

MÄ LÄRDÄLEN UNIVERSITY

SCHOOL OF INNOVÄTION DESIGN ÄND ENGINEERING
VÄ STERÄ S, SWEDEN

Thesis for degree of bachelor’s in computer science 15.0 hp

FINDING BAD SMELLS IN NATURAL LANGUAGE TEST

SPECIFICATIONS USING NALABS

Anas Aboradan
Aan19017@studen.mdu.se

 Josef Landing
Jlg19004@student.mdh.se

Examiner: Wasif Afzal
 Wasif.afzal@mdu.se

 MÄ LÄRDÄLENS UNIVERSITY, VÄ STERÄ S, SWEDEN

Supervisor: Eduard Enoiu
 Eduard.paul.enoiu@mdu.se

 MÄ LÄRDÄLENS UNIVERSITY, VÄ STERÄ S, SWEDEN

2022-06-13

mailto:Aan19017@studen.mdu.se
mailto:Jlg19004@student.mdh.se
mailto:Wasif.afzal@mdu.se

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

1

Abstract

Tests are important artifacts in the software development process. Testing activities

such as test automation, test maintenance, and test suite optimization mainly rely on an

in-depth understanding of test specifications. The manual process of writing test

specifications in natural language can create many different quality issues such as

ambiguous, incomplete, redundant, or inconsistent test cases. Nowadays, the concept of

test smells is proposed by several researchers to be used as indicators of low-quality

attributes in test specifications. Quality assurance processes for test specifications often

rely on manual reviews to detect these smells. The manual process of detecting these

smells is considered time consuming and costly. However, there is currently no work

that implements a comprehensive quality model that classifies and identifies these

smells by using a systematic strategy. As a result, there is a need for machine-supported

analytical measures that decrease the time and effort needed to detect these smells

manually, especially when it comes to reviewing and validating large test specifications.

This study aims to investigate which natural language smell metrics implemented in

NALABS can be found in test specifications and to measure the sufficiency of those smell

metrics. It also aims to extend these smell metrics by exploring, proposing, or

combining with new bad smell metrics to cover more aspects of natural language test

quality. The results of the study show that the smell metrics exists in real-world test

specifications and can uncover many potential quality issues by assisting test designers

in identifying certain types of quality issues pertaining to for example the

understandability and complexity of test specifications. Moreover, the results show that

the list of smell metrics implemented in NALABS is incomplete and can be extended to

cover more aspects of test quality.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

2

 Table of Contents

1. Introduction .. 6

2. Background ... 8

2.1. Requirements Engineering ... 8
2.2. Software Testing ... 9

2.2.1. Test Specifications .. 9
2.2.2. Manual and Automated Testing .. 9
2.2.3. Test Suite ... 10
2.2.4. Stages of Software Testing ... 10

2.3. The Concept of Smells in Software Engineering .. 12
2.4. Natural Language Test Smells ... 12

3. Related Works..13

3.1. Detecting Bad Smells in Natural Language .. 13
3.2. NALABS Tool: Detecting Bad Smells in Natural Language Requirements and
Test Specifications .. 13

4. Problem formulation ..17

4.1. Research questions .. 17

5. Method ..18

6. Ethical and Societal Considerations ..19

7. Case study design ...20

7.1. Case Study Objective ... 20
7.2. Data Collection Procedures and Data Analysis .. 20

7.2.1. Collection of Test Artifacts ... 20
7.2.2. Using NALABS on the Collected Test Artifacts .. 21
7.2.3. Manual Quantification of The Findings... 22
7.2.4. Manual Classification of The Findings ... 22
7.2.5. Validity of Manual Classification ... 24

8. Investigating Bad Smells in Natural Language Test Specifications25

9. Results ...28

9.1. Result RQ 1 .. 28
9.1.1. Manual Quantification of Findings ... 28
9.1.2. Manual Assessment of Findings by Reviewers .. 31
9.1.3. Evaluation of Natural Language Smell Metrics ... 33

