelier (1929), Bachelier (1993), Bachelier (2018).
“The 1912 item” is Bachelier (1912), reprinted in Bachelier (1992).

After rediscovering the 1900 Bachelier thesis, Samuelson published a
paper Samuelson (1965), reprinted in Samuelson (2015). His ideas were
extended by his PhD student Merton (1973) and independently and simultan-
eously by Black and Scholes (1973), reprinted in Black and Scholes (2012).
Like the Bachelier model, the Black–Scholes one contains two securities, the
bank account, 𝐵(𝑡), and the stock, 𝑆(𝑡). Their dynamics is given by the
following system of equations.

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡) 𝑑𝑡, 𝐵(0) = 1,
𝑑𝑆(𝑡) = `𝑆(𝑡) 𝑑𝑡 + 𝜎𝑆(𝑡) 𝑑𝑊 (𝑡), 𝑆(0) = 𝑆0.

(1.3)

The first equation is an ordinary differential equation, where the spot interest
rate 𝑟 is constant. The second equation is a stochastic differential equation,
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just a shortcut which is customary to write instead of a longer but more correct
stochastic integral equation

𝑆(𝑡) = 𝑆0 +
∫ 𝑡

0
`𝑆(𝑢) 𝑑𝑢 +

∫ 𝑡

0
𝜎𝑆(𝑢) 𝑑𝑊 (𝑢), (1.4)

where, as usual, the first integral is a pathwise Lebesgue integral, while the
second one is an Itô stochastic integral.

The number ` ∈ ℝ is called the appreciation rate of the stock price, while
the number 𝜎 > 0 is called volatility.
Theorem 4. The Black–Scholes model has the following properties.

• The stochastic process
𝑆(𝑡) = 𝑆0 exp(𝜎𝑊 (𝑡) + (` − 𝜎2/2)𝑡), 𝑡 ∈ [0, 𝑇]

is the unique solution of the second equation in (1.3) or equivalently,
Equation (1.4).

• The discounted stock price

𝑆∗(𝑡) = 𝑆(𝑡)
𝐵(𝑡) = 𝑒−𝑟𝑡𝑆(𝑡)

is a martingale if and only if ` = 𝑟 .

• The unique martingale measure P∗ for the process 𝑆∗(𝑡) is given by the
Radon–Nikodym derivative

𝑑P∗

𝑑P
= exp

(
𝑟 − `
𝜎

𝑊 (𝑇) − 1
2
(𝑟 − `)2

𝜎2 𝑇

)
.

Moreover, under P∗,
𝑑𝑆∗(𝑡) = 𝜎𝑆∗(𝑡) 𝑑𝑊∗(𝑡),

where the stochastic process

𝑊∗(𝑡) = 𝑊 (𝑡) − 𝑟 − `
𝜎

𝑡, 𝑡 ∈ [0, 𝑇]
is a Wiener process under P∗.

This result is proved in Musiela and Rutkowski (2005). The first item in
Theorem 4 is their Proposition 3.1.1, the second one is Corollary 3.1.2, the
third one is Lemma 3.1.3.
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1.4.1 Risk-Neutral Valuation

One of the properties given in Theorem 4 is very important.

Definition 19. A contingent claim is a random variable 𝑋 . A contingent claim
𝑋 is called European if it is 𝔉𝑇 -measurable.

Intuitively, a contingent claim 𝑋 represents the payoff of a financial instru-
ment. The payoff of a European contingent claim becomes known at maturity,
or expiry date 𝑇 . For example, a European call option with strike price 𝐾 has
payoff

𝑋 = max{𝑆(𝑇) − 𝐾, 0}.
Economically, at time 𝑇 , the owner of 𝑋 has right, but not obligation, to buy
one unit of stock 𝑆 and pay 𝐾 money units. If 𝑆(𝑇) ≤ 𝐾 , then he/she will not
use this right, and we say that the option is out-of-the-money. Otherwise, the
owner pays𝐾 money units for the one unit of the stock and immediately sells it.
His/her gain is the difference in prices, 𝑆(𝑇) − 𝐾 , the option is in-the-money.

Definition 20. A self-financing portfolio process𝑉 (𝑡) given by Equation (1.1)
is called replicating for a European contingent claim 𝑋 if

𝑉 (𝑇) = 𝑋.

A European contingent claim 𝑋 is called attainable if there exists a replicating
portfolio for 𝑋 .

Part 1 of the Fundamental Theorem of Financial Engineering (Theorem 2)
holds true for the Black–Scholes model. It is easy to see that the time 𝑡 no-
arbitrage price of an attainable contingent claim 𝑋 is equal to 𝑉 (𝑡), the time 𝑡
price of the replicating portfolio. If not, the reader can easily construct an
arbitrage opportunity, that is, a portfolio satisfying Definition 15.

Is a European call option attainable in the Black–Scholes model? The
answer is positive.

Definition 21. A no-arbitrage market model is called complete if and only if
every European contingent claim is attainable.
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Economically, at time 𝑇 , the owner of 𝑋 has right, but not obligation, to buy
one unit of stock 𝑆 and pay 𝐾 money units. If 𝑆(𝑇) ≤ 𝐾 , then he/she will not
use this right, and we say that the option is out-of-the-money. Otherwise, the
owner pays𝐾 money units for the one unit of the stock and immediately sells it.
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arbitrage price of an attainable contingent claim 𝑋 is equal to 𝑉 (𝑡), the time 𝑡
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answer is positive.

Definition 21. A no-arbitrage market model is called complete if and only if
every European contingent claim is attainable.
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Theorem 5 (The Fundamental Theorem of Financial Engineering, part 2). For
a wide class of market models, including the Bachelier and the Black–Scholes
one, the following conditions are equivalent.

• The market model is complete.

• There exists a unique martingale measure P∗ for the discounted price
process 𝑆∗(𝑡).

Under these conditions, the time 𝑡 no-arbitrage price of any European contin-
gent claim 𝑋 that settles at time 𝑇 is

𝜋𝑡 (𝑋) = 𝐵(𝑡)E∗ [𝐵−1(𝑇)𝑋 |𝔉𝑡 ] .

As we see, the discounted stock price process may be considered as a
fair game in a risk-neutral economy, where the probabilities of future stock
fluctuations are determined by the martingale measure P∗. By this reason, the
above measure is also called risk-neutral.

Note that different variants of the Fundamental Theorems of Financial
Engineering were proved in the papers by Harrison and Pliska (1981, 1983),
Dalang et al. (1990), Delbaen and Schachermayer (1994, 1995a,b, 1998),
Schachermayer (1994), Levental and Skorohod (1995), Yan (1998), Barski
and Zabczyk (2010), Kardaras (2010), Wong and Heyde (2010), Bouchard
et al. (2014), Takaoka and Schweizer (2014), Cuchiero et al. (2016), and in
the book by Delbaen and Schachermayer (2006).

1.4.2 The Black–Scholes Formula

For the case of a European call option in the Black–Scholes model, the
time 𝑡 no-arbitrage price was explicitly calculated independently by Black and
Scholes (1973), reprinted in Black and Scholes (2012), and Merton (1973).
From now on, denote by 𝜏 = 𝑇 − 𝑡 > 0 time to maturity. Let 𝑑+(𝑠, 𝑡) and
𝑑− (𝑠, 𝑡) be two functions of two positive real variables 𝑠 and 𝑡 defined by

𝑑±(𝑠, 𝑡) = ln(𝑠/𝐾) + (𝑟 ± 𝜎2/2)𝑡
𝜎
√
𝑡

,
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(recall that 𝐾 , 𝑟 , and 𝜎 are constants). Finally, let

𝑁 (𝑥) = 1√
2𝜋

∫ 𝑥

−∞
exp(−𝑦2/2) 𝑑𝑦

be the cumulative distribution function of the standard normal distribution.

Theorem 6 (Black and Scholes (1973); Merton (1973)). The time 𝑡 no-
arbitrage price of a European call option in the Black–Scholes model is given
by

𝐶 (𝑡) = 𝑆(𝑡)𝑁 (𝑑+(𝑆(𝑡), 𝜏)) − 𝐾𝑒−𝑟 𝜏𝑁 (𝑑− (𝑆(𝑡), 𝜏)). (1.5)

Following Pagliarani and Pascucci (2017), in what follows we put 𝑟 = 0.
From now on, we introduce the logarithmic stock price and the logarithmic
strike price by

𝑥 = ln(𝑆(𝑡)), 𝑘 = ln𝐾.

With this convention, and in new variables, the Black–Scholes price becomes

𝑢BS(𝜎, 𝜏, 𝑥, 𝑘) = 𝑒𝑥𝑁 (𝑑+(𝑒𝑥 , 𝜏)) − 𝑒𝑘𝑁 (𝑑− (𝑒𝑥 , 𝜏)). (1.6)

1.5 Local Volatility Models

In practice, market prices of options cannot be explained by the Black–Scholes
model. One possible solution to this problem is as follows. Following Dupire
(1997), we postulate that under a martingale measure the stock price satisfies
the following equation:

𝑑𝑆(𝑡) = [(𝑡, 𝑆(𝑡))𝑆(𝑡) 𝑑𝑊∗(𝑡), 𝑆(0) = 𝑆0.

The coefficient [(𝑡, 𝑆(𝑡)) is called a local volatility function.
We assume that the local volatility function satisfies another stochastic

equation. We need to introduce a new concept here.
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1.5.1 Correlated Wiener Processes

We follow (Musiela and Rutkowski, 2005, Subsection 7.1.9). Let 𝑑 and 𝑛 be
two positive integers. Let �̃�1(𝑡), . . . , �̃�𝑑 (𝑡) be 𝑑 independent copies of a
Wiener process. Let B𝑖 (𝑡) be 𝑛ℝ𝑑-valued progressively measurable processes
such that 𝐵𝑖 (𝑡) ≠ 0 for every 𝑡 ∈ [0,∞) and 𝑖 = 1, . . . , 𝑛. It is possible to
prove that the 𝑛 stochastic processes given by

𝑊𝑖 (𝑡) =
𝑑∑︁
𝑗=1

∫ 𝑡

0

𝐵𝑖
𝑗 (𝑡)

∥B𝑖 (𝑡)∥ 𝑑�̃� 𝑗 (𝑢)

are Wiener processes. Moreover, the time 𝑡 correlation matrix of the ℝ𝑛-
valued stochastic process with components𝑊𝑖 (𝑡) has entries

𝜌𝑖 𝑗 (𝑡) =
∑𝑑

𝑘=1 𝐵
𝑖
𝑘 (𝑡)𝐵

𝑗
𝑘 (𝑡)

∥B𝑖 (𝑡)∥ · ∥B 𝑗 (𝑡)∥ ∈ [−1, 1] .

1.5.2 Local Stochastic Volatility Models

Following Pagliarani and Pascucci (2017), we assume that under a martin-
gale probability measure, the market model is described by a ℝ𝑑-valued
stochastic process (𝑆(𝑡), 𝑌2(𝑡), . . . , 𝑌𝑑 (𝑡))⊤ that satisfies the following system
of stochastic differential equations:

𝑑𝑆(𝑡) = [1(𝑡, 𝑆(𝑡),Y(𝑡))𝑆(𝑡) 𝑑𝑊∗
1 (𝑡), 𝑆(0) = 𝑠,

𝑑𝑌𝑖 (𝑡) = `𝑖 (𝑡, 𝑆(𝑡),Y(𝑡)) 𝑑𝑡 + [𝑖 (𝑡, 𝑆(𝑡),Y(𝑡)) 𝑑𝑊∗
𝑖 (𝑡), Y(0) = y,

(1.7)

where 2 ≤ 𝑖 ≤ 𝑑, 𝑆(𝑡) is the price of a risky security, 𝑠 is a deterministic
positive number, Y(𝑡) is a vector with components𝑌𝑖 (𝑡), y ∈ ℝ𝑑−1 is a determ-
inistic vector, and the time 𝑡 correlation matrix of the ℝ𝑑-valued stochastic
process with components𝑊∗

𝑖 (𝑡) has entries

𝜌𝑖 𝑗 (𝑡, 𝑆(𝑡),Y(𝑡)) ∈ [−1, 1] .

In what follows, we refer to this model as a local stochastic volatility model.
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1.5.3 The Gatheral Model

As an example, we consider the double-mean-reverting market model pro-
posed by Gatheral (2008). In a subsequent publication Bayer et al. (2013), it
is given as follows.

𝑑𝑆(𝑡) =
√︁
𝑣(𝑡)𝑆(𝑡) 𝑑𝑊∗

1 (𝑡),
𝑑𝑣(𝑡) = ^1(𝑣′(𝑡) − 𝑣(𝑡)) 𝑑𝑡 + b1𝑣

𝛼1 (𝑡) 𝑑𝑊∗
2 (𝑡),

𝑑𝑣′(𝑡) = ^2(\ − 𝑣′(𝑡)) 𝑑𝑡 + b2𝑣
′𝛼2 (𝑡) 𝑑𝑊∗

3 (𝑡),
(1.8)

and the time 𝑡 correlation matrix of the ℝ3-valued stochastic process with
components𝑊∗

𝑖 (𝑡) has entries

𝜌𝑖 𝑗 (𝑡, 𝑆(𝑡),Y(𝑡)) = 𝜌𝑖 𝑗 ∈ [−1, 1] .

Compare this system with (1.7). We see that 𝑑 = 3, 𝑌2(𝑡) = 𝑣(𝑡), 𝑌3(𝑡) =
𝑣′(𝑡),

[1(𝑣(𝑡)) =
√︁
𝑣(𝑡), `1 = 0,

[2(𝑣(𝑡)) = b1𝑣
𝛼1 (𝑡), `2(𝑣(𝑡), 𝑣′(𝑡)) = ^1(𝑣′(𝑡) − 𝑣(𝑡)),

[3(𝑣′(𝑡)) = b2𝑣
′𝛼2 (𝑡), `3(𝑣′(𝑡)) = ^2(\ − 𝑣′(𝑡)).

(1.9)

The reason why we choose this model, was described by Bayer et al. (2013)
as follows

Thus variance mean-reverts to a level that itself moves slowly
over time with the state of the economy.

1.6 Implied Volatility

The European call options are traded on the market, however the stock’s
volatility, 𝜎, is not directly observable. A possible solution to this problem
is as follows. It is well known that the Black–Sholes price (1.5) with 𝑟 = 0
satisfies the following boundary value problem for the Black–Scholes partial

16

1.5.3 The Gatheral Model

As an example, we consider the double-mean-reverting market model pro-
posed by Gatheral (2008). In a subsequent publication Bayer et al. (2013), it
is given as follows.

𝑑𝑆(𝑡) =
√︁
𝑣(𝑡)𝑆(𝑡) 𝑑𝑊∗

1 (𝑡),
𝑑𝑣(𝑡) = ^1(𝑣′(𝑡) − 𝑣(𝑡)) 𝑑𝑡 + b1𝑣

𝛼1 (𝑡) 𝑑𝑊∗
2 (𝑡),

𝑑𝑣′(𝑡) = ^2(\ − 𝑣′(𝑡)) 𝑑𝑡 + b2𝑣
′𝛼2 (𝑡) 𝑑𝑊∗

3 (𝑡),
(1.8)

and the time 𝑡 correlation matrix of the ℝ3-valued stochastic process with
components𝑊∗

𝑖 (𝑡) has entries

𝜌𝑖 𝑗 (𝑡, 𝑆(𝑡),Y(𝑡)) = 𝜌𝑖 𝑗 ∈ [−1, 1] .

Compare this system with (1.7). We see that 𝑑 = 3, 𝑌2(𝑡) = 𝑣(𝑡), 𝑌3(𝑡) =
𝑣′(𝑡),

[1(𝑣(𝑡)) =
√︁
𝑣(𝑡), `1 = 0,

[2(𝑣(𝑡)) = b1𝑣
𝛼1 (𝑡), `2(𝑣(𝑡), 𝑣′(𝑡)) = ^1(𝑣′(𝑡) − 𝑣(𝑡)),

[3(𝑣′(𝑡)) = b2𝑣
′𝛼2 (𝑡), `3(𝑣′(𝑡)) = ^2(\ − 𝑣′(𝑡)).

(1.9)

The reason why we choose this model, was described by Bayer et al. (2013)
as follows

Thus variance mean-reverts to a level that itself moves slowly
over time with the state of the economy.

1.6 Implied Volatility

The European call options are traded on the market, however the stock’s
volatility, 𝜎, is not directly observable. A possible solution to this problem
is as follows. It is well known that the Black–Sholes price (1.5) with 𝑟 = 0
satisfies the following boundary value problem for the Black–Scholes partial

16

36



differential equation

𝜕𝐶 (𝑆, 𝑡)
𝜕𝑡

+ 𝜎
2

2
𝑆2 𝜕

2𝐶 (𝑆, 𝑡)
𝜕𝑆2 = 0,

lim
𝑡↑𝑇

𝐶 (𝑆, 𝑡) = max{0, 𝑆 − 𝐾}
(1.10)

with (𝑆, 𝑡) ∈ (0,∞) × (0, 𝑇). Berestycki et al. (2002) describe a possible
solution as follows

. . . it is common practice to start from the observed prices and
invert the closed-form solution to (2) in order to find that constant
𝜎 — called implied volatility — for which the solution to (2)
agrees with the market price at today’s value of the stock.

Note that their Equation (2) is our Equation (1.10).
The literature on implied volatility for the options is huge and exploits

several range of mathematical methods. The first appearance of implied
volatility in history goes back to 1976 when it was first mentioned under the
name “implied standard deviation” by Latane and Rendleman (1976). In their
paper “standard deviations of stock price ratios implied in option prices”, they
suggest for the first time that implied volatility should be derived from traded
options in the market:

“If the assumptions underlying the Black and Scholes model were
completely valid and the option market were completely efficient,
then at any point in time all options on a particular stock would be
priced with the same monthly standard deviation. As a practical
matter, however, it is not likely that this will be the case, even in a
market which is highly efficient. This is due to the fact that some
options are more dependent upon a precise specification of the
standard deviation than other”.

Focusing to address the unrealistic assumption of constant volatility for
pricing options in Black–Scholes model, the interest to investigate and identify
the market implied volatility has grown substantially in both academia and
industry. Many well-known models have been obtained to capture empirical
features of financial prices. Among these models, models proposed by Cox
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and Ross (1976), Vasicek (1977), Hull and White (1990), Heston (1993),
Hagan et al. (2002), Henry-Labordere (2008), Benhamou et al. (2010a), and
Fouque et al. (2011). For an extensive comparison and overview of volatility
models, we refer the reader to Gatheral (2011).

As volatility modelling evolves and takes shapes over the years, more
studies emerged. Christoffersen et al. (2009) propose using a two-factor
stochastic volatility model in response to the deficiencies of the single-factor
regarding the ability to demonstrate large independent fluctuations in the
level and the slope of volatility smirk. They conclude that the addition of
volatility factors to an existing framework improves the model’s flexibility to
capture the volatility term structure. Merville and Pieptea (1989) find that
market volatility follows a mixed mean-reverting diffusion with noise process
and suggested that volatility is strong mean reverting. In recent studies, Lorig
et al. (2017b) consider a general class of multi-factor local-stochastic volatility
models with hybrid dynamics.

Another aspect of the evolution of implied volatility focused on the ver-
satility of its modelling. A robust model of implied volatility has to capture
the dynamics and the characteristics of the implied volatility surface along
various strike prices and expiration dates. Moreover, calibrating models to
market data and the stability of parameters and the quality of the fit are essen-
tials.The calibration in models which lack closed-form formula for implied
volatility is often time consuming or might lead to numerical instabilities. To
overcome this dilemma, several results have been obtained to translate models
formulations to explicit implied volatility expansions via techniques from per-
turbation theory, heat kernel, PDEs, large deviation and Malliavin calculus.
We review some of these approaches.

Hagan and Woodward (1999) use singular perturbation methods to obtain
an expansions formula for implied volatility for general local volatility models.
In addition, regular perturbation methods as well as Fourier analysis were used
by Jacquier and Lorig (2013) to derive an expansion for implied volatility for
the same class of models. Both methods were combined and extended to
general stochastic volatility models by Fouque et al. (2016). Large deviation
methods have been employed by Forde and Jacquier (2009) to obtain small-
time asymptotic behaviour of implied volatility under Heston model. Henry-
Labordère (2005) derive a general asymptotic implied volatility at the first-
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order for any local stochastic volatility model using the heat kernel expansion
on a Riemann manifold. Another contribution is due to Watanabe (1987) as
well as the recent work by Benhamou et al. (2010b) who obtain closed-form
approximation for implied volatility in local stochastic volatility sitting using
Malliavin calculus.

Finally, we mention the recent results obtained by Lorig et al. (2017b)
whose approach combine technique from perturbation theory with Dyson
series to obtain approximations for partial differential equations. These au-
thors calculated asymptotic expansions for implied volatilities and their de-
rivatives which asymptotically converge to the exact values within a parabolic
region in the space of log-strike and time to maturity. Their methodology
builds upon a series of papers including Pagliarani and Pascucci (2012) in
which they obtain asymptotic formulas for implied volatility for scalar dif-
fusions. The approach was extended later for scalar Levy-type processes in
Pagliarani et al. (2013) and Lorig et al. (2015).

1.6.1 Motivation

Beginning from the idea of Bachelier presented in his doctoral thesis at the
Ecole Polytechnique in Paris, 1900 of using Brownian motion to model un-
certainty in price behaviour, Black and Scholes (1973) assume that the asset
price follows a geometric Brownian motion with constant drift and volatility.
According to Black and Scholes model, the asset price 𝑆(𝑡), 𝑡 > 0, is governed
by the following stochastic differential equation:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡) 𝑑𝑊 (𝑡),

where ` and 𝜎 are assumed to be constant and denote the drift and volatility
receptively,𝑊 (𝑡), 𝑡 > 0 is a standard Brownian motion. It was the first model
that produces a simple closed-form formula which computes the prices of
European call and put options. In 1973 Merton contributed to the result of
Black and Scholes and enhanced the option formula. Scholes and Merton
received the Nobel prize for their work in economics in 1997, unfortunately
Black passed away in 1995. On the 19th of October 1987 the world woke
up to witness a sudden, sever and largely unexpected stock market crash, it
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was known as the Black Monday. Worldwide losses were estimated at 1.71$
trillion.

The crash causes unprecedented patterns for the implied volatility, the new
patterns that arise in options pricing resemble smiles (skews) shapes. Govern-
ments, financial markets and banks impose new regulations and restrictions to
limit the impact of the crash. The crash also open the door for new researches
and ideas in the field of mathematical finance.

The ability of the Black–Scholes model to provide adequate prices for
options was questionable. Moreover, experimental studies that follow the 1987
crash suggest that the assumption of the Black–Scholes model that underlying
returns being normally distributed with constant volatility does not hold. The
option prices observed in the financial markets show that volatility is non-
constant quantity and the behaviour of the volatility can be described by a
stochastic mean-reverting process.

Trying to overcome the inadequacy of the Black and Scholes model by
assuming that the volatility is modelled as a stochastic process, stochastic
volatility model were born. Hull and White are the first authors to introduce
the stochastic volatility model in mathematical finance in Hull and White
(1987). The dynamics of asset price in Hull and White model follows:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 +
√︁
𝑣(𝑡)𝑆(𝑡) 𝑑𝑊∗

1 (𝑡),
𝑑𝑣(𝑡) = \𝑣(𝑡)𝑑𝑡 + b𝑣(𝑡) 𝑑𝑊∗

2 (𝑡),
where 𝑣(𝑡), 𝑡 > 0 and ` is the stochastic variance and the drift of the asset price
𝑆(𝑡), 𝑡 > 0 at time t, and \ and b are the drift and the volatility coefficients
of the variance respectively, 𝑑𝑊∗

1 (𝑡) and 𝑑𝑊∗
2 (𝑡) are two Brownian motions

with correlation 𝜌 = [−1, 1]. The parameters \, b and ` are real constants
and \ < 0. The issue of this model is that it is inaccurate when the variance is
stochastic. Also, the assumption that 𝜌 = 0 is not supported by observations
of the prices in the financial market.