9.2. Results RQ2 ... 38
9.2.1. Discovered Natural Language Test Smells .. 38
9.2.2. Proposed Improvements of NALABS ... 43

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

3

10. Threats to Validity ..46

11. Discussion ..47

12. Conclusions ..50

13. Future Work ...51

14. References ...52

15. Appendices ..55

15.1. Test artifact A .. 55
15.2. The result of analyzing Test artifact A by using NALBAS ... 58
15.3. Test artifact H .. 61
15.4. The result of analyzing Test artifact H by using NALBAS ... 74

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

4

List of Figures

Figure 1. shows a part of the list of detected smells by NALABS for test suite D.

The detected findings are highlighted and categorized according to its metrics.21

Figure 2. shows one of the random subsets we selected from a manual system

test from test suite D. The detected findings are highlighted and categorized

according to its smell metric. Red words belong to the imperative metric, purple

words belong to the conjunction metric and the turquoise words belong to the

optionality metric. .. 25

Figure 3. Shows the number of findings for each bad smell metric in every test

artifact. .. 28

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

5

List of Tables

Table 1. Example of manual system test. ... 10

Table 2. An overview of the characteristics of the test artifacts that where

collected. .. 21

Table 3. An overview of the discovered natural language test smells. 28

Table 4. shows the number of findings per 100 words for each test artifact. 31

Table 5. Shows some examples of the reviewers’ answers... 31

Table 6. Shows the individual precision by each reviewer for every smell metric.

.. 32

Table 7. Shows the result of the precision for each smell metric. 33

Table 8. Shows some examples that are detected by the smell metrics

implemented in NALABS. .. 35

Table 9. Shows the proposed natural language bad smells that can be merged

with the natural language smells implemented in NALABS. 44

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

6

1. Introduction

Nowadays, testing is considered as one of the most used methods for determining if a

software system satisfies its requirements. The main purpose of testing is to execute a

software system in many ways to ensure that the system under test works as expected

and is free from errors [1]. A natural language test specification is a common way of

describing a set of test cases or test requirements that is needed to create a

comprehensive test strategy [2]. The process of writing test specifications manually can

create many different quality issues, such as ambiguous, incomplete, redundant, or

inconsistent test cases [1], [3].

Quality assurance of test specifications is still largely performed through manual

reviews [3], [4], and there is currently no work that implements a comprehensive

quality model that classifies and identifies potential quality issues in test specifications

by using a machine-supported analytical measure [4], [5]. Therefore, manual reviews

are often the only option to check natural language test specifications for quality issues

[3], [5]. On the other hand, using machine-supported analytical measures for the

evaluation and improvement of natural language test specification quality is very

uncommon [5].

Several papers use the concept of bad smells as indicators to identify poorly written

natural language test artifacts [1], [3], [4]. B. Hauptmann et el. [4], claim that their work

is the first to study test smells in natural-language system tests. They proposed a list of

bad smells based on their experience of working in the software testing area. Enoiu and

Rajkovic [3] extended a list of bad smells that are used to detect defects in requirements

specifications to other metrics related to complexity. According to the authors [3], their

proposed smells can be used to detect bad smells in both natural language requirements

and test specifications.

This work mostly focused on combining existing natural language test smells

introduced by several papers in a single index of quality. The purpose was to create a

comprehensive quality model that makes manual quality assurance of test

specifications significantly faster and more comfortable.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

7

Our research objective was first to investigate whether the automatic analysis NALABS1

of natural language bad smells [3] can be applied to detect potential quality issues in

test specifications. To reach this objective we conducted an exploratory case study to

verify the existence of these smell metrics in the real-world test specifications and to

measure the sufficiency of these smell metrics. Secondly, our goal was to investigate the

literature to explore, propose or combine the current list of smell metrics [3] with new

bad smell metrics to cover more aspects of natural language test quality.