In response to the weakness in Hull and White model, the Stein and Stein
model was proposed Stein and Stein (1991). It assumes that the underlying
asset follows:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡) 𝑑𝑊∗
1 (𝑡),

𝑑𝜎(𝑡) = [(\ − 𝜎(𝑡))𝑑𝑡 + b 𝑑𝑊∗
2 (𝑡),

20

was known as the Black Monday. Worldwide losses were estimated at 1.71$
trillion.

The crash causes unprecedented patterns for the implied volatility, the new
patterns that arise in options pricing resemble smiles (skews) shapes. Govern-
ments, financial markets and banks impose new regulations and restrictions to
limit the impact of the crash. The crash also open the door for new researches
and ideas in the field of mathematical finance.

The ability of the Black–Scholes model to provide adequate prices for
options was questionable. Moreover, experimental studies that follow the 1987
crash suggest that the assumption of the Black–Scholes model that underlying
returns being normally distributed with constant volatility does not hold. The
option prices observed in the financial markets show that volatility is non-
constant quantity and the behaviour of the volatility can be described by a
stochastic mean-reverting process.

Trying to overcome the inadequacy of the Black and Scholes model by
assuming that the volatility is modelled as a stochastic process, stochastic
volatility model were born. Hull and White are the first authors to introduce
the stochastic volatility model in mathematical finance in Hull and White
(1987). The dynamics of asset price in Hull and White model follows:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 +
√︁
𝑣(𝑡)𝑆(𝑡) 𝑑𝑊∗

1 (𝑡),
𝑑𝑣(𝑡) = \𝑣(𝑡)𝑑𝑡 + b𝑣(𝑡) 𝑑𝑊∗

2 (𝑡),
where 𝑣(𝑡), 𝑡 > 0 and ` is the stochastic variance and the drift of the asset price
𝑆(𝑡), 𝑡 > 0 at time t, and \ and b are the drift and the volatility coefficients
of the variance respectively, 𝑑𝑊∗

1 (𝑡) and 𝑑𝑊∗
2 (𝑡) are two Brownian motions

with correlation 𝜌 = [−1, 1]. The parameters \, b and ` are real constants
and \ < 0. The issue of this model is that it is inaccurate when the variance is
stochastic. Also, the assumption that 𝜌 = 0 is not supported by observations
of the prices in the financial market.

In response to the weakness in Hull and White model, the Stein and Stein
model was proposed Stein and Stein (1991). It assumes that the underlying
asset follows:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡) 𝑑𝑊∗
1 (𝑡),

𝑑𝜎(𝑡) = [(\ − 𝜎(𝑡))𝑑𝑡 + b 𝑑𝑊∗
2 (𝑡),

20

40



where `, [, \, and Z are fixed constants and when [ > 0, the stochastic volatility
𝜎(𝑡), 𝑡 > 0 is governed by Ornstein-Uhlenbeck process with a tendency to
revert back to a long-run average level \. The model assumes that the volatility
is uncorrelated with the spot asset and that makes it unable to capture important
skewness effects that appear in such correlation.

Since its introduction in 1993, the Heston model has become one of the
most popular stochastic volatility models. In Heston (1993) the model assumes
that the asset price 𝑆(𝑡), 𝑡 > 0 follows the following process:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 +
√︁
𝑣(𝑡)𝑆(𝑡) 𝑑𝑊∗

1 (𝑡),
𝑑𝑣(𝑡) = ^(\ − 𝑣(𝑡))𝑑𝑡 + b

√︁
𝑣(𝑡) 𝑑𝑊∗

2 (𝑡),

where the variance process 𝑣(𝑡) reverts to long-run level of \, ^ is the rate
of mean-reversion, and b is the volatility of the volatility coefficient. The
model depends on real constants `, \, ^ and b and ^ is positive. The variance
in Heston model follows a Cox–Ingersoll–Ross process. The introduction of
the model in mathematical finance was revolutionary due to the fact that the
model admit a closed form solution for European call (put) option. However,
the Heston model suffers when it comes to predicting the option prices for
short term as the model fails to capture the high implied volatility, see Jäckel
(2004).

Since the pioneering work of the previous authors, many other stochastic
volatility models have been introduced and it is not possible to mention all
of them. However, it is important to mention the sophisticated work by
Christoffersen et al. 2009. In Christoffersen et al. (2009) they presented an
empirical studies “The shape and term structure of the index option smirk:
why multi-factor stochastic volatility models work so well”. Christoffersen
et al. (2009) propose using a two-factor stochastic volatility model in response
to the deficiencies of the single-factor regarding the ability to demonstrate
large independent fluctuations in the level and the slope of volatility smirk.
They conclude that the addition of volatility factors are needed to improve the
model’s flexibility to capture the volatility term structure.

Christoffersen et al. (2009) suggest that the price process is determined by
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two factors stochastic volatility process:

𝑑𝑆(𝑡) = `𝑆(𝑡)𝑑𝑡 +
√︁
𝑣1(𝑡)𝑆(𝑡) 𝑑𝑊∗

1 (𝑡) +
√︁
𝑣2(𝑡)𝑆(𝑡) 𝑑𝑊∗

2 (𝑡),
𝑑𝑣1(𝑡) = ^1(\1 − 𝑣1(𝑡))𝑑𝑡 + b1

√︁
𝑣1(𝑡) 𝑑𝑊∗

3 (𝑡)
𝑑𝑣2(𝑡) = ^2(\2 − 𝑣2(𝑡))𝑑𝑡 + b2

√︁
𝑣2(𝑡) 𝑑𝑊∗

4 (𝑡),

where the variance of the stock return is the sum of 𝑣1 and 𝑣2. Moreover, it can
be the sum of two uncorrelated factors that might be correlated individually
with the stock returns. For instance,𝑊∗

1 (𝑡) and𝑊∗
3 (𝑡) has correlation 𝜌1, and

𝑊∗
2 (𝑡) and𝑊∗

4 (𝑡) has correlation 𝜌2, but all other correlations are zero. More
specifically, correlations are zero for the following pairs: (𝑊∗

1 (𝑡), 𝑊∗
4 (𝑡)),

(𝑊∗
2 (𝑡),𝑊∗

3 (𝑡)), (𝑊∗
1 (𝑡),𝑊∗

2 (𝑡)) and (𝑊∗
3 (𝑡),𝑊∗

4 (𝑡)) .
Thus, pricing options under double stochastic volatility model gains some

popularity in the recent years. We choose the Gatheral double stochastic
volatility model which was first proposed in Gatheral (2008). The model is
given by system of stochastic differential equations 1.8. There is no analytical
solution for European options nor an implied volatility under this model.
Moreover, the model proves to be versatile in term of pricing both options
on SPX and VIX with the market in Gatheral (2008) and in a subsequent
publication Bayer et al. (2013) but since there was no closed-form solution for
European options, the calibration was not easy. Lastly, we have the result by
Pagliarani and Pascucci (2017) to calculate the implied volatility for general
class of double stochastic volatility model, and the Gatheral model can be a
special case of their model. Thus, equipped with the result of Pagliarani and
Pascucci (2017), we conduct studies to calculate the asymptotic expansions
of implied volatility for European options under Gatheral model up to third
order. We also check the accuracy of the expansions against the Monte-Carlo
benchmark and calibrate the model parameters to real market data.

1.7 Asymptotic Expansions
There are many problems in mathematics which are hard to solve, where the
governing equations contain many variables that are nonlinear and do not
have exact analytical solutions. Therefore, we are forced to resort to either
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approximations or numerical solutions or combinations of both. Among
approximation methods, one method stands out; asymptotic expansions.

The modern theory of asymptotic expansion was proposed by Stieltjes
(1886) and Poincaré (1886). According to this theory, it is usually sufficient to
represent the solution and give a very accurate approximation to a complicated
function by the first few terms of an asymptotic expansion, no more than two
or three terms in most cases.

1.7.1 Ordering Symbols 𝑂, ∼, and 𝑜

The order of magnitude of functions is fundamental in asymptotic analysis.
The exact mathematical meaning of the order of magnitude is provided by the
so called Bachmann–Landau notations.

Following Erdélyi (1956), let the variable 𝑥 ranges over a set 𝑅 and 𝑥0 is
the base point of 𝑅 not necessarily belonging to 𝑅. 𝑓 (𝑥), 𝑔(𝑥) stand for real
or complex valued functions defined when 𝑥 is in 𝑅.

One writes
𝑓 (𝑥) = 𝑂 (𝑔(𝑥)),

in 𝑅 as 𝑥 → 𝑥0 if 𝑔(𝑥) ≠ 0 and 𝑓 (𝑥)/𝑔(𝑥) is bounded as 𝑥 → 𝑥0 in 𝑅.
It means that 𝑓 (𝑥) is order big𝑂 of 𝑔(𝑥) or 𝑓 (𝑥) is asymptotically bounded

by 𝑔(𝑥), as 𝑥 → 𝑥0.
If the lim𝑥→+𝑥0 𝑓 (𝑥)/𝑔(𝑥) exists and is equal to 1 as we approaching a

point of interest, then
𝑓 (𝑥) ∼ 𝑔(𝑥).

It means that 𝑓 (𝑥) is asymptotically equal to 𝑔(𝑥) as 𝑥 → 𝑥0.
For the "little 𝑜" one writes

𝑓 (𝑥) = 𝑜(𝑔(𝑥)),

in R as 𝑥 → 𝑥0 if 𝑓 (𝑥) ≠ 0 and 𝑓 (𝑥)/𝑔(𝑥) → 0 as 𝑥 → 𝑥0.
It means that 𝑓 (𝑥) is asymptotically smaller than 𝑔(𝑥) or 𝑓 (𝑥) tends to 0

faster than 𝑔(𝑥) does as 𝑥 → 𝑥0.
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It means that 𝑓 (𝑥) is order big𝑂 of 𝑔(𝑥) or 𝑓 (𝑥) is asymptotically bounded

by 𝑔(𝑥), as 𝑥 → 𝑥0.
If the lim𝑥→+𝑥0 𝑓 (𝑥)/𝑔(𝑥) exists and is equal to 1 as we approaching a

point of interest, then
𝑓 (𝑥) ∼ 𝑔(𝑥).

It means that 𝑓 (𝑥) is asymptotically equal to 𝑔(𝑥) as 𝑥 → 𝑥0.
For the "little 𝑜" one writes

𝑓 (𝑥) = 𝑜(𝑔(𝑥)),

in R as 𝑥 → 𝑥0 if 𝑓 (𝑥) ≠ 0 and 𝑓 (𝑥)/𝑔(𝑥) → 0 as 𝑥 → 𝑥0.
It means that 𝑓 (𝑥) is asymptotically smaller than 𝑔(𝑥) or 𝑓 (𝑥) tends to 0

faster than 𝑔(𝑥) does as 𝑥 → 𝑥0.
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1.7.2 Asymptotic Sequences

Definition 22. Let 𝜙1(𝑥), 𝜙2(𝑥) ,....., denote a finite or infinite sequence of
functions abbreviated as {𝜙 𝑗 (𝑥)}. The sequence of functions {𝜙 𝑗 (𝑥)} is called
an asymptotic sequence for 𝑥 → 𝑥0 in R if for each j, {𝜙 𝑗 (𝑥)} is defined in R
and

𝜙 𝑗+1(𝑥) = 𝑜(𝜙 𝑗 (𝑥)) as 𝑥 → 𝑥0

in 𝑅.
If the sequence is infinite and 𝜙 𝑗+1(𝑥) = 𝑜(𝜙 𝑗 (𝑥)) uniformly in 𝑗 , then

{𝜙 𝑗 (𝑥)} is considered to be an asymptotic sequence uniformly in 𝑗 . If the
{𝜙 𝑗 (𝑥)} depends on parameters and 𝜙 𝑗+1(𝑥) = 𝑜(𝜙 𝑗 (𝑥)), then {𝜙 𝑗 (𝑥)} is
considered to be an asymptotic sequence uniformly in the parameters.

1.7.3 Asymptotic Expansion

Definition 23. Let {𝜙 𝑗 (𝑥)} be an asymptotic sequence for 𝑥 → 𝑥0 in 𝑅; 𝑓 (𝑥)
is a numerical function of 𝑥 defined on 𝑅; and 𝑎 is a constant (i.e., independent
of 𝑥). The formal series

∑
𝑎 𝑗𝜙 𝑗 (𝑥) not necessarily convergent, is said to be

an asymptotic expansion to 𝑁 terms of 𝑓 (𝑥) in the form of Poincaré as 𝑥 → 𝑥0
if :

𝑓 (𝑥) =
𝑁∑︁
𝑗=1
𝑎 𝑗𝜙 𝑗 (𝑥) + 𝑜(𝜙𝑁 ) as 𝑥 → 𝑥0. (1.11)

It means the partial sum
∑𝑁

𝑗=1 𝑎 𝑗𝜙 𝑗 (𝑥) is an approximation to 𝑓 (𝑥) with
an error 𝑜(𝜙𝑁 ) as 𝑥 → 𝑥0. Sometimes this is written as

𝑓 (𝑥) −
𝑁∑︁
𝑗=1
𝑎 𝑗𝜙 𝑗 (𝑥) ≪ (𝜙𝑁 ) 𝑎𝑠 𝑥 → 𝑥0,

which is read as the error or the reminder is much less the last term in the sum.

If such an asymptotic expansion exists, it is unique and It follows that the
coefficients in asymptotic expansion to 𝑁 terms can be determined using the
following recurrence formula
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𝑎𝑚 = lim
𝑥→+𝑥0

{[ 𝑓 (𝑥) −
𝑚−1∑︁
𝑛=1

𝑎 𝑗𝜙 𝑗 (𝑥)]/𝜙𝑚(𝑥)} 𝑚 = 1, ...., 𝑁

We write
𝑓 (𝑥) ∼

∑︁
𝑎 𝑗𝜙 𝑗 (𝑥),

to 𝑁 terms as 𝑥 → 𝑥0 in 𝑅, if the function 𝑓 (𝑥) possesses an asymptotic
expansion. It is frequently written as 𝑓 (𝑥) ∼ 𝑎 𝑗𝜙 𝑗 (𝑥) which means that
𝑓 (𝑥)/𝜙 𝑗 (𝑥) tends to 𝑎 𝑗 as 𝑥 → 𝑥0

Theorem 7. If we have 𝑁 + 1 functions, 𝑓 (𝑥), 𝜙1(𝑥), ...., 𝜙𝑁 (𝑥) defined in 𝑅.
It follows that {𝜙 𝑗} is an asymptotic sequence for 𝑥 → 𝑥0 and

∑
𝑎 𝑗𝜙 𝑗 is an

asymptotic expansion for 𝑁 terms of 𝑓 (𝑥) as 𝑥 → 𝑥0 provided (1.11) holds
and 𝑎𝑚 ≠ 0 for 𝑚 = 1, ....., 𝑁 .

Remark 2. The choice of the asymptotic sequence obviously effects the form
of an asymptotic expansion. Furthermore, the same function might have
different asymptotic expansions. For example, as 𝑥 → ∞,

1.

1
𝑥 − 1

∼
∞∑︁
1

1
𝑥𝑛
.

2.

1
𝑥 − 1

∼
∞∑︁
1

𝑥 + 1
𝑥2𝑛 ,

see Copson (2004, p. 7).
In addition, two different functions might have the same asymptotic ex-

pansion.

25

𝑎𝑚 = lim
𝑥→+𝑥0

{[ 𝑓 (𝑥) −
𝑚−1∑︁
𝑛=1

𝑎 𝑗𝜙 𝑗 (𝑥)]/𝜙𝑚(𝑥)} 𝑚 = 1, ...., 𝑁

We write
𝑓 (𝑥) ∼

∑︁
𝑎 𝑗𝜙 𝑗 (𝑥),

to 𝑁 terms as 𝑥 → 𝑥0 in 𝑅, if the function 𝑓 (𝑥) possesses an asymptotic
expansion. It is frequently written as 𝑓 (𝑥) ∼ 𝑎 𝑗𝜙 𝑗 (𝑥) which means that
𝑓 (𝑥)/𝜙 𝑗 (𝑥) tends to 𝑎 𝑗 as 𝑥 → 𝑥0

Theorem 7. If we have 𝑁 + 1 functions, 𝑓 (𝑥), 𝜙1(𝑥), ...., 𝜙𝑁 (𝑥) defined in 𝑅.
It follows that {𝜙 𝑗} is an asymptotic sequence for 𝑥 → 𝑥0 and

∑
𝑎 𝑗𝜙 𝑗 is an

asymptotic expansion for 𝑁 terms of 𝑓 (𝑥) as 𝑥 → 𝑥0 provided (1.11) holds
and 𝑎𝑚 ≠ 0 for 𝑚 = 1, ....., 𝑁 .

Remark 2. The choice of the asymptotic sequence obviously effects the form
of an asymptotic expansion. Furthermore, the same function might have
different asymptotic expansions. For example, as 𝑥 → ∞,

1.

1
𝑥 − 1

∼
∞∑︁
1

1
𝑥𝑛
.

2.

1
𝑥 − 1

∼
∞∑︁
1

𝑥 + 1
𝑥2𝑛 ,

see Copson (2004, p. 7).
In addition, two different functions might have the same asymptotic ex-

pansion.

25

45



1.8 A Survey of the Rest of the Thesis
This thesis is divided into two main parts: part one is devoted to the thesis
and part two contains four articles. In the first part of the thesis we have
four chapters. The current chapter, Chapter 1 is about a survey of literature,
we describes some definitions and theorems and introduce generally some
major concepts to be used in the later chapters. We also include several
enlightening examples and description of the previous work that related to
stochastic volatility models to motivate the work done in latter chapters.

Chapter 2 is the base of the Paper A and B and investigates the theoretical
part of the thesis where we first have to prove that the Gatheral model satisfies
the assumptions by Pagliarani and Pascucci (2017). Then, based on the results
by Pagliarani and Pascucci (2017), we use asymptotic expansions method to
calculate option price under the Gatheral model. Using the results in Chapter
2, we go through heavy calculations in Chapter 3 to compute the asymptotic
expansions of the implied volatility up to third order. This chapter is based
on Paper A and B. Chapter 4 is based on paper C and paper D and it briefly
describes the practical part of the work and summarises the results.
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Chapter 2

The Asymptotic Expansion of
the Option Price

2.1 Introduction
In order to derive explicit expansions for that the implied volatility, it is es-
sential to expand the call prices around a Black-Scholes price. This chapter is
dedicated to the derivation of option prices under the Gatheral model. How-
ever, one need to first check that the Gatheral model satisfies the assumptions
given in Pagliarani and Pascucci (2017), then expand operator A𝑡 (z) by repla-
cing the coefficients 𝑎𝑖 𝑗 (𝑡, 𝑠, 𝑦2, 𝑦3) and 𝑎𝑖 (𝑡, 𝑠, 𝑦2, 𝑦3) with their Taylor series
around z = (𝑠0, 𝑣0, 𝑣′0).

2.2 The Backward Kolmogorov Equation
Following Pagliarani and Pascucci (2017, Equation (3.1)), introduce the fol-
lowing function:

𝑉 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝐾)
= E∗ [max{𝑆(𝑇) − 𝐾, 0} |𝔉𝑡 , 𝑆(𝑡) = 𝑥, 𝑣(𝑡) = 𝑦2, 𝑣

′(𝑡) = 𝑦3] .
(2.1)

In what follows, we use the symbols 𝑥, 𝑦2, 𝑦3 as formal variables during
calculations. In the formulation of results, we substitute the values from
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Equation 2.1: 𝑥 = 𝑆(𝑡), 𝑦2 = 𝑣(𝑡), 𝑦3 = 𝑣′(𝑡).
On the one hand, by the Fundamental Theorem of Financial Engineering,

the time 𝑡 no-arbitrage price of a European call option with strike price 𝐾 and
maturity 𝑇 is equal to 𝑉 (𝑡, 𝑆(𝑡), 𝑣(𝑡), 𝑣′(𝑡), 𝑇, 𝐾).
Remark 3. If the spot risk-free interest rate is a non-zero, but deterministic
function of time, say 𝑟 (𝑡), then the function (2.1) is replaced with another one:

�̃� (𝑡, 𝑠, 𝑦2, 𝑦3, 𝑇, 𝐾) = E∗ [exp(−
∫ 𝑇

𝑡
𝑟 (𝑢) 𝑑𝑢)

× max{𝑆(𝑇) − 𝐾, 0} |𝔉𝑡 , 𝑆(𝑡) = 𝑠, 𝑣(𝑡) = 𝑦2, 𝑣
′(𝑡) = 𝑦3],

where
𝑑𝑆(𝑡) = 𝑑𝑆(𝑡) + 𝑟 (𝑡) 𝑑𝑡.

In this case, we just change a variable

𝑉 (𝑡, 𝑠, 𝑦2, 𝑦3, 𝑇, 𝐾) = exp
(∫ 𝑇

𝑡
𝑟 (𝑢) 𝑑𝑢

)
�̃� (𝑡, 𝑠, 𝑦2, 𝑦3, 𝑇, 𝐾).

On the other hand, by (Pagliarani and Pascucci, 2017, Theorem 2.6, Re-
mark 2.9), the function (2.1) satisfies the backward Kolmogorov equation,
which has the form(

𝜕

𝜕𝑡
+ A𝑡 (𝑠, 𝑦2, 𝑦3)

)
𝑣(𝑡, 𝑠, 𝑦2, 𝑦3, 𝑇, 𝐾) = 0. (2.2)

By Pagliarani and Pascucci (2017, Equation (2.8)), the linear differential
operator A𝑡 has the form

A𝑡 (z) = 1
2

3∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (𝑡, z) 𝜕2

𝜕𝑧𝑖𝜕𝑧 𝑗
+

3∑︁
𝑖=1

𝑎𝑖 (𝑡, z) 𝜕
𝜕𝑧𝑖

, (2.3)

where z = (𝑠, 𝑦2, 𝑦3)⊤ ∈ ℝ3, and where the entries 𝑎𝑖 𝑗 (𝑡, z) of a symmetric
matrix and the components 𝑎𝑖 (𝑡, z) of a vector are given by Pagliarani and
Pascucci (2017, p. 671):

𝑎1(𝑡, z) = 0, 𝑎𝑖 (𝑡, z) = `𝑖 (𝑡, z),
𝑎11(𝑡, z) = [2

1 (𝑡, z)𝑠2, 𝑎1𝑖 (𝑡, z) = 𝜌1𝑖[1(𝑡, z)[𝑖 (𝑡, z)𝑠,
𝑎𝑖 𝑗 (𝑡, z) = 𝜌𝑖 𝑗[𝑖 (𝑡, z)[ 𝑗 (𝑡, z),
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for any 𝑖, 𝑗 = 2, 3. Equation (1.9) gives the following nonzero coefficients:

𝑎2(𝑦2, 𝑦3) = ^1(𝑦3 − 𝑦2), 𝑎3(𝑦3) = ^2(\ − 𝑦3),
𝑎11(𝑠, 𝑦2) = 𝑠2𝑦2, 𝑎12(𝑠, 𝑦2) = 𝜌12b1𝑠𝑦

𝛼1+1/2
2 ,

𝑎13(𝑠, 𝑦2, 𝑦3) = 𝜌13b2𝑠𝑦
1/2
2 𝑦𝛼2

3 , 𝑎22(𝑦2) = b2
1𝑦

2𝛼1
2 ,

𝑎23(𝑦2, 𝑦3) = 𝜌23b1b2𝑦
𝛼1
2 𝑦𝛼2

3 , 𝑎33(𝑦3) = b2
2𝑦

2𝛼2
3 .
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[0, 𝑇0). Estimate the middle term:

|𝑎11(𝑠, x) − 𝑎11(𝑡, y) |
( |𝑠 − 𝑡 | + ∥x − y∥2)1/2 =

|𝑠2𝑥2 − 𝑡2𝑦2 |
( |𝑠 − 𝑡 | + |𝑥2 − 𝑦2 |2)1/2

≤ 𝑇2
0

|𝑥2 − 𝑦2 | |𝑥2 − 𝑦2 | = 𝑇2
0 < ∞.

Second, we need to prove that[
𝜕𝑎11(𝑠, x)

𝜕𝑠

]
< ∞.

Indeed, we have 𝜕𝑎11 (𝑠,x)
𝜕𝑠 = 2𝑠𝑦2, and the above middle term takes the form

|2𝑠𝑥2 − 2𝑡𝑦2 |
( |𝑠 − 𝑡 | + |𝑥2 − 𝑦2 |2)1/2 ≤ 2𝑇0 |𝑥2 − 𝑦2 |

|𝑥2 − 𝑦2 | < ∞.

Last, we have to prove that∑︁
𝑖+2 𝑗≤2

max
(𝑠,x) ∈ [0,𝑇0 )×𝐷

����𝜕𝑖+ 𝑗𝑎11(𝑠, x)
𝜕𝑥𝑖𝜕𝑠 𝑗

���� + ∑︁
𝑖+2 𝑗=2

[
𝜕𝑖+ 𝑗𝑎11(𝑠, x)
𝜕𝑥𝑖𝜕𝑠 𝑗

]
< ∞.

Estimating each remaining term separately, we have

max
(𝑠,x) ∈ [0,𝑇0 )×𝐷

|𝑎11(𝑠, x) | ≤ 𝑇2
0 𝑅 < ∞,

max
(𝑠,x) ∈ [0,𝑇0 )×𝐷

����𝜕𝑎11(𝑠, x)
𝜕𝑥2

���� ≤ 2𝑇2
0 < ∞,

max
(𝑠,x) ∈ [0,𝑇0 )×𝐷

�����𝜕
2𝑎11(𝑠, x)
𝜕𝑥2

2

����� = 0 < ∞,

max
(𝑠,x) ∈ [0,𝑇0 )×𝐷

����𝜕𝑎11(𝑠, x)
𝜕𝑠

���� ≤ 2𝑅𝑇0 < ∞.

Part (ii) of Assumption 2.4 is as follows: the operator A𝑡 (z) is strongly
elliptic in the sense that there exist 𝑀 > 0 and Y ∈ (0, 1) such that for all
𝑡 ∈ [0, 𝑇0), z ∈ 𝐷, and 𝜻 ∈ ℝ3 we have

Y𝑀 ∥𝜻 ∥2 ≤
3∑︁

𝑖, 𝑗=1
𝑎𝑖 𝑗 (𝑡, z)Z𝑖Z 𝑗 ≤ 𝑀 ∥𝜻 ∥2.
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In other words: the norm of the positive-definite matrix 𝑎𝑖 𝑗 (𝑡, z) is separated
from 0 and finite. This is checked by direct calculations.

By (Pagliarani and Pascucci, 2017, Lemma 2.3), Assumption 2.1 is satis-
fied if Assumption 2.4 is satisfied and the coefficients of the system (1.8) are
continuous and bounded on [0, 𝑇0] × 𝐷. The latter is obvious.

Finally, we need to check Assumption 2.5: the solution to the system (1.8)
is a Feller process on 𝐷, that is, for any 𝑇 ∈ (0, 𝑇0), and for any continuous
function 𝜑 : ℝ3 → ℝ with compact support, the function (0, 𝑇) × 𝐷 → ℝ,
(𝑡, z) ↦→ (T𝑡 ,𝑇𝜑) (z) is continuous, where

(T𝑡 ,𝑇𝜑) (z) =
∫
ℝ3
𝜑(𝜻)𝑝(𝑡, z;𝑇, d𝜻),

and 𝑝(𝑡, z;𝑇, d𝜻) is the transition probability function for the solution to the
system (1.8).

We use (Ethier and Kurtz, 1986, Chapter 8, Theorem 1.4). This result says
that under some conditions, the solution to a system of stochastic differential
equations is a Feller process. We check the above conditions one by one.

The condition 𝑑 ≥ 2 is trivially satisfied. By construction, our set 𝐷
is bounded, connected, and open. To check the next condition, we need a
notation.

Let x0 be a point on the boundary 𝜕𝐷 of the set 𝐷. According to Ethier
and Kurtz (1986), a map ℝ𝑑 → ℝ𝑑 , x ↦→ y = 𝑈 (x − x0), is called a local
Cartesian coordinate system with origin at x0 if 𝑈 is an orthogonal matrix
and the outer normal to 𝜕𝐷 at x0 is mapped to the nonnegative 𝑦𝑑 axis. For
a positive integer 𝑚 and a real number ` ∈ [0, 1], the surface 𝜕𝐷 is of class
𝐶𝑚,` if there exists 𝜌 > 0 such that for every x0 ∈ 𝜕𝐷 the intersection of 𝜕𝐷
with an open ball 𝐵(x0, 𝜌) of radius 𝜌 centred at x0 is a connected surface
of the form 𝑦𝑑 = 𝑣(𝑦1, . . . , 𝑦𝑑−1), the function 𝑣 is 𝑚 times continuously
differentiable on the closure 𝑃 of the projection 𝑃 of the set 𝜕𝐷 ∩ 𝐵(x0, 𝜌)
onto the hyperplane 𝑦𝑑 = 0, and their partial derivatives of orders 0, 1, . . . , 𝑚
satisfy a Hölder condition with exponent ` with some fixed 𝑢0:

sup
0<𝑢≤𝑢0

{sup
y∈𝑃

𝑣(y) − inf
y∈𝑃

𝑣(y)} < ∞.

In the latter case we write 𝑣 ∈ 𝐶𝑚,` (𝑃).
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One may check by direct calculations that 𝜕𝐷 is of class 𝐶2,1 and the
coefficients of the system (1.8) belong to 𝐶0,1. The last remaining condition
of (Pagliarani and Pascucci, 2017, Lemma 2.3) is as follows:

inf
x∈𝐷

inf
∥𝜽 ∥=1

𝑑∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (x)\𝑖\ 𝑗 > 0,

and is trivial to check. Thus, the solution to the system (1.8) is indeed a Feller
process.

The next step is switching to logarithmic variables. The differential oper-
ator A𝑡 (z) given by Equation (2.3) becomes the operator

A𝑡 (z) = 1
2

3∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (𝑡, z) 𝜕2

𝜕𝑧𝑖𝜕𝑧 𝑗
+

3∑︁
𝑖=1

𝑎𝑖 (𝑡, z) 𝜕
𝜕𝑧𝑖

,

where this time z = (𝑥, y⊤)⊤ = (𝑥, 𝑦2, 𝑦3)⊤ ∈ ℝ3, the functions 𝑎𝑖 𝑗 (𝑡, z) and
𝑎𝑖 (𝑡, z) are given by Pagliarani and Pascucci (2017, p. 680):

𝑎11(𝑡, 𝑥, y) = 𝑒−2𝑥𝑎11(𝑡, 𝑒𝑥 , y), 𝑎1(𝑡, 𝑥, y) = −1
2
𝑒−2𝑥𝑎11(𝑡, 𝑒𝑥 , y),

𝑎1𝑖 (𝑡, 𝑥, y) = 𝑒−𝑥𝑎1𝑖 (𝑡, 𝑒𝑥 , y), 𝑎𝑖 𝑗 (𝑡, 𝑥, y) = 𝑎𝑖 𝑗 (𝑡, 𝑒𝑥 , y),
𝑎𝑖 (𝑡, 𝑥, y) = 𝑎𝑖 (𝑡, 𝑒𝑥 , y),

for any 𝑖, 𝑗 = 2, 3. This gives

𝑎1(𝑦2) = −1
2
𝑦2, 𝑎2(𝑦2, 𝑦3) = ^1(𝑦3 − 𝑦2),

𝑎3(𝑦3) = ^2(\ − 𝑦3), 𝑎11(𝑦2) = 𝑦2,

𝑎12(𝑦2) = 𝜌12b1𝑦
𝛼1+1/2
2 , 𝑎13(𝑦2, 𝑦3) = 𝜌13b2𝑦

1/2
2 𝑦𝛼2

3 ,

𝑎22(𝑦2) = b2
1𝑦

2𝛼1
2 , 𝑎23(𝑦2, 𝑦3) = 𝜌23b1b2𝑦

𝛼1
2 𝑦𝛼2

3 ,

𝑎33(𝑦3) = b2
2𝑦

2𝛼2
3 ,

(2.4)

32

One may check by direct calculations that 𝜕𝐷 is of class 𝐶2,1 and the
coefficients of the system (1.8) belong to 𝐶0,1. The last remaining condition
of (Pagliarani and Pascucci, 2017, Lemma 2.3) is as follows:

inf
x∈𝐷

inf
∥𝜽 ∥=1

𝑑∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (x)\𝑖\ 𝑗 > 0,

and is trivial to check. Thus, the solution to the system (1.8) is indeed a Feller
process.

The next step is switching to logarithmic variables. The differential oper-
ator A𝑡 (z) given by Equation (2.3) becomes the operator

A𝑡 (z) = 1
2

3∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (𝑡, z) 𝜕2

𝜕𝑧𝑖𝜕𝑧 𝑗
+

3∑︁
𝑖=1

𝑎𝑖 (𝑡, z) 𝜕
𝜕𝑧𝑖

,

where this time z = (𝑥, y⊤)⊤ = (𝑥, 𝑦2, 𝑦3)⊤ ∈ ℝ3, the functions 𝑎𝑖 𝑗 (𝑡, z) and
𝑎𝑖 (𝑡, z) are given by Pagliarani and Pascucci (2017, p. 680):

𝑎11(𝑡, 𝑥, y) = 𝑒−2𝑥𝑎11(𝑡, 𝑒𝑥 , y), 𝑎1(𝑡, 𝑥, y) = −1
2
𝑒−2𝑥𝑎11(𝑡, 𝑒𝑥 , y),

𝑎1𝑖 (𝑡, 𝑥, y) = 𝑒−𝑥𝑎1𝑖 (𝑡, 𝑒𝑥 , y), 𝑎𝑖 𝑗 (𝑡, 𝑥, y) = 𝑎𝑖 𝑗 (𝑡, 𝑒𝑥 , y),
𝑎𝑖 (𝑡, 𝑥, y) = 𝑎𝑖 (𝑡, 𝑒𝑥 , y),

for any 𝑖, 𝑗 = 2, 3. This gives

𝑎1(𝑦2) = −1
2
𝑦2, 𝑎2(𝑦2, 𝑦3) = ^1(𝑦3 − 𝑦2),

𝑎3(𝑦3) = ^2(\ − 𝑦3), 𝑎11(𝑦2) = 𝑦2,

𝑎12(𝑦2) = 𝜌12b1𝑦
𝛼1+1/2
2 , 𝑎13(𝑦2, 𝑦3) = 𝜌13b2𝑦

1/2
2 𝑦𝛼2

3 ,

𝑎22(𝑦2) = b2
1𝑦

2𝛼1
2 , 𝑎23(𝑦2, 𝑦3) = 𝜌23b1b2𝑦

𝛼1
2 𝑦𝛼2

3 ,

𝑎33(𝑦3) = b2
2𝑦

2𝛼2
3 ,

(2.4)
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and the operator A𝑡 (z) becomes

A𝑡 (z) = 1
2
𝑦2
𝜕2

𝜕𝑥2 + 1
2
b2

1𝑦
2𝛼1
2

𝜕2

𝜕𝑦2
2
+ 1

2
b2

2𝑦
2𝛼2
3

𝜕2

𝜕𝑦2
3

+ 𝜌12b1𝑦
𝛼1+1/2
2

𝜕2

𝜕𝑥𝜕𝑦2
+ 𝜌13b2𝑦

1/2
2 𝑦𝛼2

3
𝜕2

𝜕𝑥𝜕𝑦3

+ 𝜌23b1b2𝑦
𝛼1
2 𝑦𝛼2

3
𝜕2

𝜕𝑦2𝜕𝑦3
− 1

2
𝑦2
𝜕

𝜕𝑥
+ ^1(𝑦3 − 𝑦2) 𝜕

𝜕𝑦2

+ ^2(\ − 𝑦3) 𝜕
𝜕𝑦3

.

(2.5)

2.3 The Formal Expansion of the Operator A𝑡 (z)
Fix a point z = (𝑧1, 𝑧2, 𝑧3)⊤ ∈ ℝ3. For example, we may choose:

𝑧1 = ln 𝑆(𝑡), 𝑧2 = 𝑣(𝑡), 𝑧3 = 𝑣′(𝑡),

where 𝑡 is current time, close to maturity 𝑇 . Expand the operator A𝑡 (z) by
replacing the coefficients 𝑎𝑖 𝑗 (𝑡, 𝑥, 𝑦2, 𝑦3) and 𝑎𝑖 (𝑡, 𝑥, 𝑦2, 𝑦3) with their Taylor
series around z. Formally,

A𝑡 (z) ∼
∞∑︁
𝑛=0

A (z)
𝑡 ,𝑛 (z).

We call this expansion formal because we do not discuss the questions of its
convergence. In this Section, we explicitly calculate the first four terms of the
above formal expansion.

2.3.1 The Zeroth Term

By (Pagliarani and Pascucci, 2017, Equation (3.4)), the zeroth term of the
expansion is just the value of the operator A𝑡 (z) when z = z. Using Equa-
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tion (2.5), we obtain

A (z)
𝑡 ,0 (𝑥, 𝑦2, 𝑦3) = 1

2
𝑣(𝑡) 𝜕

2

𝜕𝑥2 + 1
2
b2

1𝑣
2𝛼1 (𝑡) 𝜕

2

𝜕𝑦2
2
+ 1

2
b2

2𝑣
′2𝛼2 (𝑡) 𝜕

2

𝜕𝑦2
3

+ 𝜌12b1𝑣
𝛼1+1/2(𝑡) 𝜕2

𝜕𝑥𝜕𝑦2
+ 𝜌13b2𝑣

1/2(𝑡)𝑣′𝛼2 (𝑡) 𝜕2

𝜕𝑥𝜕𝑦3

+ 𝜌23b1b2𝑣
𝛼1 (𝑡)𝑣′𝛼2 (𝑡) 𝜕2

𝜕𝑦2𝜕𝑦3
− 1

2
𝑣(𝑡) 𝜕

𝜕𝑥
+ ^1(𝑣′(𝑡) − 𝑣(𝑡)) 𝜕

𝜕𝑦2

+ ^2(\ − 𝑣′(𝑡)) 𝜕
𝜕𝑦3

.

2.3.2 The First Term
According to (Pagliarani and Pascucci, 2017, Equation (3.4)), the first term
can be obtained by the following replacements in Equation (2.5):

𝑎𝑖 𝑗 (𝑡, z) →
3∑︁

𝛽=1

𝜕𝑎𝑖 𝑗

𝜕𝑧𝛽
(𝑡, z) (𝑧𝛽 − 𝑧𝛽), 𝑎𝑖 (𝑡, z) →

3∑︁
𝛽=1

𝜕𝑎𝑖
𝜕𝑧𝛽

(𝑡, z) (𝑧𝛽 − 𝑧𝛽).

Calculating partial derivatives, we obtain

A (z)
𝑡 ,1 (𝑥, 𝑦2, 𝑦3) = 1

2
(𝑦2 − 𝑣(𝑡)) 𝜕

2

𝜕𝑥2 + b2
1𝛼1𝑣

2𝛼1−1(𝑡) (𝑦2 − 𝑣(𝑡)) 𝜕
2

𝜕𝑦2
2

+ b2
2𝛼2𝑣

′2𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡)) 𝜕
2

𝜕𝑦2
3

+ 𝜌12b1(𝛼1 + 1/2)𝑣𝛼1−1/2(𝑡) (𝑦2 − 𝑣(𝑡)) 𝜕2

𝜕𝑥𝜕𝑦2

+ 𝜌13b2 [(1/2)𝑣−1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡)) (2.6)

+ 𝛼2𝑣
1/2(𝑡)𝑣′𝛼2−1(𝑦3 − 𝑣′(𝑡))] 𝜕2

𝜕𝑥𝜕𝑦3

+ 𝜌23b1b2 [𝛼1𝑣
𝛼1−1(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))

+ 𝛼2𝑣
𝛼1 (𝑡)𝑣′𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡))] 𝜕2

𝜕𝑦2𝜕𝑦3
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2

𝜕𝑦2
2

+ b2
2𝛼2𝑣

′2𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡)) 𝜕
2
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3
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+ 1
2
(𝑣(𝑡) − 𝑦2) 𝜕

𝜕𝑥
+ ^1 [−𝑦2 + 𝑣(𝑡) + 𝑦3 − 𝑣′(𝑡)] 𝜕

𝜕𝑦2
+ ^2(𝑣′(𝑡) − 𝑦3) 𝜕

𝜕𝑦3
.

2.3.3 The Second Term
This time, the replacements have the form

𝑎𝑖 𝑗 (𝑡, z) →
∑︁
∥𝜷 ∥=𝑛

1
𝜷!
𝜕𝑛𝑎𝑖 𝑗

𝜕z𝜷 (𝑡, z) (z𝜷 − z𝜷),

𝑎𝑖 (𝑡, z) →
∑︁
∥𝜷 ∥=𝑛

1
𝜷!
𝜕𝑛𝑎𝑖

𝜕z𝜷 (𝑡, z) (z𝜷 − z𝜷),
(2.7)

where 𝜷 = (𝛽1, 𝛽2, 𝛽3)⊤ is a multi-index with nonnegative integer coordinates,
∥𝜷∥ = 𝛽1 + 𝛽2 + 𝛽3, 𝑛 = 2, and

𝜕z𝜷 =
3∏

𝑘=1
𝜕𝑧

𝛽𝑘
𝑘 , z𝜷 − z𝜷 =

3∏
𝑘=1

(𝑧𝑘 − 𝑧𝑘)𝛽𝑘 , 𝜷! =
3∏

𝑘=1
𝛽𝑘!.

Again, by calculating partial derivatives, we obtain

A (z)
𝑡 ,2 (𝑥, 𝑦2, 𝑦3) = b2

1𝛼1(𝛼1 − 1/2)𝑣2(𝛼1−1) (𝑡) (𝑦2 − 𝑣(𝑡))2 𝜕
2

𝜕𝑦2
2

+ b2
2𝛼2(𝛼2 − 1/2)𝑣′2(𝛼2−1) (𝑡) (𝑦3 − 𝑣′(𝑡))2 𝜕

2

𝜕𝑦2
3

+ 1
2
𝜌12b1(𝛼2

1 − 1/4)𝑣𝛼1−3/2(𝑡) (𝑦2 − 𝑣(𝑡))2 𝜕2

𝜕𝑥𝜕𝑦2

+ 𝜌13b2 [(−1/8)𝑣−3/2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))2

+ (1/2)𝛼2𝑣
−1/2(𝑡)𝑣′𝛼2−1(𝑡) (𝑦2 − 𝑣(𝑡)) (𝑦3 − 𝑣′(𝑡))

+ (1/2)𝛼2(𝛼2 − 1)𝑣1/2(𝑡)𝑣′𝛼2−2(𝑡) (𝑦3 − 𝑣′(𝑡))2] 𝜕2

𝜕𝑥𝜕𝑦3

+ 𝜌23b1b2 [(1/2)𝛼1(𝛼1 − 1)𝑣𝛼1−2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))2

+ 𝛼1𝛼2𝑣
𝛼1−1(𝑡)𝑣′𝛼2−1(𝑡) (𝑦2 − 𝑣(𝑡)) (𝑦3 − 𝑣′(𝑡))

+ (1/2)𝛼2(𝛼2 − 1)𝑣𝛼1 (𝑡)𝑣′𝛼2−2(𝑡) (𝑦3 − 𝑣′(𝑡))2] 𝜕2

𝜕𝑦2𝜕𝑦3
.
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2

𝜕𝑦2
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+ b2
2𝛼2(𝛼2 − 1/2)𝑣′2(𝛼2−1) (𝑡) (𝑦3 − 𝑣′(𝑡))2 𝜕

2

𝜕𝑦2
3

+ 1
2
𝜌12b1(𝛼2

1 − 1/4)𝑣𝛼1−3/2(𝑡) (𝑦2 − 𝑣(𝑡))2 𝜕2

𝜕𝑥𝜕𝑦2

+ 𝜌13b2 [(−1/8)𝑣−3/2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))2
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+ 𝜌23b1b2 [(1/2)𝛼1(𝛼1 − 1)𝑣𝛼1−2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))2
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2.3.4 The Third Term

The replacements have the form (2.7), but with 𝑛 = 3. The differential operator
takes the form

A (z)
𝑡 ,3 (𝑥, 𝑦2, 𝑦3) = 1

3
b2

1𝛼1(2𝛼1 − 1) (𝛼1 − 1)𝑣2𝛼1−3(𝑡) (𝑦2 − 𝑣(𝑡))3 𝜕
2

𝜕𝑦2
2

+ 1
3
b2

2𝛼2(2𝛼2 − 1) (𝛼2 − 1)𝑣′(2𝛼2−3) (𝑡) (𝑦3 − 𝑣′(𝑡))3 𝜕
2

𝜕𝑦2
3

+ 1
6
𝜌12b1(𝛼2

1 − 1/4) (𝛼1 − 3/2)𝑣𝛼1−5/2(𝑡) (𝑦2 − 𝑣(𝑡))3 𝜕2

𝜕𝑥𝜕𝑦2

+ 𝜌13b2 [(1/16)𝑣−5/2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))3

− (1/8)𝛼2𝑣
−3/2(𝑡)𝑣′𝛼2−1(𝑡) (𝑦2 − 𝑣(𝑡))2(𝑦3 − 𝑣′(𝑡))

+ (1/4)𝛼2(𝛼2 − 1)𝑣−1/2(𝑡)𝑣′𝛼2−2(𝑡) (𝑦2 − 𝑣(𝑡)) (𝑦3 − 𝑣′(𝑡))2

+ (1/6)𝛼2(𝛼2 − 1) (𝛼2 − 2)𝑣1/2(𝑡)𝑣′𝛼2−3(𝑡) (𝑦3 − 𝑣′(𝑡))3] 𝜕2

𝜕𝑥𝜕𝑦3

+ 𝜌23b1b2 [(1/6)𝛼1(𝛼1 − 1) (𝛼1 − 2)𝑣𝛼1−3(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))3

+ (1/2)𝛼1𝛼2(𝛼1 − 1)𝑣𝛼1−2(𝑡)𝑣′𝛼2−1(𝑡) (𝑦2 − 𝑣(𝑡))2(𝑦3 − 𝑣′(𝑡))
+ (1/2)𝛼1𝛼2(𝛼2 − 1)𝑣𝛼1−1(𝑡)𝑣′𝛼2−2(𝑡) (𝑦2 − 𝑣(𝑡)) (𝑦3 − 𝑣′(𝑡))2

+ (1/6)𝛼1(𝛼2 − 1) (𝛼2 − 2)𝑣𝛼1 (𝑡)𝑣′𝛼2−3(𝑡) (𝑦3 − 𝑣′(𝑡))3] 𝜕2

𝜕𝑦2𝜕𝑦3
.