The results of this work show that the natural language smell metrics implemented in

NALABS can uncover many potential quality issues in test specifications by providing

pointers to certain locations that should be inspected for defects. In addition, this work

could combine the natural language test smells [3] with other smell metrics in a single

index of natural language test quality [1], [4].

NALABS is mostly directed to companies that are interested in such machine-supported

analytical measures that can work as complement to their manual reviews to discover

defects in natural language test artifacts in an early stage of its quality assurance

process. Companies can use NALABS practically to improve the quality assurance of

their test artifacts, and they will have the knowledge that is needed to adapt and

improve it.

The study starts with the background (Chapter 2) where we introduce all necessary

concepts that the reader needs to understand the study. Then comes the related work

(Chapter 3), in this section we present several papers that have worked with similar

problems. After that, comes (Chapter 4, 5), we present the problem that the study will

address, and the methods we will use to achieve the study purpose. We also discuss the

ethical aspects in (Chapter 6) and describe in detail what we perform and how to

answer the study’s research questions in (Chapter 7, 8). The results of the study are

analyzed and presented in (Chapter 9). Then we discuss the threats to validity of the

study’s result in (Chapter 10) Finally, we discuss the complete work in (Chapter 11),

draw the conclusions in (Chapter 12), and suggest one future work related to our study

in (Chapter 13).

1 NALABS is a desktop WPF applications that depend on standard .NET packages and can be accessed

at: eduardenoiu/NALABS: NALABS is a requirement quality checker for natural language
requirements. It uses a set of bad smells to indicate problematic requirements. (github.com)

https://github.com/eduardenoiu/NALABS
https://github.com/eduardenoiu/NALABS

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

8

2. Background

The background section describes all the concepts that the reader needs to have a

better understanding of our study. In this section we will cover requirements

engineering in general, and software testing and its stages in detail. At the end of the

section, we will cover the concepts of smells and their usage in the software testing

context.

2.1. Requirements Engineering

Requirements engineering is a branch of systems and software engineering that

contains all project activities related to determining a product's required attributes and

capabilities [6]. The initial stage of every software project is requirements engineering.

This step is critical because requirements engineering ensures that the product

specification fulfills the customers’ wishes. Errors in requirements engineering may

result in project failure or need for correction in later phases, which is far more

expensive than correction during the requirements engineering phase [7].

R.R. Young [8] defines a requirement as an initial attribute in a system, and it is a

statement that specifies the characteristics, capacity, or quality aspects of a system for it

to be valuable and useful to a client or a user. I. Sommerville and P. Sawyer [9] define it

as a set of specifications that describe what should be implemented in a product to

achieve its purpose.

The process of documenting the project requirements is known as requirements

specification. This process aims to produce a document that contains all the project

requirements in a manageable, sharable, and structured manner [6]. Requirements

specification documents are often written by developers, requirements engineers or

user/customer in natural language, and sometimes it can contain a combination of

graphs, symbols, and diagrams [10]. The document will afterwards be used as a baseline

and a guideline for all participants in the development of a product [11]. Therefore, the

requirements specification document should describe all the projects functional and

non-functional requirements and must be validated before it is delivered to those who

will design and build the product [6]. During the process of validating the requirements

specification, the engineer should ensure that the requirements specification follow

quality standards and on a large scale is free from ambiguity, conflicts, and omissions

[9].

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

9

2.2. Software Testing

Software testing is a method for determining if a software system meets its

requirements, and to discover in which situations the behavior of the software is

incorrect. Furthermore, software testing aims to ensure that the software system is free

from defects and works as expected. In practice, software testing often includes at least

one test for each requirement in the requirements document and is typically performed

either manually or automatically [12, pp. 206].

2.2.1. Test Specifications

A natural language test specification is used to describe a collection of test cases or test

requirements that are necessary to implement a comprehensive test strategy [2], [13].

For test cases, the test specifications are used to describe each test case step as an

action and its corresponding expected result as well as test data to be used [1], [2], [4].