We explain why we need to write down the above operators. It is proved
in Pagliarani and Pascucci (2017) that, in logarithmic variables, the pricing
function

𝑢(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝑉 (𝑡, 𝑒𝑥 , 𝑦2, 𝑦3, 𝑇, 𝑒
𝑘),

where the function 𝑉 is given by (2.1), can be expanded into a series

𝑢(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) ∼
∞∑︁
𝑛=0

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘). (2.8)
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𝑘),

where the function 𝑉 is given by (2.1), can be expanded into a series
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∞∑︁
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The zeroth term is a solution to the boundary value problem(
𝜕

𝜕𝑡
+ A (z)

𝑡 ,0 (𝑥, 𝑦2, 𝑦3)
)
𝑢 (z)0 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 0,

𝑢 (z)0 (𝑇, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = max{0, 𝑒𝑥 − 𝑒𝑘},
(2.9)

where the variables 𝑡, 𝑥, 𝑦2, and 𝑦3 in the partial differential equation run
over the region [0, 𝑇) × ℝ3, and the variables 𝑥, 𝑦2, and 𝑦3 in the boundary
condition run over ℝ3. The subsequent terms are solutions to the boundary
value problems(

𝜕

𝜕𝑡
+ A (z)

𝑡 ,0

)
𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = −

𝑛∑︁
ℎ=1

A (z)
𝑡 ,ℎ𝑢

(z)
𝑛−ℎ (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘),

𝑢 (z)𝑛 (𝑇, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 0,

where the variables run over the same regions.

2.4 The Expansion
2.4.1 The Zeroth Term
The solution to the boundary value problem (2.9) has the form

𝑢 (z)0 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝑢BS(𝜎 (z)
0 , 𝜏, 𝑥, 𝑘),

where the function 𝑢BS is given by Equation (1.6), and the parameter 𝜎 (z)
0 is

given by

𝜎 (z)
0 =

(
1
𝜏

∫ 𝑇

𝑡
𝑎11(𝑢, z) 𝑑𝑢

)1/2
.

Using equation (2.4), we obtain

𝜎 (z)
0 =

√
𝑣0. (2.10)

To obtain the time 𝑡 approximation of the option’s price, we put 𝑥 = ln 𝑆(𝑡).
Theorem 8. The approximation of order 0 of the European call option’s price
has the form

𝑢(𝑡, 𝑆(𝑡), 𝑇, 𝑘) ≈ 𝑢BS(
√︁
𝑣(𝑡), 𝜏, ln 𝑆(𝑡), 𝑘). (2.11)
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.
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2.4.2 Auxiliary calculations
First, we need to calculate the vector m(z) (𝑡, 𝑠) whose components are given
by

𝑚 (z)
𝑖 (𝑡, 𝑠) =

∫ 𝑠

𝑡
𝑎𝑖 (𝑢, z) 𝑑𝑢,

see Pagliarani and Pascucci (2017, p. 713). Equation (2.4) gives

𝑚 (z)
1 (𝑡, 𝑠) = −1

2
𝑣(𝑡) (𝑠 − 𝑡), 𝑚 (z)

2 (𝑡, 𝑠) = ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑠 − 𝑡),
𝑚 (z)

3 (𝑡, 𝑠) = ^2(\ − 𝑣′(𝑡)) (𝑠 − 𝑡).

The next task is to calculate the entries of the matrix

𝐶 (z)
𝑖 𝑗 (𝑡, 𝑠) =

∫ 𝑠

𝑡
𝑎𝑖 𝑗 (𝑢, z) 𝑑𝑢.

This gives

𝐶 (z)
12 (𝑡, 𝑠) = 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑠 − 𝑡), 𝐶 (z)
11 (𝑡, 𝑠) = 𝑣(𝑡) (𝑠 − 𝑡),

𝐶 (z)
13 (𝑡, 𝑠) = 𝜌13b2𝑣

1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡), 𝐶 (z)
22 (𝑡, 𝑠) = b2

1𝑣
2𝛼1 (𝑡) (𝑠 − 𝑡),

𝐶 (z)
23 (𝑡, 𝑠) = 𝜌23b1b2𝑣

𝛼1 (𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡), 𝐶 (z)
33 (𝑡, 𝑠) = b2

2𝑣
′2𝛼2 (𝑡) (𝑠 − 𝑡).

Introduce the following notation for the coefficients of the linear differen-
tial operator A (z)

𝑡 ,𝑛 (z):

A (z)
𝑡 ,𝑛 (z) =

∑︁
1≤𝑖≤ 𝑗≤3

𝑎𝑖 𝑗 ,𝑛 (𝑡, z) 𝜕2

𝜕𝑧𝑖𝜕𝑧 𝑗
+

3∑︁
𝑖=1

𝑎𝑖,𝑛 (𝑡, z) 𝜕
𝜕𝑧𝑖

.

In particular, when 𝑛 = 1, Equation (2.6) gives

𝑎11,1(𝑡, 𝑦2) = 1
2
(𝑦2 − 𝑣(𝑡)),

𝑎12,1(𝑡, 𝑦2) = 𝜌12b1(𝛼1 + 1/2)𝑣𝛼1−1/2(𝑡) (𝑦2 − 𝑣(𝑡)),
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2
(𝑦2 − 𝑣(𝑡)),
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𝑎13,1(𝑡, 𝑦2, 𝑦3) = 𝜌13b2 [(1/2)𝑣−1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))
+ 𝛼2𝑣

1/2(𝑡)𝑣′𝛼2−1(𝑦3 − 𝑣′(𝑡))],
𝑎22,1(𝑡, 𝑦2) = b2

1𝛼1𝑣
2𝛼1−1(𝑡) (𝑦2 − 𝑣(𝑡)),

𝑎23,1(𝑡, 𝑦2, 𝑦3) = 𝜌23b1b2 [𝛼1𝑣
𝛼1−1(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))

+ 𝛼2𝑣
𝛼1 (𝑡)𝑣′𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡))],

𝑎33,1(𝑡, 𝑦3) = b2
2𝛼2𝑣

′2𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡)),
𝑎1,1(𝑡, 𝑦2) = 1

2
(𝑣(𝑡) − 𝑦2),

𝑎2,1(𝑡, 𝑦2, 𝑦3) = ^1 [−𝑦2 + 𝑣(𝑡) + 𝑦3 − 𝑣′(𝑡)],
𝑎3,1(𝑡, 𝑦3) = ^2(𝑣′(𝑡) − 𝑦3).

Following Pagliarani and Pascucci (2017), define the symbolsM𝑖 (𝑡, 𝑠, 𝑧𝑖),
1 ≤ 𝑖 ≤ 3, by the equation:

M𝑖 (𝑡, 𝑠, 𝑧𝑖) = 𝑧𝑖 + 𝑚𝑖 (𝑡, 𝑠) +
3∑︁
𝑗=1
𝐶𝑖 𝑗 (𝑡, 𝑠) 𝜕

𝜕𝑧 𝑗
.

Using the values of 𝑚𝑖 (𝑡, 𝑠) and 𝐶𝑖 𝑗 (𝑡, 𝑠) calculated above, we obtain the
following equalities:

M1(𝑡, 𝑠, 𝑥) = 𝑥 − 1
2
𝑣(𝑡) (𝑠 − 𝑡) + 𝑣(𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑥
+ 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑠 − 𝑡) 𝜕
𝜕𝑦2

+ 𝜌13b2𝑣
1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑦3
,

M2(𝑡, 𝑠, 𝑦2) = 𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑠 − 𝑡) + 𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑥
(2.12)

+ b2
1𝑣

2𝛼1 (𝑡) (𝑠 − 𝑡) 𝜕
𝜕𝑦2

+ 𝜌23b1b2𝑣
𝛼1 (𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑦3
,

M3(𝑡, 𝑠, 𝑦3) = 𝑦3 + ^2(\ − 𝑣′(𝑡)) (𝑠 − 𝑡) + 𝜌13b2𝑣
1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑥

+ 𝜌23b1b2𝑣
𝛼1 (𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑦2
+ b2

2𝑣
′2𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑦3
.
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𝑎13,1(𝑡, 𝑦2, 𝑦3) = 𝜌13b2 [(1/2)𝑣−1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))
+ 𝛼2𝑣

1/2(𝑡)𝑣′𝛼2−1(𝑦3 − 𝑣′(𝑡))],
𝑎22,1(𝑡, 𝑦2) = b2

1𝛼1𝑣
2𝛼1−1(𝑡) (𝑦2 − 𝑣(𝑡)),

𝑎23,1(𝑡, 𝑦2, 𝑦3) = 𝜌23b1b2 [𝛼1𝑣
𝛼1−1(𝑡)𝑣′𝛼2 (𝑡) (𝑦2 − 𝑣(𝑡))

+ 𝛼2𝑣
𝛼1 (𝑡)𝑣′𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡))],

𝑎33,1(𝑡, 𝑦3) = b2
2𝛼2𝑣

′2𝛼2−1(𝑡) (𝑦3 − 𝑣′(𝑡)),
𝑎1,1(𝑡, 𝑦2) = 1

2
(𝑣(𝑡) − 𝑦2),

𝑎2,1(𝑡, 𝑦2, 𝑦3) = ^1 [−𝑦2 + 𝑣(𝑡) + 𝑦3 − 𝑣′(𝑡)],
𝑎3,1(𝑡, 𝑦3) = ^2(𝑣′(𝑡) − 𝑦3).

Following Pagliarani and Pascucci (2017), define the symbolsM𝑖 (𝑡, 𝑠, 𝑧𝑖),
1 ≤ 𝑖 ≤ 3, by the equation:

M𝑖 (𝑡, 𝑠, 𝑧𝑖) = 𝑧𝑖 + 𝑚𝑖 (𝑡, 𝑠) +
3∑︁
𝑗=1
𝐶𝑖 𝑗 (𝑡, 𝑠) 𝜕

𝜕𝑧 𝑗
.

Using the values of 𝑚𝑖 (𝑡, 𝑠) and 𝐶𝑖 𝑗 (𝑡, 𝑠) calculated above, we obtain the
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M1(𝑡, 𝑠, 𝑥) = 𝑥 − 1
2
𝑣(𝑡) (𝑠 − 𝑡) + 𝑣(𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑥
+ 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑠 − 𝑡) 𝜕
𝜕𝑦2

+ 𝜌13b2𝑣
1/2(𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑦3
,

M2(𝑡, 𝑠, 𝑦2) = 𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑠 − 𝑡) + 𝜌12b1𝑣
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𝜕𝑦2
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𝜕𝑦3
,
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𝛼1 (𝑡)𝑣′𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕
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+ b2

2𝑣
′2𝛼2 (𝑡) (𝑠 − 𝑡) 𝜕

𝜕𝑦3
.
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Now, we calculate the operators

G (z)
𝑛 (𝑡, 𝑠, 𝑥, 𝑦2, 𝑦3)

=
∑︁

1≤𝑖≤ 𝑗≤3
𝑎𝑖 𝑗 ,𝑛 (𝑡,M1(𝑡, 𝑠, 𝑥),M2(𝑡, 𝑠, 𝑦2),M3(𝑡, 𝑠, 𝑦3)) 𝜕2

𝜕𝑧𝑖𝜕𝑧 𝑗

+
3∑︁
𝑖=1

𝑎𝑖,𝑛 (𝑡,M1(𝑡, 𝑠, 𝑥),M2(𝑡, 𝑠, 𝑦2),M3(𝑡, 𝑠, 𝑦3)) 𝜕
𝜕𝑧𝑖

(2.13)

for 𝑛 = 1, 2, 3. They have the form

G (z)
𝑛 (𝑡, 𝑠, 𝑥, 𝑦2, 𝑦3) =

∑︁
𝜸

𝑔 (z)𝜸,𝑛 (𝑡, 𝑠, 𝑥, 𝑦2, 𝑦3) 𝜕
∥𝜸∥

𝜕z𝜸 ,

where the sum is taken over a finite set of multi-indices.
We calculate in details the coefficient of the differential operator 𝜕

𝜕𝑥 , which
is 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠, 𝑦2). By Equation (2.13), the above coefficient is that part of
the expression 𝑎1,1(𝑡,M1(𝑡, 𝑠, 𝑥),M2(𝑡, 𝑠, 𝑦2),M3(𝑡, 𝑠, 𝑦3)) which does not
contain any partial derivatives. We have

𝑎1,1(𝑡,M2(𝑡, 𝑠, 𝑦2)) = 1
2
(𝑣(𝑡) −M2(𝑡, 𝑠, 𝑦2)).

Substituting the value of M2(𝑡, 𝑠, 𝑦2) from Equation (2.12) and ignoring the
terms containing partial derivatives, we obtain

𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠, 𝑦2) = 1
2
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑠 − 𝑡)] . (2.14)

Similarly, the coefficient of 𝜕2

𝜕𝑥2 is

𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠, 𝑦2) = 1
2
[𝑦2−𝑣(𝑡) −𝜌12b1𝑣

𝛼1+1/2(𝑠− 𝑡) +^1(𝑣′(𝑡) −𝑣(𝑡)) (𝑠− 𝑡)] .
(2.15)

The coefficient of 𝜕3

𝜕𝑥3 is

𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠) =
1
2
𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑠 − 𝑡). (2.16)

As we will see later, we do not need to know the values of the remaining
coefficients.
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terms containing partial derivatives, we obtain
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2
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1
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2.4.3 The First Term
Our next task is to calculate the differential operator L (z)

𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) with
𝑛 = 1. It is given by Pagliarani and Pascucci (2017, Equation (D.2)). In the
case of 𝑛 = 1 this equation takes the form

L (z)
1 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) =

∫ 𝑇

𝑡
G (z)

1 (𝑡, 𝑠1, 𝑥, 𝑦2, 𝑦3) 𝑑𝑠1.

The above differential operator is used to calculate the 𝑛th term in the approx-
imation (2.8). This approximation is given by Pagliarani and Pascucci (2017,
Equation (D.1)):

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = L (z)
𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3)𝑢 (z)0 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘),

The expression 𝑢 (z)0 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) is given by the right hand side of Equa-
tion (2.11) and does not depend on 𝑦2 and 𝑦3. The approximation of the 𝑛th
term takes the form

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = L̂ (z)
𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3)𝑢 (z)0 (𝑡, 𝑥, 𝑇, 𝑘),

where the differential operator L̂ (z)
𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) is obtained from the op-

erator L (z)
𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) by deleting all terms containing partial derivatives

with respect to the variables 𝑦2 and 𝑦3. To calculate this operator when 𝑛 = 1,
we have to integrate the coefficient of the differential operator 𝜕𝑘

𝜕𝑥𝑘
, 1 ≤ 𝑘 ≤ 3,

from 𝑡 to 𝑇 with respect to 𝑠. We calculate the integral∫ 𝑇

𝑡
(𝑡 − 𝑠) 𝑑𝑠 = 1

2
𝑡2 + 𝜏𝑡 − 1

2
𝑇2 = −1

2
𝜏2. (2.17)

The operator L̂ (z)
1 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) takes the form

L̂ (z)
1 (𝑡, 𝑇, 𝑦2) = 𝜏

4
[2(𝑣(𝑡) − 𝑦2) − ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏] 𝜕

𝜕𝑥

+ 𝜏
4
[2(𝑣(𝑡) − 𝑦2) − 𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏 + ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏] 𝜕
2

𝜕𝑥2

+ 𝜏
4
[𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏] 𝜕
3

𝜕𝑥3 .
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where the differential operator L̂ (z)
𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) is obtained from the op-

erator L (z)
𝑛 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) by deleting all terms containing partial derivatives

with respect to the variables 𝑦2 and 𝑦3. To calculate this operator when 𝑛 = 1,
we have to integrate the coefficient of the differential operator 𝜕𝑘

𝜕𝑥𝑘
, 1 ≤ 𝑘 ≤ 3,

from 𝑡 to 𝑇 with respect to 𝑠. We calculate the integral∫ 𝑇

𝑡
(𝑡 − 𝑠) 𝑑𝑠 = 1

2
𝑡2 + 𝜏𝑡 − 1

2
𝑇2 = −1

2
𝜏2. (2.17)

The operator L̂ (z)
1 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) takes the form

L̂ (z)
1 (𝑡, 𝑇, 𝑦2) = 𝜏

4
[2(𝑣(𝑡) − 𝑦2) − ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏] 𝜕

𝜕𝑥

+ 𝜏
4
[2(𝑣(𝑡) − 𝑦2) − 𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏 + ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏] 𝜕
2

𝜕𝑥2

+ 𝜏
4
[𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏] 𝜕
3

𝜕𝑥3 .
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To calculate the approximation 𝑢 (z)1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘), we have to apply the
above differential operator to 𝑢 (z)0 (𝑡, 𝑥, 𝑇, 𝑘) and put 𝑦2 = 𝑣(𝑡). We obtain

𝑢 (z)1 (𝑡, 𝑇, 𝑥, 𝑘) = 𝜏2

4

[
(−^1(𝑣′(𝑡) − 𝑣(𝑡))) 𝜕

𝜕𝑥

+ (−𝜌12b1𝑣
𝛼1+1/2(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡))) 𝜕

2

𝜕𝑥2

+ 𝜌12b1𝑣
𝛼1+1/2(𝑡) 𝜕

3

𝜕𝑥3

]
𝑢BS(

√︁
𝑣(𝑡), 𝜏, 𝑥, 𝑘).

To formulate the approximation of order 1 of a European call option’s
price, we introduce the following notation

𝑢BS,𝑛 (
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘) = 𝜕𝑛

𝜕𝑥𝑛
𝑢BS(

√︁
𝑣(𝑡), 𝜏, ln 𝑆(𝑡), 𝑘).

Theorem 9. The approximation of order 1 of the European call option’s price
has the form

𝑢(𝑡, 𝑆(𝑡), 𝑇, 𝑘) ≈ 𝑢BS(
√︁
𝑣(𝑡), 𝜏, ln 𝑆(𝑡), 𝑘)

+ 𝜏
2

4
(−^1(𝑣′(𝑡) − 𝑣(𝑡)))𝑢BS,1(

√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
2

4
(−𝜌12b1𝑣

𝛼1+1/2(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)))𝑢BS,2(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
2

4
𝜌12b1𝑣

𝛼1+1/2(𝑡)𝑢BS,3(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘).

2.4.4 The Second Term
Pagliarani and Pascucci (2017, Equation (D.2)) gives

L (z)
2 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3)

=
∫ 𝑇

𝑡

∫ 𝑇

𝑠1

G (z)
1 (𝑡, 𝑠1, 𝑥, 𝑦2, 𝑦3)G (z)

1 (𝑡, 𝑠2, 𝑥, 𝑦2, 𝑦3) 𝑑𝑠2 𝑑𝑠1.
(2.18)

We write down the coefficients of the partial derivatives 𝜕2

𝜕𝑥2 , . . . , 𝜕6

𝜕𝑥6 of the
linear differential operator under the integral sign.
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To calculate the approximation 𝑢 (z)1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘), we have to apply the
above differential operator to 𝑢 (z)0 (𝑡, 𝑥, 𝑇, 𝑘) and put 𝑦2 = 𝑣(𝑡). We obtain

𝑢 (z)1 (𝑡, 𝑇, 𝑥, 𝑘) = 𝜏2

4

[
(−^1(𝑣′(𝑡) − 𝑣(𝑡))) 𝜕

𝜕𝑥

+ (−𝜌12b1𝑣
𝛼1+1/2(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡))) 𝜕

2

𝜕𝑥2

+ 𝜌12b1𝑣
𝛼1+1/2(𝑡) 𝜕

3

𝜕𝑥3

]
𝑢BS(

√︁
𝑣(𝑡), 𝜏, 𝑥, 𝑘).

To formulate the approximation of order 1 of a European call option’s
price, we introduce the following notation

𝑢BS,𝑛 (
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘) = 𝜕𝑛

𝜕𝑥𝑛
𝑢BS(

√︁
𝑣(𝑡), 𝜏, ln 𝑆(𝑡), 𝑘).

Theorem 9. The approximation of order 1 of the European call option’s price
has the form

𝑢(𝑡, 𝑆(𝑡), 𝑇, 𝑘) ≈ 𝑢BS(
√︁
𝑣(𝑡), 𝜏, ln 𝑆(𝑡), 𝑘)

+ 𝜏
2

4
(−^1(𝑣′(𝑡) − 𝑣(𝑡)))𝑢BS,1(

√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
2

4
(−𝜌12b1𝑣

𝛼1+1/2(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)))𝑢BS,2(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
2

4
𝜌12b1𝑣

𝛼1+1/2(𝑡)𝑢BS,3(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘).

2.4.4 The Second Term
Pagliarani and Pascucci (2017, Equation (D.2)) gives

L (z)
2 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3)

=
∫ 𝑇

𝑡

∫ 𝑇

𝑠1

G (z)
1 (𝑡, 𝑠1, 𝑥, 𝑦2, 𝑦3)G (z)

1 (𝑡, 𝑠2, 𝑥, 𝑦2, 𝑦3) 𝑑𝑠2 𝑑𝑠1.
(2.18)

We write down the coefficients of the partial derivatives 𝜕2

𝜕𝑥2 , . . . , 𝜕6

𝜕𝑥6 of the
linear differential operator under the integral sign.
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The coefficient of the partial derivative 𝜕2

𝜕𝑥2 is

𝑔 (z)(2,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

The coefficient of 𝜕3

𝜕𝑥3 is

𝑔 (z)(3,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

The coefficient of 𝜕4

𝜕𝑥4 is

𝑔 (z)(4,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

The coefficient of 𝜕5

𝜕𝑥5 is

𝑔 (z)(5,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,2(𝑡, 𝑠1, 𝑦2))𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

Finally, the coefficient of 𝜕6

𝜕𝑥6 is

𝑔 (z)(6,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

We substitute the values (2.14), (2.15), and (2.16) to the above equations
and integrate the result according to Equation (2.18). The integral (2.17) is
now replaced with the following integrals:

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

d𝑠2 d𝑠1 =
1
2
𝜏2,

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

(𝑠2 − 𝑡) d𝑠2 d𝑠1 =
1
3
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

(𝑠1 − 𝑡) d𝑠2 d𝑠1 =
1
6
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

(𝑠1 − 𝑡) (𝑠2 − 𝑡) d𝑠2 d𝑠1 =
1
8
𝜏4.
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The coefficient of the partial derivative 𝜕2

𝜕𝑥2 is

𝑔 (z)(2,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

The coefficient of 𝜕3

𝜕𝑥3 is

𝑔 (z)(3,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

The coefficient of 𝜕4

𝜕𝑥4 is

𝑔 (z)(4,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(1,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

The coefficient of 𝜕5

𝜕𝑥5 is

𝑔 (z)(5,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(1,0,0)⊤,2(𝑡, 𝑠1, 𝑦2))𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠2, 𝑦2)
+ 𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(2,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

Finally, the coefficient of 𝜕6

𝜕𝑥6 is

𝑔 (z)(6,0,0)⊤,2(𝑡, 𝑠1, 𝑠2, 𝑦2) = 𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠1, 𝑦2))𝑔 (z)(3,0,0)⊤,1(𝑡, 𝑠2, 𝑦2).

We substitute the values (2.14), (2.15), and (2.16) to the above equations
and integrate the result according to Equation (2.18). The integral (2.17) is
now replaced with the following integrals:

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

d𝑠2 d𝑠1 =
1
2
𝜏2,

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

(𝑠2 − 𝑡) d𝑠2 d𝑠1 =
1
3
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

(𝑠1 − 𝑡) d𝑠2 d𝑠1 =
1
6
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑠1

(𝑠1 − 𝑡) (𝑠2 − 𝑡) d𝑠2 d𝑠1 =
1
8
𝜏4.
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The operator L̂ (z)
2 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) takes the form

L̂ (z)
2 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) =

[
𝜏4

32
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2 − 𝜏3

24
(𝑣(𝑡) − 𝑦2)^1(𝑣′(𝑡) − 𝑣(𝑡))

+ 𝜏2

8
(𝑣(𝑡) − 𝑦2)2

]
𝜕2

𝜕𝑥2

+
[
𝜏4

32
(𝜌12b1𝑣

𝛼1+1/2(𝑡) − ^1(𝑣′(𝑡) − 𝑣(𝑡)))^1(𝑣′(𝑡) − 𝑣(𝑡))

− 𝜏3

12
(𝑣(𝑡) − 𝑦2)𝜌12b1𝑣

𝛼1+1/2(𝑡) − 𝜏2

4
(𝑣(𝑡) − 𝑦2)2

]
𝜕3

𝜕𝑥3

+
[
𝜏4

32
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 4𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡))

+ ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2) + 𝜏

3

8
(𝑣(𝑡) − 𝑦2(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))

+ 𝜏2

8
(𝑣(𝑡) − 𝑦2(𝑡))2

]
𝜕4

𝜕𝑥4

+
[
𝜏4

16
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡)))

+𝜏
3

4
(𝑣(𝑡) − 𝑦2(𝑡))𝜌12b1𝑣

𝛼1+1/2(𝑡)
]
𝜕5

𝜕𝑥5

+ 𝜏
4

32
𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) 𝜕
6

𝜕𝑥6 .

Again, to calculate the approximation 𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘), we have to
apply the above differential operator to 𝑢 (z)0 (𝑡, 𝑥, 𝑇, 𝑘) and put 𝑦2 = 𝑣(𝑡). We
obtain

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝜏4

32
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2𝑢BS,2(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

32
(𝜌12b1𝑣

𝛼1+1/2(𝑡) − ^1(𝑣′(𝑡) − 𝑣(𝑡)))^1(𝑣′(𝑡) − 𝑣(𝑡))
× 𝑢BS,3(

√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

32
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 4𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡))

44

The operator L̂ (z)
2 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) takes the form

L̂ (z)
2 (𝑡, 𝑇, 𝑥, 𝑦2, 𝑦3) =

[
𝜏4

32
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2 − 𝜏3

24
(𝑣(𝑡) − 𝑦2)^1(𝑣′(𝑡) − 𝑣(𝑡))

+ 𝜏2

8
(𝑣(𝑡) − 𝑦2)2

]
𝜕2

𝜕𝑥2

+
[
𝜏4

32
(𝜌12b1𝑣

𝛼1+1/2(𝑡) − ^1(𝑣′(𝑡) − 𝑣(𝑡)))^1(𝑣′(𝑡) − 𝑣(𝑡))

− 𝜏3

12
(𝑣(𝑡) − 𝑦2)𝜌12b1𝑣

𝛼1+1/2(𝑡) − 𝜏2

4
(𝑣(𝑡) − 𝑦2)2

]
𝜕3

𝜕𝑥3

+
[
𝜏4

32
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 4𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡))

+ ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2) + 𝜏

3

8
(𝑣(𝑡) − 𝑦2(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))

+ 𝜏2

8
(𝑣(𝑡) − 𝑦2(𝑡))2

]
𝜕4

𝜕𝑥4

+
[
𝜏4

16
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡)))

+𝜏
3

4
(𝑣(𝑡) − 𝑦2(𝑡))𝜌12b1𝑣

𝛼1+1/2(𝑡)
]
𝜕5

𝜕𝑥5

+ 𝜏
4

32
𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) 𝜕
6

𝜕𝑥6 .

Again, to calculate the approximation 𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘), we have to
apply the above differential operator to 𝑢 (z)0 (𝑡, 𝑥, 𝑇, 𝑘) and put 𝑦2 = 𝑣(𝑡). We
obtain

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝜏4

32
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2𝑢BS,2(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

32
(𝜌12b1𝑣

𝛼1+1/2(𝑡) − ^1(𝑣′(𝑡) − 𝑣(𝑡)))^1(𝑣′(𝑡) − 𝑣(𝑡))
× 𝑢BS,3(

√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

32
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 4𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡))
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+ ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2)𝑢BS,4(

√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

16
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡)))

× 𝑢BS,5(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

32
𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡)𝑢BS,5(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘).

The subsequent terms can be calculated similarly, but we do not need them
for calculations of implied volatility.
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+ ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2)𝑢BS,4(

√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

16
(𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡)^1(𝑣′(𝑡) − 𝑣(𝑡)))

× 𝑢BS,5(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘)

+ 𝜏
4

32
𝜌2

12b
2
1𝑣

2𝛼1+1(𝑡)𝑢BS,5(
√︁
𝑣(𝑡), 𝜏, 𝑆(𝑡), 𝑘).

The subsequent terms can be calculated similarly, but we do not need them
for calculations of implied volatility.
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Chapter 3

The Asymptotic Expansion of
Implied Volatility

This Chapter is based on Papers A and B and adds more details of calculations.
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3.1 Introduction
Recall Equation (2.10): 𝜎 (z)

0 =
√
𝑣0. Let 𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) be the terms

in the expansion (2.8) of the European call option’s price, 𝑢(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘).
Following Pagliarani and Pascucci (2017, Equation (3.12)), introduce a family
of approximation to the above price given by

𝑢 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 𝛿, 𝑁) = 𝑢BS(𝜎 (z)
0 ) +

𝑁∑︁
𝑛=1

𝛿𝑁𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)

+ 𝛿𝑁+1

(
𝑢(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) −

𝑁∑︁
𝑛=0

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
)
,

where 0 ≤ 𝛿 ≤ 1, and where 𝑁 is a positive integer. Note that

𝑢 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 1, 𝑁) = 𝑢(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘).
The function 𝑔 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 𝛿, 𝑁) is defined by

𝑔 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 𝛿, 𝑁) = (𝑢BS)−1(𝑢 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 𝛿, 𝑁)).
We see that the implied volatility is given by

𝜎(z, 𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝑔 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 1, 𝑁).
(Pagliarani and Pascucci, 2017, Lemma 5.8) states the following. There exist
two positive constants 𝜏0 and 𝑀 , such that if 𝑇 − 𝑡 ≤ 𝜏0 and |𝑥0 − 𝑘 | ≤ _

√
𝑀𝜏

for some positive _, then the function 𝑔 is well-defined.
The Taylor series expansion gives

𝜎(z, 𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝜎 (z)
0

+
∞∑︁
𝑛=1

1
𝑛!
𝜕𝑛𝑔 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 𝛿, 𝑁)

𝜕𝛿𝑛
(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 0, 𝑁).

It remains to calculate the partial derivatives in the right hand side. Denote

𝜎 (z)
𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)

=
1
𝑛!
𝜕𝑛𝑔 (z) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 𝛿, 𝑁)

𝜕𝛿𝑛
(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘, 0, 𝑁).
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Apply Faá di Bruno’s formula, see Section A.2. We obtain

𝜎 (z)
𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = 𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)

𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

− 1
𝑛!

𝑛∑︁
ℎ=2

𝐵𝑛,ℎ (1!𝜎 (z)
1 , 2!𝜎 (z)

2 , . . . , (𝑛 − ℎ + 1)!𝜎 (z)
𝑛−ℎ+1)

𝜕ℎ

𝜕𝜎ℎ 𝑢
BS(𝜎 (z)

0 )
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

.

The function 𝜎 (z)
0 is already calculated. We will calculate the functions

𝜎 (z)
𝑛 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) for 1 ≤ 𝑛 ≤ 3. In this case, using Equation (A.1), we

obtain

𝜎 (z)
1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) =

𝑢 (z)1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

,

𝜎 (z)
2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) =

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

− 1
2
(𝜎 (z)

1 )2
𝜕2

𝜕𝜎2 𝑢
BS(𝜎 (z)

0 )
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

,

𝜎 (z)
3 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) =

𝑢 (z)3 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

− 𝜎 (z)
1 𝜎 (z)

2

𝜕2

𝜕𝜎2 𝑢
BS(𝜎 (z)

0 )
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

− 1
6
(𝜎 (z)

1 )3
𝜕3

𝜕𝜎3 𝑢
BS(𝜎 (z)

0 )
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

.

(3.1)
We need to calculate the terms

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

, 1 ≤ 𝑛 ≤ 3

and
𝜕𝑛

𝜕𝜎𝑛 𝑢BS(𝜎 (z)
0 )

𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

, 2 ≤ 𝑛 ≤ 3.

The second one is easier to calculate. Denote 𝑐2,2 = 𝑐2,0 = 𝑐3,3 = 1, 𝑐3,1 = 3
and

Z =
𝑥 − 𝑘 − 𝜎2𝜏/2

𝜎
√

2𝜏
.
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By Pagliarani and Pascucci (2017, Proposition C.4),

𝜕𝑛

𝜕𝜎𝑛 𝑢BS(𝜎)
𝜕
𝜕𝜎𝑢

BS(𝜎) =
⌊𝑛/2⌋∑︁
𝑞=0

𝑐𝑛,𝑛−2𝑞𝜎
𝑛−2𝑞−1𝜏𝑛−𝑞−1

𝑛−𝑞−1∑︁
𝑝=0

(
𝑛 − 𝑞 − 1

𝑝

)

×
(

1
𝜎
√

2𝜏

) 𝑝+𝑛−𝑞−1
𝐻𝑝+𝑛−𝑞−1(Z),

(3.2)

where 𝐻𝑝+𝑛−𝑞−1(Z) are the “physicists” Hermite polynomials, see Appendix,
Section A.3.

By Pagliarani and Pascucci (2017, Proposition D.3), we have

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
∑︁
𝑚

(
1

𝜎0
√

2𝜏

)𝑚
𝜒 (z)
𝑚,𝑛 (𝑡, z, 𝑇, 𝑘)𝐻𝑚(Z), (3.3)

but the exact form of the functions 𝜒 (z)
𝑚,𝑛 (𝑡, z, 𝑇, 𝑘) is omitted. The authors

refer to Lorig et al. (2017a, Proposition 3.6) instead.
The above proposition tells the following. Consider the linear differential

operator

L̃𝑛 (𝑡, 𝑇) =
𝑛∑︁

𝑘=1

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

· · ·
∫ 𝑇

𝑡𝑘−1

∑︁
i∈𝐼𝑛,𝑘

G𝑖1 (𝑡, 𝑡1) · · · G𝑖𝑘−1 (𝑡, 𝑡𝑘−1)

× 𝑎11,𝑖𝑘 (𝑡𝑘 ,M1(𝑡, 𝑡𝑘 , 𝑥),M2(𝑡, 𝑡𝑘 , 𝑦2),M3(𝑡, 𝑡𝑘 , 𝑦3)) 𝑑𝑡𝑘 · · · 𝑑𝑡1,
(3.4)

where 𝐼𝑛,𝑘 is the set of all multi-indices i = (𝑖1, . . . , 𝑖𝑘) with positive integer
entries satisfying 𝑖1 + · + 𝑖𝑘 = 𝑛. Then we have

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
L̃𝑛 (𝑡, 𝑇)

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )

𝜏𝜎 (z)
0

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )
. (3.5)

On the other hand, Lorig et al. (2017a, Lemma 3.4) gives

𝜕𝑚

𝜕𝑥𝑚

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)(

𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)

=

(
− 1
𝜎0

√
2𝜏

)𝑚
𝐻𝑚(Z). (3.6)
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𝑝

)

×
(

1
𝜎
√

2𝜏

) 𝑝+𝑛−𝑞−1
𝐻𝑝+𝑛−𝑞−1(Z),

(3.2)

where 𝐻𝑝+𝑛−𝑞−1(Z) are the “physicists” Hermite polynomials, see Appendix,
Section A.3.

By Pagliarani and Pascucci (2017, Proposition D.3), we have

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
∑︁
𝑚

(
1

𝜎0
√

2𝜏

)𝑚
𝜒 (z)
𝑚,𝑛 (𝑡, z, 𝑇, 𝑘)𝐻𝑚(Z), (3.3)

but the exact form of the functions 𝜒 (z)
𝑚,𝑛 (𝑡, z, 𝑇, 𝑘) is omitted. The authors

refer to Lorig et al. (2017a, Proposition 3.6) instead.
The above proposition tells the following. Consider the linear differential

operator

L̃𝑛 (𝑡, 𝑇) =
𝑛∑︁

𝑘=1

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

· · ·
∫ 𝑇

𝑡𝑘−1

∑︁
i∈𝐼𝑛,𝑘

G𝑖1 (𝑡, 𝑡1) · · · G𝑖𝑘−1 (𝑡, 𝑡𝑘−1)

× 𝑎11,𝑖𝑘 (𝑡𝑘 ,M1(𝑡, 𝑡𝑘 , 𝑥),M2(𝑡, 𝑡𝑘 , 𝑦2),M3(𝑡, 𝑡𝑘 , 𝑦3)) 𝑑𝑡𝑘 · · · 𝑑𝑡1,
(3.4)

where 𝐼𝑛,𝑘 is the set of all multi-indices i = (𝑖1, . . . , 𝑖𝑘) with positive integer
entries satisfying 𝑖1 + · + 𝑖𝑘 = 𝑛. Then we have

𝑢 (z)𝑛 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
L̃𝑛 (𝑡, 𝑇)

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )

𝜏𝜎 (z)
0

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )
. (3.5)

On the other hand, Lorig et al. (2017a, Lemma 3.4) gives

𝜕𝑚

𝜕𝑥𝑚

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)(

𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)

=

(
− 1
𝜎0

√
2𝜏

)𝑚
𝐻𝑚(Z). (3.6)
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We obtain: to calculate 𝜒 (z)
𝑚,𝑛 (𝑡, z, 𝑇, 𝑘), we divide the coefficient of the partial

derivative 𝜕𝑚

𝜕𝑥𝑚 in the differential operator L̃𝑛 (𝑡, 𝑇) by 𝜏𝜎 (z)
0 .

Following Pagliarani and Pascucci (2017, Definition 3.4), define

𝜎𝑁 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) =
𝑁∑︁
𝑛=0

𝜎 (𝑥,𝑦2,𝑦3 ) (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) (3.7)

and call this expression the 𝑁th order approximation of the implied volatility.
By Pagliarani and Pascucci (2017, Corollary 5.2), for all nonnegative integers
𝑞 and 𝑚 and for a fixed point (𝑥0, 𝑦0, 𝑧0) with 2𝑞 + 𝑚 ≤ 𝑁 the limit

lim
(𝑇,𝑘 )→(𝑡 ,𝑥0 )
|𝑥0−𝑘 | ≤_

√
𝑇−𝑡

𝜕𝑞

𝜕𝑇𝑞

𝜕𝑚

𝜕𝑘𝑚
𝜎𝑁 (𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘)

exists and is finite. Moreover, it is also equal to another limit:

lim
(𝑇,𝑘 )→(𝑡 ,𝑥0 )
|𝑥0−𝑘 | ≤_

√
𝑇−𝑡

𝜕𝑞

𝜕𝑇𝑞

𝜕𝑚

𝜕𝑘𝑚
𝜎(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘).

When the last limit exists, its value can be used for an asymptotic expansion
of implied volatility:

𝜎(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) =
∑︁

2𝑞+𝑚≤𝑁

lim
(𝑇,𝑘 )→(𝑡 ,𝑥0 )
|𝑥0−𝑘 | ≤_

√
𝑇−𝑡

𝜕𝑞

𝜕𝑇𝑞

𝜕𝑚

𝜕𝑘𝑚
𝜎𝑁 (𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘)

× (𝑇 − 𝑡)𝑞 (𝑘 − 𝑥0)𝑚
𝑞!𝑚!

+ 𝑜( |𝑇 − 𝑡 |𝑁/2 + |𝑘 − 𝑥0 |𝑛)
(3.8)

as (𝑇, 𝑘) → (𝑡, 𝑥0) with |𝑥0 − 𝑘 | ≤ _
√
𝑇 − 𝑡.

In the following Sections, we realise these calculations for 0 ≤ 𝑁 ≤ 3. To
simplify formulas, we omit the arguments of 𝜎.

3.2 The Asymptotic Expansion of Order 0
Theorem 10. The asymptotic expansion of implied volatility of order 0 in the
Gatheral model has the form

𝜎 =
√
𝑣0 + 𝑜(1). (3.9)
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Proof. Using Equations (2.10) and (3.7), we obtain, that the 0th order approx-
imation of the implied volatility takes the form

𝜎0(𝑦2) = √
𝑦2.

Equation (3.8) and the equality 𝑦0 = 𝑣0 give (3.9). □

3.3 The Asymptotic Expansion of Order 1
Theorem 11. The asymptotic expansion of implied volatility of order 1 in the
Gatheral model has the form

𝜎 =
√
𝑣0 + 1

4
𝜌12b1𝑣

𝛼1−1(𝑡) (𝑘 − 𝑥0) + 𝑜(
√
𝑇 − 𝑡 + |𝑘 − 𝑥0 |).

Proof. Recall that the first equation in (3.1) reads

𝜎 (z)
1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) =

𝑢 (z)1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

.

To calculate the right hand side, we use Equation (3.5) for 𝑛 = 1. First, we
calculate the linear differential operator L̃1(𝑡, 𝑇). In this case the index 𝑘 takes
only one value 𝑘 = 1, the set 𝐼1,1 is a singleton containing the multi-index
i = (1). Equation (3.4) takes the form

L̃1(𝑡, 𝑇) =
∫ 𝑇

𝑡
𝑎11,1(𝑡1,M1(𝑡, 𝑡1, 𝑥),M2(𝑡, 𝑡1, 𝑦2),M3(𝑡, 𝑡1, 𝑦3)) 𝑑𝑡1.

Equation (2.6) gives

𝑎11,1(𝑡1, 𝑥, 𝑦2, 𝑦3) = 1
2
(𝑦2 − 𝑣(𝑡)).

The linear differential operator L̃1(𝑡, 𝑇) takes the form

L̃1(𝑡, 𝑇) =
∫ 𝑇

𝑡

1
2
(M2(𝑡, 𝑡1, 𝑦2) − 𝑣(𝑡)) 𝑑𝑡1.
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1
2
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We use the second equation in (2.12) and obtain

L̃1(𝑡, 𝑇) =
∫ 𝑇

𝑡

1
2
(𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡) + 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡1 − 𝑡) 𝜕
𝜕𝑥

+ b2
1𝑣

2𝛼1 (𝑡) (𝑡1 − 𝑡) 𝜕
𝜕𝑦2

+ 𝜌23b1b2𝑣
𝛼1 (𝑡)𝑣′𝛼2 (𝑡) (𝑡1 − 𝑡) 𝜕

𝜕𝑦3

− 𝑣(𝑡)) 𝑑𝑡1.
Note that the Black–Scholes price 𝑢BS depends on 𝑥, but does not depend

on 𝑦2 and 𝑦3. By this reason, in what follows, we do not calculate the terms
of the operator L̃𝑛 (𝑡, 𝑇) that include the partial derivatives with respect to 𝑦2
and 𝑦3, but replace them with dots · · · . Using the integral (2.17), we obtain

L̃1(𝑡, 𝑇) = 1
2
(𝑦2 − 𝑣(𝑡))𝜏 + 1

4
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏2

+ 1
4
𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏2 𝜕

𝜕𝑥
+ · · · .

Substitute the obtained operator to Equation (3.5) with 𝑛 = 1. We have

𝑢 (z)1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
𝑦2 − 𝑣(𝑡)
2
√︁
𝑣(𝑡)

+ ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏
4
√︁
𝑣(𝑡)

+ 1
4
𝜌12b1𝑣

𝛼1 (𝑡)𝜏
𝜕
𝜕𝑥

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )
.

To calculate the last term, we use Equation (3.6) and the first equation in
(A.2), which gives

𝜕
𝜕𝑥

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)(

𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)

= −
√

2
𝜎0

√
𝜏
Z .

The term 𝜎 (z)
1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) becomes

𝜎 (z)
1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) = 𝑦2 − 𝑣(𝑡)

2
√︁
𝑣(𝑡)

+ ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏
4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥 − 2𝑘 − 𝑣(𝑡)𝜏).
(3.10)
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We use the second equation in (2.12) and obtain

L̃1(𝑡, 𝑇) =
∫ 𝑇

𝑡

1
2
(𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡) + 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡1 − 𝑡) 𝜕
𝜕𝑥

+ b2
1𝑣

2𝛼1 (𝑡) (𝑡1 − 𝑡) 𝜕
𝜕𝑦2

+ 𝜌23b1b2𝑣
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4
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Substitute the obtained operator to Equation (3.5) with 𝑛 = 1. We have

𝑢 (z)1 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
𝑦2 − 𝑣(𝑡)
2
√︁
𝑣(𝑡)

+ ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏
4
√︁
𝑣(𝑡)

+ 1
4
𝜌12b1𝑣

𝛼1 (𝑡)𝜏
𝜕
𝜕𝑥

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎 (z)

0 )
.

To calculate the last term, we use Equation (3.6) and the first equation in
(A.2), which gives

𝜕
𝜕𝑥

(
𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)(

𝜕2

𝜕𝑥2 − 𝜕
𝜕𝑥

)
𝑢BS(𝜎0)

= −
√

2
𝜎0

√
𝜏
Z .

The term 𝜎 (z)
1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) becomes

𝜎 (z)
1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) = 𝑦2 − 𝑣(𝑡)

2
√︁
𝑣(𝑡)

+ ^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏
4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥 − 2𝑘 − 𝑣(𝑡)𝜏).
(3.10)
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Note that the first term is equal to 0 because at time 𝑡 we have 𝑦2 = 𝑣0.
Equation (3.7) with 𝑁 = 1 gives

𝜎1(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) =
√
𝑣0 + ^1(𝑦3 − 𝑦2) (𝑇 − 𝑡)

4√𝑦2

− 1
8
𝜌12b1𝑦

𝛼1−1
2 (2𝑥 − 2𝑘 − 𝑦2(𝑇 − 𝑡)).

In particular,

𝜎1(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) =
√
𝑣0 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥0 − 2𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)).

The only possible values for 𝑞 and 𝑚 are 𝑞 = 𝑚 = 0 and 𝑞 = 0, 𝑚 = 1. In
the first case, as (𝑇, 𝑘) → (𝑡, 𝑥0) with |𝑥0 − 𝑘 | ≤ _

√
𝑇 − 𝑡, the second and the

third term go to 0, as it should be. In the second case, we calculate the partial
derivative

𝜕

𝜕𝑘
𝜎1(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) = 1

4
𝜌12b1𝑣

𝛼1−1(𝑡).
□

3.4 The Asymptotic Expansion of Order 2
Theorem 12. The asymptotic expansion of implied volatility of order 2 in the
Gatheral model has the form

𝜎(𝑡) = √
𝑣0 + 1

4
𝜌12b1𝑣

𝛼1−1
0 (𝑡) (𝑘 − 𝑥0)

− 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑘 − 𝑥0)2

+
[
^1(𝑣′0(𝑡) − 𝑣0)

4
√︁
𝑣(𝑡)

+ 1
8
𝜌12b1𝑣

𝛼1 (𝑡) + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)
]
(𝑇 − 𝑡)

+ 𝑜(𝑇 − 𝑡 + (𝑘 − 𝑥0)2).
(3.11)
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4
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− 1
8
𝜌12b1𝑣
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√
𝑇 − 𝑡, the second and the

third term go to 0, as it should be. In the second case, we calculate the partial
derivative

𝜕

𝜕𝑘
𝜎1(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) = 1

4
𝜌12b1𝑣

𝛼1−1(𝑡).
□

3.4 The Asymptotic Expansion of Order 2
Theorem 12. The asymptotic expansion of implied volatility of order 2 in the
Gatheral model has the form

𝜎(𝑡) = √
𝑣0 + 1

4
𝜌12b1𝑣

𝛼1−1
0 (𝑡) (𝑘 − 𝑥0)

− 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑘 − 𝑥0)2

+
[
^1(𝑣′0(𝑡) − 𝑣0)

4
√︁
𝑣(𝑡)

+ 1
8
𝜌12b1𝑣

𝛼1 (𝑡) + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)
]
(𝑇 − 𝑡)

+ 𝑜(𝑇 − 𝑡 + (𝑘 − 𝑥0)2).
(3.11)
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Proof. To calculate𝜎 (z)
2 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘), we use the second equation in (3.1).

First, we calculate the linear differential operator L̃2(𝑡, 𝑇). This time, the
index 𝑘 takes two values: 1 and 2. The set 𝐼2,1 is a singleton containing the
multi-index i = (2). The corresponding part of the operator L̃2(𝑡, 𝑇) is

∫ 𝑇

𝑡
𝑎11,2(𝑡1,M1(𝑡, 𝑡1, 𝑥),M2(𝑡, 𝑡1, 𝑦2),M3(𝑡, 𝑡1, 𝑦3)) 𝑑𝑡1 = 0.

The set 𝐼2,2 is also a singleton containing the multi-index i = (1, 1). The
operator L̃2(𝑡, 𝑇) becomes

L̃2(𝑡, 𝑇) =
∫ 𝑇

𝑡

∫ 𝑇

𝑡1

G1(𝑡, 𝑡1)

× 𝑎11,1(𝑡2,M1(𝑡, 𝑡2, 𝑥),M2(𝑡, 𝑡2, 𝑦2),M3(𝑡, 𝑡2, 𝑦3)) 𝑑𝑡2 𝑑𝑡1.

Using Equations (2.14), (2.15), and (2.16), we obtain

G1(𝑡, 𝑡1) = 1
2
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕

𝜕𝑥

+ 1
2
[𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣

𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕
2

𝜕𝑥2

+ 1
2
𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡1 − 𝑡) 𝜕
3

𝜕𝑥3 + · · · .

The operator L̃2(𝑡, 𝑇) takes the form

L̃2(𝑡, 𝑇) = 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

{
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕

𝜕𝑥

+ [𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕

2

𝜕𝑥2

+𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡1 − 𝑡) 𝜕

3

𝜕𝑥3

}
[𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)

+𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡2 − 𝑡) 𝜕

𝜕𝑥
− 𝑣(𝑡)

]
𝑑𝑡2 𝑑𝑡1 + · · · .
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multi-index i = (2). The corresponding part of the operator L̃2(𝑡, 𝑇) is

∫ 𝑇

𝑡
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operator L̃2(𝑡, 𝑇) becomes

L̃2(𝑡, 𝑇) =
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𝑡

∫ 𝑇

𝑡1

G1(𝑡, 𝑡1)

× 𝑎11,1(𝑡2,M1(𝑡, 𝑡2, 𝑥),M2(𝑡, 𝑡2, 𝑦2),M3(𝑡, 𝑡2, 𝑦3)) 𝑑𝑡2 𝑑𝑡1.

Using Equations (2.14), (2.15), and (2.16), we obtain

G1(𝑡, 𝑡1) = 1
2
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕

𝜕𝑥

+ 1
2
[𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣

𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕
2

𝜕𝑥2

+ 1
2
𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡1 − 𝑡) 𝜕
3

𝜕𝑥3 + · · · .

The operator L̃2(𝑡, 𝑇) takes the form

L̃2(𝑡, 𝑇) = 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

{
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕

𝜕𝑥

+ [𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)] 𝜕

2

𝜕𝑥2

+𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡1 − 𝑡) 𝜕

3

𝜕𝑥3

}
[𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)

+𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡2 − 𝑡) 𝜕

𝜕𝑥
− 𝑣(𝑡)

]
𝑑𝑡2 𝑑𝑡1 + · · · .
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We group all terms with the same partial derivatives together:

L̃2(𝑡, 𝑇) = 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]

× [𝑦2 − 𝑣(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)] 𝑑𝑡2 𝑑𝑡1 𝜕
𝜕𝑥

+ 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

{
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡2 − 𝑡)

+ [𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]

× [𝑦2 − 𝑣(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)]} 𝑑𝑡2 𝑑𝑡1 𝜕
2

𝜕𝑥2

+ 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

{
[𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣

𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]

× 𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡2 − 𝑡) + 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡1 − 𝑡)

× [𝑦2 − 𝑣(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)]} 𝑑𝑡2 𝑑𝑡1 𝜕
3

𝜕𝑥3

+ 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡1 − 𝑡)𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡2 − 𝑡) 𝑑𝑡2 𝑑𝑡1 𝜕
4

𝜕𝑥4 ,

and use the values of the following integrals:∫ 𝑇

𝑡

∫ 𝑇

𝑡1

𝑑𝑡2 𝑑𝑡1 =
1
2
𝜏2,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

(𝑡1 − 𝑡) 𝑑𝑡2 𝑑𝑡1 =
1
6
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

(𝑡2 − 𝑡) 𝑑𝑡2 𝑑𝑡1 =
1
3
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

(𝑡1 − 𝑡) (𝑡2 − 𝑡) 𝑑𝑡2 𝑑𝑡1 =
1
8
𝜏4.

The functions 𝜒 (z)
𝑚,1(𝑡, z, 𝑇, 𝑘) become:

𝜒 (z)
1,1 (𝑡, z, 𝑇, 𝑘) = − 1

96
√︁
𝑣(𝑡)

[12(𝑦2 − 𝑣(𝑡))2𝜏 + 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏2
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We group all terms with the same partial derivatives together:

L̃2(𝑡, 𝑇) = 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]

× [𝑦2 − 𝑣(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)] 𝑑𝑡2 𝑑𝑡1 𝜕
𝜕𝑥

+ 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

{
[𝑣(𝑡) − 𝑦2 − ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡2 − 𝑡)

+ [𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣
𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]

× [𝑦2 − 𝑣(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)]} 𝑑𝑡2 𝑑𝑡1 𝜕
2

𝜕𝑥2

+ 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

{
[𝑦2 − 𝑣(𝑡) − 𝜌12b1𝑣

𝛼1+1/2(𝑡1 − 𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡1 − 𝑡)]

× 𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡2 − 𝑡) + 𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡1 − 𝑡)

× [𝑦2 − 𝑣(𝑡) + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑡2 − 𝑡)]} 𝑑𝑡2 𝑑𝑡1 𝜕
3

𝜕𝑥3

+ 1
4

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑡1 − 𝑡)𝜌12b1𝑣

𝛼1+1/2(𝑡) (𝑡2 − 𝑡) 𝑑𝑡2 𝑑𝑡1 𝜕
4

𝜕𝑥4 ,

and use the values of the following integrals:∫ 𝑇

𝑡

∫ 𝑇

𝑡1

𝑑𝑡2 𝑑𝑡1 =
1
2
𝜏2,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

(𝑡1 − 𝑡) 𝑑𝑡2 𝑑𝑡1 =
1
6
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

(𝑡2 − 𝑡) 𝑑𝑡2 𝑑𝑡1 =
1
3
𝜏3,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

(𝑡1 − 𝑡) (𝑡2 − 𝑡) 𝑑𝑡2 𝑑𝑡1 =
1
8
𝜏4.

The functions 𝜒 (z)
𝑚,1(𝑡, z, 𝑇, 𝑘) become:

𝜒 (z)
1,1 (𝑡, z, 𝑇, 𝑘) = − 1

96
√︁
𝑣(𝑡)

[12(𝑦2 − 𝑣(𝑡))2𝜏 + 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏2
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+ 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏3],

𝜒 (z)
2,1 (𝑡, z, 𝑇, 𝑘) =

1
96

√︁
𝑣(𝑡)

[−12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏2

− 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏3 + 12(𝑦2 − 𝑣(𝑡))2𝜏

+ 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏2

+ 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏3],

𝜒 (z)
3,1 (𝑡, z, 𝑇, 𝑘) =

1
96

√︁
𝑣(𝑡)

[12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏2

− 3𝜌2
12b

2
1𝑣

2𝛼1+1(𝑡)𝜏3

+ 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏3],

𝜒 (z)
4,1 (𝑡, z, 𝑇, 𝑘) =

1
32
𝜌2

12b
2
1𝑣

2𝛼1+1/2(𝑡)𝜏3.

Equation (3.3) gives

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
1

48
√

2𝑣(𝑡)
[12(𝑦2 − 𝑣(𝑡))2𝜏1/2

+ 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏3/2 + 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏5/2]Z

+ 1
96𝑣3/2(𝑡) [−12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏

− 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏2 + 12(𝑦2 − 𝑣(𝑡))2

+ 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏 + 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏2] (2Z2 − 1)

− 1
48
√

2𝑣2(𝑡)
[12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏1/2 − 3𝜌2
12b

2
1𝑣

2𝛼1+1(𝑡)𝜏3/2

+ 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏3/2] (2Z3 − 3Z)

+ 1
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)𝜏(4Z4 − 12Z2 + 3).

We use Equation (3.2) with 𝑛 = 2:

𝜕2

𝜕𝜎2 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) =
2Z2 −

√︁
2𝑦2𝜏Z√
𝑦2

.
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+ 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏3],

𝜒 (z)
2,1 (𝑡, z, 𝑇, 𝑘) =

1
96

√︁
𝑣(𝑡)

[−12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏2

− 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏3 + 12(𝑦2 − 𝑣(𝑡))2𝜏

+ 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏2

+ 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏3],

𝜒 (z)
3,1 (𝑡, z, 𝑇, 𝑘) =

1
96

√︁
𝑣(𝑡)

[12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏2

− 3𝜌2
12b

2
1𝑣

2𝛼1+1(𝑡)𝜏3

+ 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏3],

𝜒 (z)
4,1 (𝑡, z, 𝑇, 𝑘) =

1
32
𝜌2

12b
2
1𝑣

2𝛼1+1/2(𝑡)𝜏3.

Equation (3.3) gives

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
1

48
√

2𝑣(𝑡)
[12(𝑦2 − 𝑣(𝑡))2𝜏1/2

+ 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏3/2 + 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏5/2]Z

+ 1
96𝑣3/2(𝑡) [−12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏

− 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏2 + 12(𝑦2 − 𝑣(𝑡))2

+ 12(𝑦2 − 𝑣(𝑡))^1(𝑣′(𝑡) − 𝑣(𝑡))𝜏 + 3^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝜏2] (2Z2 − 1)

− 1
48
√

2𝑣2(𝑡)
[12(𝑦2 − 𝑣(𝑡))𝜌12b1𝑣

𝛼1+1/2(𝑡)𝜏1/2 − 3𝜌2
12b

2
1𝑣

2𝛼1+1(𝑡)𝜏3/2

+ 6^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡)𝜏3/2] (2Z3 − 3Z)

+ 1
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)𝜏(4Z4 − 12Z2 + 3).

We use Equation (3.2) with 𝑛 = 2:

𝜕2

𝜕𝜎2 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) =
2Z2 −

√︁
2𝑦2𝜏Z√
𝑦2

.
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The second equation in (3.1) gives

𝜎 (z)
2 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) =

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

− 1
2

[
2Z2 −

√︁
2𝑦2𝜏Z√
𝑦2

]

×
[
𝑦2 − 𝑣(𝑡)
2
√︁
𝑣(𝑡)

+ ^1(𝑣(𝑡) − 𝑣′(𝑡))𝜏
4
√︁
𝑣(𝑡)

− 1
2
√

2
𝜌12b1𝑣

𝛼1−1/2(𝑡)√𝜏Z
]2

.

We do not calculate this expression, but calculate 𝜎2(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) by
Equation (3.7) with 𝑁 = 2:

𝜎2(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = √
𝑦2 + ^1(𝑦3 − 𝑦2) (𝑇 − 𝑡)

4√𝑦2

− 1
8
𝜌12b1𝑦

𝛼1−1
2 (2𝑥 − 2𝑘 − 𝑦2(𝑇 − 𝑡))

+ 1
16
√

2𝑦2
^2

1 (𝑦3 − 𝑦2)2𝜏5/2Z

− ^1(𝑦3 − 𝑦2)𝜏2

32𝑦3/2
2

[2𝜌12b1𝑦
𝛼1+1/2
2 − ^1(𝑦3 − 𝑦2)] (2Z2 − 1)

+ 1
16
√

2
[𝜌2

12b
2
1𝑦

2𝛼1−1
2 𝜏3/2

− 2^1(𝑦3 − 𝑦2)𝜌12b1𝑦
𝛼1−3/2
2 𝜏3/2] (2Z3 − 3Z)

+ 1
32
𝜌2

12b
2
1𝑦

2𝛼1−3/2
2 𝜏(4Z4 − 12Z2 + 3)

− 2Z2 −
√︁

2𝑦2𝜏Z

2√𝑦2

[
^1(𝑦3 − 𝑦2)𝜏

4√𝑦2
− 1

2
√

2
𝜌12b1𝑦

𝛼1−1/2
2

√
𝜏Z

]2
.

In particular,

𝜎2(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) = √
𝑦2 + ^1(𝑣(𝑡) − 𝑣′(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥0 − 2𝑘 − 𝑣(𝑡) (𝑇 − 𝑡))

+ 1
16
√

2𝑣(𝑡)
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)5/2Z
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The second equation in (3.1) gives

𝜎 (z)
2 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) =

𝑢 (z)2 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

− 1
2

[
2Z2 −

√︁
2𝑦2𝜏Z√
𝑦2

]

×
[
𝑦2 − 𝑣(𝑡)
2
√︁
𝑣(𝑡)

+ ^1(𝑣(𝑡) − 𝑣′(𝑡))𝜏
4
√︁
𝑣(𝑡)

− 1
2
√

2
𝜌12b1𝑣

𝛼1−1/2(𝑡)√𝜏Z
]2

.

We do not calculate this expression, but calculate 𝜎2(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) by
Equation (3.7) with 𝑁 = 2:

𝜎2(𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘) = √
𝑦2 + ^1(𝑦3 − 𝑦2) (𝑇 − 𝑡)

4√𝑦2

− 1
8
𝜌12b1𝑦

𝛼1−1
2 (2𝑥 − 2𝑘 − 𝑦2(𝑇 − 𝑡))

+ 1
16
√

2𝑦2
^2

1 (𝑦3 − 𝑦2)2𝜏5/2Z

− ^1(𝑦3 − 𝑦2)𝜏2

32𝑦3/2
2

[2𝜌12b1𝑦
𝛼1+1/2
2 − ^1(𝑦3 − 𝑦2)] (2Z2 − 1)

+ 1
16
√

2
[𝜌2

12b
2
1𝑦

2𝛼1−1
2 𝜏3/2

− 2^1(𝑦3 − 𝑦2)𝜌12b1𝑦
𝛼1−3/2
2 𝜏3/2] (2Z3 − 3Z)

+ 1
32
𝜌2

12b
2
1𝑦

2𝛼1−3/2
2 𝜏(4Z4 − 12Z2 + 3)

− 2Z2 −
√︁

2𝑦2𝜏Z

2√𝑦2

[
^1(𝑦3 − 𝑦2)𝜏

4√𝑦2
− 1

2
√

2
𝜌12b1𝑦

𝛼1−1/2
2

√
𝜏Z

]2
.

In particular,

𝜎2(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) = √
𝑦2 + ^1(𝑣(𝑡) − 𝑣′(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥0 − 2𝑘 − 𝑣(𝑡) (𝑇 − 𝑡))

+ 1
16
√

2𝑣(𝑡)
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)5/2Z
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+ ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)2

32𝑣3/2(𝑡) [2𝜌12b1𝑣
𝛼1+1/2(𝑡) − ^1(𝑣′(𝑡) − 𝑣(𝑡))] (2Z2 − 1)

+ 1
16
√

2
𝜌2

12b
2
1𝑣

2𝛼1−1(𝑡) (𝑇 − 𝑡)3/2(2Z3 − 3Z)

+ 1
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑇 − 𝑡) (4Z4 − 12Z2 + 3)

− 2Z2 −
√︁

2𝑦2𝜏Z

2√𝑦2

[
^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
2
√

2
𝜌12b1𝑣

𝛼1−1/2(𝑡)
√
𝑇 − 𝑡Z

]2
.

When we substitute Z we get

𝜎2(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) = √
𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥0 − 2𝑘 − 𝑣(𝑡) (𝑇 − 𝑡))

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

64𝑣3/2(𝑡)
− 1

32
^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)𝜌12b1𝑣

𝛼1−2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)2𝜌12b1𝑣

𝛼1−1(𝑡)

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

32𝑣5/2(𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2

32𝑣3/2(𝑡) + 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

− 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

− 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

+ 3
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

58

+ ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)2

32𝑣3/2(𝑡) [2𝜌12b1𝑣
𝛼1+1/2(𝑡) − ^1(𝑣′(𝑡) − 𝑣(𝑡))] (2Z2 − 1)

+ 1
16

√
2
𝜌2

12b
2
1𝑣

2𝛼1−1(𝑡) (𝑇 − 𝑡)3/2(2Z3 − 3Z)

+ 1
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑇 − 𝑡) (4Z4 − 12Z2 + 3)

− 2Z2 −
√︁

2𝑦2𝜏Z

2√𝑦2

[
^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
2
√

2
𝜌12b1𝑣

𝛼1−1/2(𝑡)
√
𝑇 − 𝑡Z

]2
.

When we substitute Z we get

𝜎2(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) = √
𝑦2 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
8
𝜌12b1𝑣

𝛼1−1(𝑡) (2𝑥0 − 2𝑘 − 𝑣(𝑡) (𝑇 − 𝑡))

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

64𝑣3/2(𝑡)
− 1

32
^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)𝜌12b1𝑣

𝛼1−2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)2𝜌12b1𝑣

𝛼1−1(𝑡)

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

32𝑣5/2(𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2

32𝑣3/2(𝑡) + 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

− 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

− 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

+ 3
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

58

78



+ 𝜌
2
12b

2
1𝑣

2𝛼1−3(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)4

32(𝑇 − 𝑡)
− 3

16
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2 + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−1(𝑡) (𝑇 − 𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

32𝑣3/2(𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

32𝑣5/2(𝑡)
+ 1

16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−7/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)4.

We do the multiplication to get:

𝜎2(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) =
√
𝑣0 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
4
𝜌12b1𝑣

𝛼1−1(𝑡) (𝑥0 − 𝑘) + 1
8
𝜌12b1𝑣

𝛼1 (𝑡) (𝑇 − 𝑡)

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘)

32𝑣3/2(𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)3

64
√︁
𝑣(𝑡)

− 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

− 1
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1 (𝑡) (𝑇 − 𝑡)3

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘)2

32𝑣5/2(𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘)

32𝑣3/2(𝑡)

59

+ 𝜌
2
12b

2
1𝑣

2𝛼1−3(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)4

32(𝑇 − 𝑡)
− 3

16
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2 + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−1(𝑡) (𝑇 − 𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)

32𝑣3/2(𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

32𝑣5/2(𝑡)
+ 1

16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−7/2(𝑡) (𝑥0 − 𝑘 − 𝑣(𝑡) (𝑇 − 𝑡)/2)4.

We do the multiplication to get:

𝜎2(𝑡, 𝑥0, 𝑦0, 𝑧0, 𝑇, 𝑘) =
√
𝑣0 + ^1(𝑣′(𝑡) − 𝑣(𝑡)) (𝑇 − 𝑡)

4
√︁
𝑣(𝑡)

− 1
4
𝜌12b1𝑣

𝛼1−1(𝑡) (𝑥0 − 𝑘) + 1
8
𝜌12b1𝑣

𝛼1 (𝑡) (𝑇 − 𝑡)

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘)

32𝑣3/2(𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)3

64
√︁
𝑣(𝑡)

− 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

− 1
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1 (𝑡) (𝑇 − 𝑡)3

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘)2

32𝑣5/2(𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘)

32𝑣3/2(𝑡)

59
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+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)3

128
√︁
𝑣(𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2

32𝑣3/2(𝑡)

+ 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3 − 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

+ 3
128

𝜌2
12b

2
1𝑣

2𝛼1−1/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2 − 1
256

𝜌2
12b

2
1𝑣

2𝛼1+1/2(𝑡) (𝑇 − 𝑡)3

− 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡) + 3
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑇 − 𝑡)2

− 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑡) (𝑥0 − 𝑘)3

+ 3
32
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)2

− 3
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

+ 1
128

^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1 (𝑡) (𝑇 − 𝑡)3

+ 3
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)

− 3
32
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2

+ 𝜌
2
12b

2
1𝑣

2𝛼1−7/2(𝑡) (𝑥0 − 𝑘)4

32(𝑇 − 𝑡) − 1
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3

+ 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

− 1
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

+ 1
512

𝜌2
12b

2
1𝑣

2𝛼1+1/2(𝑡) (𝑇 − 𝑡)3 − 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)2

+ 3
16
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡) − 3
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑇 − 𝑡)2

+ 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑇 − 𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘)

32𝑣3/2(𝑡)

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)3

64𝑣1/2(𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘)2

32
√︁
𝑣5/2(𝑡)

60

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)3

128
√︁
𝑣(𝑡)

− ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2

32𝑣3/2(𝑡)

+ 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3 − 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

+ 3
128

𝜌2
12b

2
1𝑣

2𝛼1−1/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2 − 1
256

𝜌2
12b

2
1𝑣

2𝛼1+1/2(𝑡) (𝑇 − 𝑡)3

− 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡) + 3
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑇 − 𝑡)2

− 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑡) (𝑥0 − 𝑘)3

+ 3
32
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)2

− 3
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

+ 1
128

^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1 (𝑡) (𝑇 − 𝑡)3

+ 3
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)

− 3
32
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2

+ 𝜌
2
12b

2
1𝑣

2𝛼1−7/2(𝑡) (𝑥0 − 𝑘)4

32(𝑇 − 𝑡) − 1
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3

+ 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

− 1
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

+ 1
512

𝜌2
12b

2
1𝑣

2𝛼1+1/2(𝑡) (𝑇 − 𝑡)3 − 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)2

+ 3
16
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡) − 3
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑇 − 𝑡)2

+ 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑇 − 𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)2(𝑥0 − 𝑘)

32𝑣3/2(𝑡)

+ ^
2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡)3

64𝑣1/2(𝑡) − ^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2(𝑇 − 𝑡) (𝑥0 − 𝑘)2

32
√︁
𝑣5/2(𝑡)

60

80



− 1
32
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2𝑣−3/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

− 1
128

^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝑣−1/2(𝑡) (𝑇 − 𝑡)3

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

+ 1
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1 (𝑡) (𝑇 − 𝑡)3

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑡) (𝑥0 − 𝑘)3

− 3
32
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

+ 3
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

− 1
128

^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1 (𝑡) (𝑇 − 𝑡)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3 + 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

− 3
128

𝜌2
12b

2
1𝑣

2𝛼1−1/2(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

+ 1
256

^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑇 − 𝑡)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−7/2(𝑡) (𝑇 − 𝑡)−1(𝑥0 − 𝑘)4

+ 1
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3

− 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

+ 1
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

− 1
512

𝜌2
12b

2
1𝑣

2𝛼1+1/2(𝑡) (𝑇 − 𝑡)3.
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− 1
32
^2

1 (𝑣′(𝑡) − 𝑣(𝑡))2𝑣−3/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

− 1
128

^2
1 (𝑣′(𝑡) − 𝑣(𝑡))2𝑣−1/2(𝑡) (𝑇 − 𝑡)3

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑇 − 𝑡) (𝑥0 − 𝑘)2

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

+ 1
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1 (𝑡) (𝑇 − 𝑡)3

+ 1
16
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−3(𝑡) (𝑥0 − 𝑘)3

− 3
32
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

+ 3
64
^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣

𝛼1−1(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

− 1
128

^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1 (𝑡) (𝑇 − 𝑡)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3 + 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

− 3
128

𝜌2
12b

2
1𝑣

2𝛼1−1/2(𝑡) (𝑇 − 𝑡)2(𝑥0 − 𝑘)

+ 1
256

^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1+1/2(𝑡) (𝑇 − 𝑡)3

− 1
32
𝜌2

12b
2
1𝑣

2𝛼1−7/2(𝑡) (𝑇 − 𝑡)−1(𝑥0 − 𝑘)4

+ 1
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑥0 − 𝑘)3

− 3
64
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡) (𝑥0 − 𝑘)2(𝑇 − 𝑡)

+ 1
64
𝜌2

12b
2
1𝑣

2𝛼1−1/2(𝑡) (𝑥0 − 𝑘) (𝑇 − 𝑡)2

− 1
512

𝜌2
12b

2
1𝑣

2𝛼1+1/2(𝑡) (𝑇 − 𝑡)3.
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We write the expression in the following form
∑
𝐶𝑖 (𝑇 − 𝑡)𝛼𝑖 |𝑥0 − 𝑘 |𝛽𝑖 :

𝜎2 =
√
𝑣0

+
[
1
4
^1(𝑣′0 − 𝑣(𝑡))𝑣−1/2 + 1

8
𝜌12b1𝑣

𝛼1
0 + 3

32
𝜌2

12b
2
1𝑣

2𝛼1−3/2
0

]
(𝑇 − 𝑡)

− 1
4
𝜌12b1𝑣

𝛼1−1
0 (𝑥0 − 𝑘) − 3

16
𝜌2

12b1𝑣
2𝛼1−5/2
0 (𝑥0 − 𝑘)2

+ 3
32

[2^1(𝑣′0 − 𝑣0)𝜌12b1𝑣
𝛼1−2
0 + 𝜌2

12b
2
1𝑣

2𝛼1−3/2
0 ] (𝑇 − 𝑡) (𝑥0 − 𝑘) (3.12)

− 1
32

[
^1(𝑣′0 − 𝑣0)𝜌12b1𝑣

𝛼1−1
0 + ^2

1 (𝑣′0 − 𝑣0)2𝑣−3/2
0

]
(𝑇 − 𝑡)2

+ 1
128

[
22^1(𝑣′0 − 𝑣0)𝜌12b1𝑣

𝛼1−1
0 + 4^2

1 (𝑣′0 − 𝑣0)2𝑣−3/2
0

+ 3𝜌2
12b

2
1𝑣

2𝛼1−1/2
0

]
(𝑇 − 𝑡)2(𝑥0 − 𝑘).

We group together all terms that include (𝑇 − 𝑡)𝑞 |𝑥0− 𝑘 |𝑚 with 2𝑞+𝑚 = 2.
The term with 𝑞 = 0 and 𝑚 = 2 is

− 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑘 − 𝑥0)2.

The term with 𝑞 = 1 and 𝑚 = 0 is[
^1(𝑣(𝑡) − 𝑣′(𝑡))

4
√︁
𝑣(𝑡)

+ 1
8
𝜌12b1𝑣

𝛼1 (𝑡) + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)
]
(𝑇 − 𝑡).

These terms give the contribution of order 2 to Equation (3.11). □

3.5 The Asymptotic Expansion of Order 3

Theorem 13. The asymptotic expansion of implied volatility of order 3 in the
Gatheral model has the form

𝜎 =
√
𝑣0 + 1

4
𝜌12b1𝑣

𝛼1−1(𝑡) (𝑘 − 𝑥0)

− 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑘 − 𝑥0)2
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We write the expression in the following form
∑
𝐶𝑖 (𝑇 − 𝑡)𝛼𝑖 |𝑥0 − 𝑘 |𝛽𝑖 :

𝜎2 =
√
𝑣0

+
[
1
4
^1(𝑣′0 − 𝑣(𝑡))𝑣−1/2 + 1

8
𝜌12b1𝑣

𝛼1
0 + 3

32
𝜌2

12b
2
1𝑣

2𝛼1−3/2
0

]
(𝑇 − 𝑡)

− 1
4
𝜌12b1𝑣

𝛼1−1
0 (𝑥0 − 𝑘) − 3

16
𝜌2

12b1𝑣
2𝛼1−5/2
0 (𝑥0 − 𝑘)2

+ 3
32

[2^1(𝑣′0 − 𝑣0)𝜌12b1𝑣
𝛼1−2
0 + 𝜌2

12b
2
1𝑣

2𝛼1−3/2
0 ] (𝑇 − 𝑡) (𝑥0 − 𝑘) (3.12)

− 1
32

[
^1(𝑣′0 − 𝑣0)𝜌12b1𝑣

𝛼1−1
0 + ^2

1 (𝑣′0 − 𝑣0)2𝑣−3/2
0

]
(𝑇 − 𝑡)2

+ 1
128

[
22^1(𝑣′0 − 𝑣0)𝜌12b1𝑣

𝛼1−1
0 + 4^2

1 (𝑣′0 − 𝑣0)2𝑣−3/2
0

+ 3𝜌2
12b

2
1𝑣

2𝛼1−1/2
0

]
(𝑇 − 𝑡)2(𝑥0 − 𝑘).

We group together all terms that include (𝑇 − 𝑡)𝑞 |𝑥0− 𝑘 |𝑚 with 2𝑞+𝑚 = 2.
The term with 𝑞 = 0 and 𝑚 = 2 is

− 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑘 − 𝑥0)2.

The term with 𝑞 = 1 and 𝑚 = 0 is[
^1(𝑣(𝑡) − 𝑣′(𝑡))

4
√︁
𝑣(𝑡)

+ 1
8
𝜌12b1𝑣

𝛼1 (𝑡) + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)
]
(𝑇 − 𝑡).

These terms give the contribution of order 2 to Equation (3.11). □

3.5 The Asymptotic Expansion of Order 3

Theorem 13. The asymptotic expansion of implied volatility of order 3 in the
Gatheral model has the form

𝜎 =
√
𝑣0 + 1

4
𝜌12b1𝑣

𝛼1−1(𝑡) (𝑘 − 𝑥0)

− 3
16
𝜌2

12b
2
1𝑣

2𝛼1−5/2(𝑡) (𝑘 − 𝑥0)2
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+
[
^1(𝑣′(𝑡) − 𝑣(𝑡))

4
√︁
𝑣(𝑡)

+ 1
8
𝜌12b1𝑣

𝛼1 (𝑡) + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)
]
(𝑇 − 𝑡)

+ 1
128

[16^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1−3 + 8𝜌2

12b
2
1𝑣

2𝛼1−5/2
0

− 32𝜌3
12b

3
1𝑣

3𝛼1−4
0 ] (𝑘 − 𝑥0)3

+ 1
128

[24^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1−2 + 12𝜌2

12b
2
1𝑣

2𝛼1−3/2
0

+ 35𝜌3
12b

3
1𝑣

3𝛼1−3
0 − 8𝜌12b1𝑣

𝛼1
0 ] (𝑇 − 𝑡) (𝑘 − 𝑥0)

+ 𝑜((𝑇 − 𝑡)3/2 + |𝑘 − 𝑥0 |3).
Proof. Note that the first two coefficients of (𝑇 − 𝑡) (𝑘 − 𝑥0) go from (3.12).

First, we calculate the linear differential operator L̃3(𝑡, 𝑇). The sets 𝐼3,𝑘
have the form

𝐼3,1 = {(3)}, 𝐼3,2 = {(1, 2), (2, 1)}, 𝐼3,3 = {(1, 1, 1)}.
Note that 𝑎 (2,0,0)⊤,2 = 𝑎 (2,0,0)⊤,3 = 0, which makes the terms with 𝑘 = 1 and
(𝑘 = 2, i = (1, 2)) in (3.4) equal to 0. Equation (2.13) gives G2(𝑡, 𝑡𝑚) = 0,
which excludes the term with (𝑘 = 2, i = (2, 1)). We obtain

L̃3(𝑡, 𝑇) =
∫ 𝑇

𝑡
d𝑡1

∫ 𝑇

𝑡1

d𝑡2
∫ 𝑇

𝑡2

d𝑡3 G1(𝑡, 𝑡1)G1(𝑡, 𝑡2)

× 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡3),M2(𝑡, 𝑡3),M3(𝑡, 𝑡3)).
Observe that the differential operator L̃3(𝑡, 𝑇) will be applied to the Black–

Scholes price, which does not depend on 𝑣 and 𝑣′. We denote by · · · all terms
that contain partial derivatives with respect to the above two variables. In
particular, we have

G1(𝑡, 𝑡𝑚) = 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡𝑚),M2(𝑡, 𝑡𝑚),M3(𝑡, 𝑡𝑚))
(
𝜕2

𝜕𝑥2 − 𝜕

𝜕𝑥

)
(3.13)

with
𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡𝑚),M2(𝑡, 𝑡𝑚),M3(𝑡, 𝑡𝑚))

=
1
2

(
𝑣 − 𝑣0 + (𝑡𝑚 − 𝑡)^1(𝑣′ − 𝑣) + (𝑡𝑚 − 𝑡)𝜌12b1𝑣

𝛼1+1/2
0

𝜕

𝜕𝑥
+ · · ·

)
.

(3.14)
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+
[
^1(𝑣′(𝑡) − 𝑣(𝑡))

4
√︁
𝑣(𝑡)

+ 1
8
𝜌12b1𝑣

𝛼1 (𝑡) + 3
32
𝜌2

12b
2
1𝑣

2𝛼1−3/2(𝑡)
]
(𝑇 − 𝑡)

+ 1
128

[16^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1−3 + 8𝜌2

12b
2
1𝑣

2𝛼1−5/2
0

− 32𝜌3
12b

3
1𝑣

3𝛼1−4
0 ] (𝑘 − 𝑥0)3

+ 1
128

[24^1(𝑣′(𝑡) − 𝑣(𝑡))𝜌12b1𝑣
𝛼1−2 + 12𝜌2

12b
2
1𝑣

2𝛼1−3/2
0

+ 35𝜌3
12b

3
1𝑣

3𝛼1−3
0 − 8𝜌12b1𝑣

𝛼1
0 ] (𝑇 − 𝑡) (𝑘 − 𝑥0)

+ 𝑜((𝑇 − 𝑡)3/2 + |𝑘 − 𝑥0 |3).
Proof. Note that the first two coefficients of (𝑇 − 𝑡) (𝑘 − 𝑥0) go from (3.12).

First, we calculate the linear differential operator L̃3(𝑡, 𝑇). The sets 𝐼3,𝑘
have the form

𝐼3,1 = {(3)}, 𝐼3,2 = {(1, 2), (2, 1)}, 𝐼3,3 = {(1, 1, 1)}.
Note that 𝑎 (2,0,0)⊤,2 = 𝑎 (2,0,0)⊤,3 = 0, which makes the terms with 𝑘 = 1 and
(𝑘 = 2, i = (1, 2)) in (3.4) equal to 0. Equation (2.13) gives G2(𝑡, 𝑡𝑚) = 0,
which excludes the term with (𝑘 = 2, i = (2, 1)). We obtain

L̃3(𝑡, 𝑇) =
∫ 𝑇

𝑡
d𝑡1

∫ 𝑇

𝑡1

d𝑡2
∫ 𝑇

𝑡2

d𝑡3 G1(𝑡, 𝑡1)G1(𝑡, 𝑡2)

× 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡3),M2(𝑡, 𝑡3),M3(𝑡, 𝑡3)).
Observe that the differential operator L̃3(𝑡, 𝑇) will be applied to the Black–

Scholes price, which does not depend on 𝑣 and 𝑣′. We denote by · · · all terms
that contain partial derivatives with respect to the above two variables. In
particular, we have

G1(𝑡, 𝑡𝑚) = 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡𝑚),M2(𝑡, 𝑡𝑚),M3(𝑡, 𝑡𝑚))
(
𝜕2

𝜕𝑥2 − 𝜕

𝜕𝑥

)
(3.13)

with
𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡𝑚),M2(𝑡, 𝑡𝑚),M3(𝑡, 𝑡𝑚))

=
1
2

(
𝑣 − 𝑣0 + (𝑡𝑚 − 𝑡)^1(𝑣′ − 𝑣) + (𝑡𝑚 − 𝑡)𝜌12b1𝑣

𝛼1+1/2
0

𝜕

𝜕𝑥
+ · · ·

)
.

(3.14)
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The differential operator L̃3(𝑡, 𝑇) takes the form

L̃3(𝑡, 𝑇) =
∫ 𝑇

𝑡
d𝑡1

∫ 𝑇

𝑡1

d𝑡2
∫ 𝑇

𝑡2

d𝑡3

× 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡1),M2(𝑡, 𝑡1),M3(𝑡, 𝑡1))

×
(
𝜕2

𝜕𝑥2 − 𝜕

𝜕𝑥

)
𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡2),M2(𝑡, 𝑡2),M3(𝑡, 𝑡2))

(
𝜕2

𝜕𝑥2 − 𝜕

𝜕𝑥

)
× 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡3),M2(𝑡, 𝑡3),M3(𝑡, 𝑡3)).
Substitute Equations (3.13) and (3.14) to the last display formula, group

like terms, and introduce the following notation:

𝐴(𝑠, 𝑡) = 𝑣 − 𝑣0 + (𝑠 − 𝑡)^1(𝑣′ − 𝑣), 𝐵(𝑠, 𝑡) = (𝑠 − 𝑡)𝜌12b1𝑣
𝛼1+1/2
0 .

Equation (3.4) takes the form

L̃3(𝑡, 𝑇) = 1
8

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

[
𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) 𝜕

7

𝜕𝑥7

+ [𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) − 2𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)

+ 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
6

𝜕𝑥6 + [−2𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
− 2𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) − 2𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)

+ 𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
5

𝜕𝑥5

+ [−2𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) − 2𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
− 2𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) + 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)

+ 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
4

𝜕𝑥4 + [−2𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)

+ 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
3

𝜕𝑥3 + 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) 𝜕

𝜕𝑥2

]
d𝑡3 d𝑡2 d𝑡1.

64

The differential operator L̃3(𝑡, 𝑇) takes the form

L̃3(𝑡, 𝑇) =
∫ 𝑇

𝑡
d𝑡1

∫ 𝑇

𝑡1

d𝑡2
∫ 𝑇

𝑡2

d𝑡3

× 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡1),M2(𝑡, 𝑡1),M3(𝑡, 𝑡1))

×
(
𝜕2

𝜕𝑥2 − 𝜕

𝜕𝑥

)
𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡2),M2(𝑡, 𝑡2),M3(𝑡, 𝑡2))

(
𝜕2

𝜕𝑥2 − 𝜕

𝜕𝑥

)
× 𝑎 (2,0,0)⊤,1(𝑡,M1(𝑡, 𝑡3),M2(𝑡, 𝑡3),M3(𝑡, 𝑡3)).
Substitute Equations (3.13) and (3.14) to the last display formula, group

like terms, and introduce the following notation:

𝐴(𝑠, 𝑡) = 𝑣 − 𝑣0 + (𝑠 − 𝑡)^1(𝑣′ − 𝑣), 𝐵(𝑠, 𝑡) = (𝑠 − 𝑡)𝜌12b1𝑣
𝛼1+1/2
0 .

Equation (3.4) takes the form

L̃3(𝑡, 𝑇) = 1
8

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

[
𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) 𝜕

7

𝜕𝑥7

+ [𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) − 2𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)

+ 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
6

𝜕𝑥6 + [−2𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
− 2𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) − 2𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)

+ 𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
5

𝜕𝑥5

+ [−2𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) − 2𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
− 2𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡) + 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)

+ 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
4

𝜕𝑥4 + [−2𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)
+ 𝐵(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) + 𝐴(𝑡1, 𝑡)𝐵(𝑡2, 𝑡)𝐴(𝑡3, 𝑡)

+ 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐵(𝑡3, 𝑡)] 𝜕
3

𝜕𝑥3 + 𝐴(𝑡1, 𝑡)𝐴(𝑡2, 𝑡)𝐴(𝑡3, 𝑡) 𝜕

𝜕𝑥2

]
d𝑡3 d𝑡2 d𝑡1.

64

84



To simplify this expression, the following integrals are important:
∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

d𝑡3 d𝑡2 d𝑡1 =
1
6
(𝑇 − 𝑡)3,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
8
(𝑇 − 𝑡)4,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡2 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
12

(𝑇 − 𝑡)4,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
24

(𝑇 − 𝑡)4,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) (𝑡2 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
15

(𝑇 − 𝑡)5,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) (𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
30

(𝑇 − 𝑡)5,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡2 − 𝑡) (𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
40

(𝑇 − 𝑡)5,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) (𝑡2 − 𝑡) (𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
48

(𝑇 − 𝑡)6.

Equations (3.5), (3.6), and (A.2) give

𝑢 (z)3 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
7∑︁

𝑚=2

(
1

𝜎0
√

2𝜏

)𝑚
𝜒 (z)
𝑚,3(𝑡, z, 𝑇, 𝑘)𝐻𝑚(Z),

where

𝜒 (z)
2,3 (𝑡, z, 𝑇, 𝑘) =

1
48
𝜏2(𝑣 − 𝑣0)3𝑣−1/2

0 + 1
32
𝜏3(𝑣 − 𝑣0)2^1(𝑣′ − 𝑣)𝑣−1/2

0

+ 1
64
𝜏4(𝑣 − 𝑣0)^2

1 (𝑣′ − 𝑣)2𝑣−1/2
0 + 1

384
𝜏5^3

1 (𝑣′ − 𝑣)3𝑣−1/2
0 ,

𝜒 (z)
3,3 (𝑡, z, 𝑇, 𝑘) = − 1

24
𝜏2(𝑣 − 𝑣0)3𝑣−1/2

0 − 1
16
𝜏3(𝑣 − 𝑣0)2^1(𝑣′ − 𝑣)𝑣−1/2

0

− 1
32
𝜏4(𝑣 − 𝑣0)^2

1 (𝑣′ − 𝑣)2𝑣−1/2
0 − 1

192
𝜏5^3

1 (𝑣′ − 𝑣)3𝑣−1/2
0

65

To simplify this expression, the following integrals are important:
∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

d𝑡3 d𝑡2 d𝑡1 =
1
6
(𝑇 − 𝑡)3,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
8
(𝑇 − 𝑡)4,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡2 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
12

(𝑇 − 𝑡)4,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
24

(𝑇 − 𝑡)4,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) (𝑡2 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
15

(𝑇 − 𝑡)5,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) (𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
30

(𝑇 − 𝑡)5,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡2 − 𝑡) (𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
40

(𝑇 − 𝑡)5,

∫ 𝑇

𝑡

∫ 𝑇

𝑡1

∫ 𝑇

𝑡2

(𝑡1 − 𝑡) (𝑡2 − 𝑡) (𝑡3 − 𝑡) d𝑡3 d𝑡2 d𝑡1 =
1
48

(𝑇 − 𝑡)6.

Equations (3.5), (3.6), and (A.2) give

𝑢 (z)3 (𝑡, 𝑥, 𝑦2, 𝑦3, 𝑇, 𝑘)
𝜕
𝜕𝜎𝑢

BS(𝜎 (z)
0 )

=
7∑︁

𝑚=2

(
1

𝜎0
√

2𝜏

)𝑚
𝜒 (z)
𝑚,3(𝑡, z, 𝑇, 𝑘)𝐻𝑚(Z),

where

𝜒 (z)
2,3 (𝑡, z, 𝑇, 𝑘) =

1
48
𝜏2(𝑣 − 𝑣0)3𝑣−1/2

0 + 1
32
𝜏3(𝑣 − 𝑣0)2^1(𝑣′ − 𝑣)𝑣−1/2

0

+ 1
64
𝜏4(𝑣 − 𝑣0)^2

1 (𝑣′ − 𝑣)2𝑣−1/2
0 + 1

384
𝜏5^3

1 (𝑣′ − 𝑣)3𝑣−1/2
0 ,

𝜒 (z)
3,3 (𝑡, z, 𝑇, 𝑘) = − 1

24
𝜏2(𝑣 − 𝑣0)3𝑣−1/2

0 − 1
16
𝜏3(𝑣 − 𝑣0)2^1(𝑣′ − 𝑣)𝑣−1/2

0

− 1
32
𝜏4(𝑣 − 𝑣0)^2

1 (𝑣′ − 𝑣)2𝑣−1/2
0 − 1

192
𝜏5^3

1 (𝑣′ − 𝑣)3𝑣−1/2
0

65
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+ 1
32
𝜏3𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0) + 1

128
𝜏5𝜌12b1𝑣

𝛼1
0 ^2

1 (𝑣′ − 𝑣)2

+ 1
32
𝜏4𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0) (𝑣′ − 𝑣),

𝜒 (z)
4,3 (𝑡, z, 𝑇, 𝑘) = − 1

16
𝜏3𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0)2

− 1
16
𝜏4𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0)^1(𝑣′ − 𝑣) − 1

64
𝜏5𝜌12b1𝑣

𝛼1
0 ^2

1 (𝑣′ − 𝑣)2

+ 1
64
𝜏4𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 (𝑣 − 𝑣0) + 1

128
𝜏5𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 ^1(𝑣′ − 𝑣)

+ 1
48
𝜏2𝑣−1/2

0 (𝑣 − 𝑣0)3 + 1
32
𝜏3𝑣−1/2

0 (𝑣 − 𝑣0)2^1(𝑣′ − 𝑣)

+ 1
64
𝜏4𝑣−1/2

0 (𝑣 − 𝑣0)^2
1 (𝑣′ − 𝑣)2 + 1

384
𝜏5𝑣−1/2

0 ^3
1 (𝑣′ − 𝑣)3,

𝜒 (z)
5,3 (𝑡, z, 𝑇, 𝑘) = − 1

32
𝜏4𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 (𝑣 − 𝑣0) + 1

128
𝜏5𝜌12b1𝑣

𝛼1
0 ^2

1 (𝑣′ − 𝑣)2

+ 1
32
𝜏4𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0) (𝑣′ − 𝑣) − 1

64
𝜏5𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 ^1(𝑣′ − 𝑣)

+ 1
32
𝜏3𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0)2 + 1

384
𝜏5𝜌3

12b
3
1𝑣

3𝛼1+1
0 ,

𝜒 (z)
6,3 (𝑡, z, 𝑇, 𝑘) =

1
64
𝜏4𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 (𝑣 − 𝑣0) − 1

192
𝜏5𝜌3

12b
3
1𝑣

3𝛼1+1
0

+ 1
128

𝜏5𝜌2
12b

2
1𝑣

2𝛼1+1/2
0 ^1(𝑣′ − 𝑣),

𝜒 (z)
7,3 (𝑡, z, 𝑇, 𝑘) =

1
384

𝜏5𝜌3
12b

3
1𝑣

3𝛼1+1
0 .

Observe that the right hand side of the equation for 𝜒 (z)
2,3 (𝑡, z, 𝑇, 𝑘) has

4 terms. Each of them is multiplied by 4Z2 − 2 that also contains 4 terms.
Overall, we have 285 terms here. Which of them give a contribution to
the asymptotic expansion? We explain this issue using 𝜒 (z)

2,3 (𝑡, z, 𝑇, 𝑘) as an
example.

First, the terms with nonzero powers of 𝑣 − 𝑣0 give no contribution by the
same reason as previously. The only term which may give contribution is

1
384

(𝑇 − 𝑡)5^3
1 (𝑣′ − 𝑣)3𝑣−1/2

0 .
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+ 1
32
𝜏3𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0) + 1

128
𝜏5𝜌12b1𝑣

𝛼1
0 ^2

1 (𝑣′ − 𝑣)2

+ 1
32
𝜏4𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0) (𝑣′ − 𝑣),

𝜒 (z)
4,3 (𝑡, z, 𝑇, 𝑘) = − 1

16
𝜏3𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0)2

− 1
16
𝜏4𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0)^1(𝑣′ − 𝑣) − 1

64
𝜏5𝜌12b1𝑣

𝛼1
0 ^2

1 (𝑣′ − 𝑣)2

+ 1
64
𝜏4𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 (𝑣 − 𝑣0) + 1

128
𝜏5𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 ^1(𝑣′ − 𝑣)

+ 1
48
𝜏2𝑣−1/2

0 (𝑣 − 𝑣0)3 + 1
32
𝜏3𝑣−1/2

0 (𝑣 − 𝑣0)2^1(𝑣′ − 𝑣)

+ 1
64
𝜏4𝑣−1/2

0 (𝑣 − 𝑣0)^2
1 (𝑣′ − 𝑣)2 + 1

384
𝜏5𝑣−1/2

0 ^3
1 (𝑣′ − 𝑣)3,

𝜒 (z)
5,3 (𝑡, z, 𝑇, 𝑘) = − 1

32
𝜏4𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 (𝑣 − 𝑣0) + 1

128
𝜏5𝜌12b1𝑣

𝛼1
0 ^2

1 (𝑣′ − 𝑣)2

+ 1
32
𝜏4𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0) (𝑣′ − 𝑣) − 1

64
𝜏5𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 ^1(𝑣′ − 𝑣)

+ 1
32
𝜏3𝜌12b1𝑣

𝛼1
0 (𝑣 − 𝑣0)2 + 1

384
𝜏5𝜌3

12b
3
1𝑣

3𝛼1+1
0 ,

𝜒 (z)
6,3 (𝑡, z, 𝑇, 𝑘) =

1
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𝜏4𝜌2

12b
2
1𝑣

2𝛼1+1/2
0 (𝑣 − 𝑣0) − 1
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𝜏5𝜌3

12b
3
1𝑣

3𝛼1+1
0

+ 1
128

𝜏5𝜌2
12b

2
1𝑣

2𝛼1+1/2
0 ^1(𝑣′ − 𝑣),

𝜒 (z)
7,3 (𝑡, z, 𝑇, 𝑘) =

1
384

𝜏5𝜌3
12b

3
1𝑣

3𝛼1+1
0 .

Observe that the right hand side of the equation for 𝜒 (z)
2,3 (𝑡, z, 𝑇, 𝑘) has

4 terms. Each of them is multiplied by 4Z2 − 2 that also contains 4 terms.
Overall, we have 285 terms here. Which of them give a contribution to
the asymptotic expansion? We explain this issue using 𝜒 (z)

2,3 (𝑡, z, 𝑇, 𝑘) as an
example.

First, the terms with nonzero powers of 𝑣 − 𝑣0 give no contribution by the
same reason as previously. The only term which may give contribution is

1
384

(𝑇 − 𝑡)5^3
1 (𝑣′ − 𝑣)3𝑣−1/2

0 .
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After multiplying by
(

1
𝜎0

√
2𝜏

)2
, it becomes 1

768 (𝑇 − 𝑡)4^3
1 (𝑣′ − 𝑣)3𝑣−3/2

0 . Write
Z in the following form:

Z =
𝑥 − 𝑘

𝜎
√︁

2(𝑇 − 𝑡)
− 𝜎

√
𝑇 − 𝑡

2
√

2
.

Checking all 16 terms of the product
1

768
(𝑇 − 𝑡)4^3

1 (𝑣′ − 𝑣)3𝑣−3/2
0 (4Z2 − 2),

we see that no term has either the form 𝐶 (𝑘 − 𝑥0)3 or 𝐶 (𝑘 − 𝑥0) (𝑇 − 𝑡). There
are no contributions to the asymptotic expansion here.

We continue at the same way and find two contributions from the term(
1

𝜎0
√

2𝜏

)7
𝜒 (z)

7,3 (𝑡, z, 𝑇, 𝑘)𝐻7(Z). The first one is

(
1

𝜎0
√

2𝜏

)7
𝜒 (z)

7,3 (𝑡, z, 𝑇, 𝑘) × 3360

(
𝑥 − 𝑘

𝜎
√︁

2(𝑇 − 𝑡)

)3

,

which gives the third coefficient in (𝑘 − 𝑥0)3. The second one is(
1

𝜎0
√

2𝜏

)7
𝜒 (z)

7,3 (𝑡, z, 𝑇, 𝑘) × (−1680) 𝑥 − 𝑘
𝜎
√︁

2(𝑇 − 𝑡)
,

which gives the third coefficient in (𝑇 − 𝑡) (𝑘 − 𝑥0).
So far we calculated the contribution of the first term in the right hand

side of the third equation in (3.1). We proceed to the second term.
The terms 𝜎 (z)

1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) and 𝜎 (z)
2 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘) are given by

Equations (3.10) and (3.12). For the last term Equation (3.2) gives
𝜕2

𝜕𝜎2 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) =
1∑︁

𝑞=0
𝑐2,2−2𝑞𝑣

1−2𝑞
0 (𝑇 − 𝑡)1−𝑞

1−𝑞∑︁
𝑝=0

(
1 − 𝑞
𝑝

)

×
(

1
𝑣0

√︁
2(𝑇 − 𝑡)

) 𝑝+1−𝑞
𝐻𝑝+1−𝑞 (Z)

= 𝑣0(𝑇 − 𝑡)
[

𝐻1(Z)
𝑣0

√︁
2(𝑇 − 𝑡)

+ 𝐻2(Z)
2𝑣20 (𝑇 − 𝑡)

]
+ 𝑣−1

0 .
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Using Equation (A.2), we find

𝜕2

𝜕𝜎2 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) = −
√
𝑣0

2
+ 𝑣−3/2

0 (𝑥 − 𝑘)2(𝑇 − 𝑡)−1.

The product of 3 terms in Equation (3.10), 12 terms in Equation (3.12), and
3 terms in the last display contains 72 terms. Of that, three terms contribute
to all coefficients in (𝑘 − 𝑥0)3 and one term contributes to the last coefficient
in (𝑘 − 𝑥0) (𝑇 − 𝑡).

We proceed to calculate the term
𝜕3
𝜕𝜎3 𝑢

BS (𝜎)
𝜕
𝜕𝜎 𝑢BS (𝜎) . Equation (3.2) gives

𝜕3

𝜕𝜎3 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) =
1∑︁

𝑞=0
𝑐3,3−2𝑞𝜎

2−2𝑞𝜏2−𝑞
2−𝑞∑︁
𝑝=0

(
2 − 𝑞
𝑝

) (
1

𝜎
√

2𝜏

) 𝑝+2−𝑞
𝐻𝑝+2−𝑞 (Z)

=
𝜏

2
𝐻2(Z) +

√
𝜏√

2𝜎
𝐻3(Z) + 1

4𝜎2𝐻4(Z) + 3
√
𝜏√

2𝜎
𝐻1(Z)

+ 3
2𝜎2𝐻2(Z).

Using Equation (A.2), we obtain

𝜕3

𝜕𝜎3 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) = 𝜏(2Z2 − 1) +
√
𝜏

𝜎
(4
√

2Z3 − 6
√

2Z) + 1
𝜎2 (4Z

4 − 12Z2 + 3)

+ 3
√

2𝜏
𝜎

Z + 3
𝜎2 (2Z

2 − 1)

=
4
𝜎2 Z

4 + 4
√

2𝜏
𝜎

Z3 +
(
2𝜏 − 6

𝜎2

)
Z2 − 3

√
2𝜏
𝜎

Z − 𝜏,

and finally,

𝜕3

𝜕𝜎3 𝑢
BS(𝜎)

𝜕
𝜕𝜎𝑢

BS(𝜎) =
1
𝜎6 (𝑥 − 𝑘)

4𝜏−2 − 1
2𝜎2 (𝑥 − 𝑘)

2 + 𝜎
2

16
𝜏2 − 3

𝜎4 (𝑥 − 𝑘)
2𝜏−1

− 1
4
𝜏.
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The term (𝜎 (z)
1 (𝑡, 𝑥, 𝑦1, 𝑦2, 𝑇, 𝑘))3 contains 4 parts. Its product by the

right hand side of the last display contains 24 terms and no of them give any
contribution to the asymptotic expansion of order 3.

□
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Chapter 4

Model Calibration

This Chapter is based on Papers C and D.
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model
M. Dimitrov, M. Albuhayri, Y. Ni, A Malyarenko
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2022, Chapter 10, pp. 135–148.

Numerical studies of the implied volatility expansions up to third order
under the Gatheral model
M. Albuhayri, S. Silvestrov, M. Dimitrov, Y. Ni, A. Malyarenko

Accepted for publication, presented at the 7th Stochastic Modeling Tech-
niques and Data Analysis International Conference (SMTDA2022) and
Demographics 2022 Workshop, (hybrid) Athens, Greece, June 7–10, 2022.

70

Chapter 4

Model Calibration

This Chapter is based on Papers C and D.

Numerical studies of implied volatility expansions under the Gatheral
model
M. Dimitrov, M. Albuhayri, Y. Ni, A Malyarenko

Applied Modeling Techniques and Data Analysis 2: Financial, Demo-
graphic, Stochastic and Statistical Models and Methods, vol. 9 of Big data,
artificial intelligence, and data analysis set, K. N. Zafeiris, C. H. Skiadas,
Y. Dimotikalis, A. Karagrigoriu, C. Karagrigoriou-Vonta, (eds.), Wiley,
2022, Chapter 10, pp. 135–148.

Numerical studies of the implied volatility expansions up to third order
under the Gatheral model
M. Albuhayri, S. Silvestrov, M. Dimitrov, Y. Ni, A. Malyarenko

Accepted for publication, presented at the 7th Stochastic Modeling Tech-
niques and Data Analysis International Conference (SMTDA2022) and
Demographics 2022 Workshop, (hybrid) Athens, Greece, June 7–10, 2022.

70

90



4.1 Introduction
The calibration of a financial model can be described as a reversal process
of an optimisation problem. Thus, in calibration, we know the answer (the
price of contracts) and want to find the problem (the parameters). Therefore,
the price of a financial instrument is not the objective in the first place but
rather to get a set of parameters for a specific model that generates values for
financial instruments consistent with the market. It is a reversal process of the
whole theoretical valuation.

In order to go through this process, one need to pay serious attention to
some fundamental questions that arise.

4.1.1 Why We Do Calibration?

In the famous Black–Scholes formula which takes five variables as inputs: the
price of the underlying, the strike price, time to maturity, interest rate and the
volatility. If we put numerical values for the five variables, then the formula
returns a value for the option. This called the theoretical value of the model
and it is based on the assumptions that in an efficient market, one can observe
anything in the market and eventually calculate the price of the security.

Nevertheless, if this is the case and the market is always right, what does
a deviated model value from an observed market value mean?

One of the fundamental conditions of a financial market is to be complete,
meaning that any given derivative can be replicated perfectly by trading in
its underlying. In contrast, market incompleteness can be a hurdle when
derivative assets have multiple prices. Calibration comes into play to solve
this issue because when calibration returns the market-consistent values for
the derivative product, it chooses the right risk-neutral probability measure.

4.1.2 What Error Function?

To judge the reliability of the calibration, one needs a tool to measure the
calibration’s performance, an error function to be minimised. Moreover, when
choosing an error function for calibration purpose, the objective of calibration
e.g. valuation, speculation and hedging should be taken into consideration
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Christoffersen and Jacobs (2004). There are many error functions in the
literature, for instance more often the performance of options pricing models
is evaluated using the mean-square error loss function which is given by:

𝑀𝑆𝐸 (\) = 1
𝑛

𝑛∑︁
𝑖=1

(𝐶𝑖 − 𝐶𝑖 (\))2,

where \ is the set of model parameters to be calibrated.
Some researchers prefer the relative option price differences of the loss

function due to the fact that the previous function assigns a lot of weight to
options with high valuations and thus high error. The mean square error of
the relative error price differences is defined as

𝑅𝑀𝑆𝐸 (\) = 1
𝑛

𝑛∑︁
𝑖=1

(𝐶𝑖 − 𝐶𝑖 (\))2

𝐶𝑖
.

This type of error function emphasises out-of-money products. Another
popular choices of the error function is the mean error of the implied volatility
difference and it is given by:

𝐼𝑉𝑀𝑆𝐸 (\) = 1
𝑛

𝑛∑︁
𝑖=1

(𝜎𝑖 − 𝜎𝑖 (\))2,

where 𝜎𝑖 and 𝜎𝑖 (\) are the market and model implied volatility respectively.
Finally, in Pagliarani and Pascucci (2017) paper which has been used extens-
ively in this work, the error function has the following form.

𝑃&𝑃 𝑀𝑆𝐸 (\) =
𝑛∑︁
𝑖=1

|𝜎𝑖 − 𝜎𝑖 (\) |
𝜎𝑖

.

It is important to note that relying on the specific error function, the
resulting model parameters may vary.

4.1.3 What Market Data to Calibrate a Model?
There are relevant questions to the type of market data that one should try
to calibrate a mode, for instance: what the associate index is when analys-
ing stock index derivatives? For instance, S&P 500, Dow Jones, Nasdaq,
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and EURO STOXX 50 could be candidates. Another question is about the
concrete options quotes to be used for the calibration e.g. option strikes and
maturities. Moreover, there are different quotes per options, like ask, bid, last
and settlement price. One also might need to modify the raw data since there
is no guarantee that market prices are arbitrage-free.

4.2 The Results
Before conducting numerical analysis on asymptotic expansions under the
Gatheral model, one needs to check the accuracy of the expansions against a
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where all vectors and matrices are constants. It is easy to see that this may
happen if and only if 𝛼1 = 𝛼2 = 1/2, 𝜌13 = 𝜌23 = 0. For Fourier-based
option pricing method, we refer to Heston (1993) who introduces this method
to mathematical finance and also to the important work of Carr and Madan
(1999) and Lewis (2001).

Therefore, we are left with the Monte-Carlo method as the only mean
of checking the accuracy of our asymptotic expansions. Thus, we use the
Monte-Carlo simulation to generate the benchmark value for the implied
volatilities. All errors are calculated by treating the benchmark values as the
exact values. The parameters used for the simulation are given in Dimitrov
et al. (2022, Table 1). The performance of the asymptotic expansions of the
implied volatility of the first and second order under the Gatheral model is
investigated. We focus on two special cases of the Gatheral model given
in (1.8): the double Heston model and the double lognormal model.

We consider 130 options with ten maturities (30, 60, 91, 122, 152, 182,
273, 365, 547, and 730 calendar days) and with log-moneyness between −0.2
and 0.2 and report the proportion of options that can be approximated within
a relative error of 5% using the second-order asymptotic expansion. For the
Double Heston model, this proportion is 45% of all options. However, the
accuracy becomes much higher for options with log-moneyness between −0.1
and 0.07, and maturities from 30 days to 1 year.

It can be seen in Dimitrov et al. (2022, Fig 1 and Fig 2), the asymptotic
expansions of order 1 and 2 of the implied volatility and the benchmark values
for two different maturities, 30 days and 1 year respectively. The asymptotic
expansion of order 2 gives better result as expected and it is more accurate for
maturities shorter than 1 year.

For the Double Lognormal model, with the second order expansion, the
corresponding proportion of option that can be approximated within a relative
error of 5% is around 55%. For options with log-moneyness between −0.07
and 0.096, and maturities from 30 days to 1 year options, the accuracy again
becomes higher.

Similarly, we conducted extensive studies in paper D to check and compare
the accuracy of the asymptotic expansions of the implied volatility up to order
3. The parameter choices come from Gatheral (2008). We consider 100
options with strike prices varying from 80 to 122 with maturities ranging
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from 30 days to 2 years and log-moneyness between −0.2 and 0.2 as well as
for shorter range of log-moneyness between −0.1 and 0.1. Figures 1 in paper
D gives examples of the relative errors of asymptotic expansions of orders
1, 2 and 3 of the implied volatility compared to the Monte–Carlo benchmark
value for 4 different times to maturities, 30 days, 60 days , 1 year and 2 years,
respectively. For these maturities, we use a larger number of 500 time steps.
The accuracy of asymptotic expansion of order one can only give a decent
approximation for a maturity of 30 day. In contrast, the asymptotic expansions
of order two and three give good performances for maturities up to 2 years
and are almost identical, though we hope that order three expansion gives
much better result. Moreover, for the first order expansion with a range of
log-moneyness between −0.1 and 0.1, the proportion of options that can be
approximated within a relative error of 5% is around 67% in Fig. 1a in paper
D for 30 days of maturities.

In contrast, the accuracy becomes higher for the second and third order
expansions in Fig. 1 in paper D with almost 70% of options within relative
error of 5% in Fig. 1a and Fig. 1b and Fig. 1c in paper D and a 100% of
options within error of 5% for 2 years of options. Similar experiments have
been done using long range of log-moneyness, the results are alike. Parts of
the experiment is presented in Table 3 in paper D.

In Gatheral (2008) and Bayer et al. (2013) Gatheral et al. shown that the
model given in (1.8) calibrated so well for the SPX and VIX indices using a
multitude of long and complicated steps. Though, there is no need to repeat
the calibration procedure for this model, we are motivated by two reasons:

1. We have analytical solutions under the Gatheral model; the asymptotic
expansions of implied volatility for European option.

2. The model has not been calibrated to equity stock before.

We propose a partial calibration procedure for some model parameters
or some group of parameters in Dimitrov et al. (2022) . The calibration
procedure is implemented on real and synthetic market data of daily implied
volatility surfaces for an underlying market index; EURO Stoxx 50 index and
underlying equity stock; ABB stock for periods both before and during the
pandemic crisis. The data set consists of 10 time to maturities 30, 60, 91, 122,
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152, 182, 273, 365, 547, and 730 calendar days. There are also 30 strike prices
obtained from the well-known Greek Deltas (0.20+0.05𝑛, 𝑛 = 0, 1, 2, . . . , 12).

We exploit the simplicity of the asymptotic expansions of order one and
two to perform daily calibration for the expansion parameters. As expected,
the calibrated parameters give values with fairly small differences compare
to the true values, see Dimitrov et al. (2022, Table 2). Also, when applying
the calibration procedure to the real market data, we note clearly the effect of
the pandemic on the model. For instance, we calibrated the daily value of the
volatility process of the ABB stock and Eurostock 50 Index, respectively in
Dimitrov et al. (2022, Fig 3 and Fig 4). This is the period when Covid-19 start
to spread in Europe and as a result high volatility was expected. The effect
of the pandemic was more clear on the ABB stock compare to Eurostock 50
Index. We also note stabilisation issue and some extreme values during the
calibration, therefore, one should pay particular attention to the calibration
when the market is undergoing a similar crisis.
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Appendix A

Miscellaneous formulae

In this Appendix, we collect various definitions and theorems necessary for
understanding the main text of this thesis. Usually, they are not present in
standard courses.

A.1 The Bell Polynomials

These polynomials have been introduced by Bell (1927/28). Let 𝑚 be a
positive integer, and let an integer ℎ satisfies 1 ≤ ℎ ≤ 𝑚. Let z ∈ ℝ𝑚−ℎ+1.

Definition 24. The Bell polynomial 𝐵𝑚,ℎ (𝑧1, . . . , 𝑧𝑚−ℎ+1) is given by

𝐵𝑚,ℎ (𝑧1, . . . , 𝑧𝑚−ℎ+1) = 𝑚!
∑︁

𝛽1,...,𝛽𝑚−ℎ+1

𝑚−ℎ+1∏
𝑖=1

𝑧
𝛽𝑖
𝑖

𝛽𝑖!(𝑖!)𝛽𝑖
,

where the sum is taken over all sequences 𝛽1, . . . , 𝛽𝑚+ℎ−1 of nonnegative
integers satisfying

𝛽1 + 𝛽2 + · · · + 𝛽𝑚+ℎ−1 = ℎ,

𝛽1 + 2𝛽2 + · · · + (𝑚 − ℎ + 1)𝛽𝑚−ℎ+1 = 𝑚.
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In the main text, we use the following three Bell polynomials:

𝐵2,2(𝑧1) = 𝑧21,
𝐵3,2(𝑧1, 𝑧2) = 3𝑧1𝑧2,
𝐵3,3(𝑧1) = 𝑧31.

(A.1)

Note that the Bell polynomial 𝐵𝑚,ℎ (𝑧1, . . . , 𝑧𝑚−ℎ+1) is a homogeneous
polynomial in 𝑚 − ℎ + 1 variables of degree ℎ, it has the form

𝐵𝑚,ℎ (z) =
∑︁
𝜷

𝑏𝜷z𝜷

with 𝑏𝜷 = 𝑚!
∏𝑚−ℎ+1

𝑖=1
1

𝛽𝑖!(𝑖!)𝛽𝑖 .

A.2 The Faà di Bruno Formula
The above formula is just a general version of the Chain Rule. Let Let
G : ℝ → ℝ𝑛 and 𝐹 : ℝ𝑛 → ℝ be two smooth functions. Let ∇ℎ𝐹 be the
rank ℎ tensor of partial derivatives of order ℎ of the function 𝐹.

Theorem 14 (The Faà di Bruno formula). For any positive integer𝑚, we have

𝑑𝑚𝐹 (G(𝑡))
𝑑𝑡𝑚

=
𝑚∑︁
ℎ=1

𝜕ℎ𝐹 (𝐺1(𝑥), . . . , 𝐺𝑛 (𝑥))

× 𝐵𝑛,ℎ (𝐺′(𝑥), 𝐺′′(𝑥), . . . , 𝐺 (𝑚−ℎ+1) (𝑥)).
This result was proved by Arbogast (1800), and only more than half

century later by Faà di Bruno (1855). See also a historical survey in Frabetti
and Manchon (2015).

A.3 The “Physicists” Hermite Polynomials
Definition 25. The “physicists” Hermite polynomials are defined by

𝐻𝑛 (𝑥) = (−1)𝑛𝑒𝑥2 𝜕𝑛𝑒−𝑥
2

𝜕𝑥𝑛
.
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These polynomials are orthogonal with respect to the measure 𝑑`(𝑥) =
𝑒−𝑥

2
𝑑𝑥, that is, ∫ ∞

−∞
𝐻𝑚(𝑥)𝐻𝑛 (𝑥) 𝑑`(𝑥) =

√
𝜋2𝑛𝑛!𝛿𝑚𝑛.

The fist several physicists Hermite polynomials are

𝐻0(𝑥) = 1,
𝐻1(𝑥) = 2𝑥,
𝐻2(𝑥) = 4𝑥2 − 2,
𝐻3(𝑥) = 8𝑥3 − 12𝑥,
𝐻4(𝑥) = 16𝑥4 − 48𝑥2 + 12,
𝐻5(𝑥) = 32𝑥5 − 160𝑥3 + 120𝑥,
𝐻6(𝑥) = 64𝑥6 − 480𝑥4 + 720𝑥2 − 120,
𝐻7(𝑥) = 128𝑥7 − 1344𝑥5 + 3360𝑥3 − 1680𝑥.

(A.2)
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