One example of a test case is manual system tests (as shown in Table 1) [1], [4]. In the

test requirement the test specifications are used to describe a set of requirements that a

set of test cases must cover and satisfy [13]. The testers use the test specification to

create test scripts for automated testing or for performing manual tests [2]. Therefore,

the authors of [2] claim that a high-quality test specification is required to ensure that

the testers who perform the test cases, must understand, implement, and execute the

test cases exactly as the test designers intended.

2.2.2. Manual and Automated Testing

A manual test is a test written in natural language and is carried out by a human

without any significant tool support. The testers execute a test using artificial test data

and compare the test result to their expectations [12, s 210]. In other words, all inputs,

output analysis, and assessments are done manually in this test [14]. B. Hauptmann et

al. [14] define a manual test as a series of commands, including input and output data

that are used to accomplish a specific task with a software system, and to confirm the

correctness of the system's behavior. A manual test usually consists of several steps

written down in a table (as shown in Table 1). Each row in this table represents one

step that has two parts: a description of an action and its corresponding expected

outcome. The action description explains what the testers must do to complete a certain

task with the software system. It may also include necessary input data and relevant

background information. The expected outcome explains how the testers should

validate the system’s response. If necessary, it also provides the relevant output data.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

10

The testers must perform all steps in the test sequentially, beginning from the first step

to the last step. After all test steps have been executed and the expected results have

been confirmed, a software system have successfully passed the test.

Table 1. Example of manual system test (test case).

 Action Expected result

1. Click on the login button. The system shall ask for username
and password.

2. Enter a random username and password. The system shall respond that the
username or password is incorrect.

3. Enter the correct username and
password.

The user shall be logged into the
system.

4. … …

In contrast to a manual test, an automated test, refer to the process of automatically

running test cases [14], [12, pp. 210]. This requires the use of test scripts that can be

executed automatically without manual interaction by a human [1]. Manual tests are

more often used than automated tests because automated tests are considered

expensive and do not pay off in all situations [14]. For instance, automated tests cannot

be used to test the appearance of for example a graphical user interface [12, pp. 210].

2.2.3. Test Suite

From a practical point of view, a test suite is a collection of test cases that are often

written in natural language [4]. Any execution of the test cases in the test suite should

result in a test judgment indicating whether the software system passed or failed the

test cases [15].

2.2.4. Stages of Software Testing

According to Ian Sommerville [12, pp. 210] software testing can be divided into three

categories: development testing, release testing, and user testing.

• Development Testing

The development testing is carried out in three levels and is performed by the

developers [12, pp. 210].

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

11

1. Unit Testing is the first level of development testing. The test is concerned with

testing individual units of a system. The purpose is to ensure that each unit such

as method, class or object in the software works as intended [12, pp. 211], [16].

2. Component/Integration Testing is the second level of development testing. At

this level of development testing, individual units are integrated in a planned

manner using an integration plan. The purpose is to test the integrated units as

composite components. This level is designed to detect faults in the internal

interaction of integrated units, and the test mainly focuses on testing component

interfaces such as parameter passing between units [12, pp. 216], [16].

3. System Testing is the last level of development testing and is concerned with

testing an entire system based on its requirements. The testing includes several

activities such as functional testing and performance testing. The aim of

functional testing is to ensure that the system functions meet its behavioral

description, while performance testing aims to test response time and resource

utilization of a system [12, pp. 219].

• Release Testing

The practice of testing a specific release of a system that is designed for usage outside of

the development team is known as release testing. In other words, the release testing is

designed for users and customers. The main aim of release testing is to ensure that the

system meets its functional and non-functional requirements, and that the system is

ready to be put in general use. In case the system satisfies its requirements, it can be

delivered as a product to the consumer. As a result, release testing should show that the

system performs as expected in terms of functionality, performance, and reliability, and

that it does not fail during normal use [12, pp. 224].

• User Testing

End-users or potential end-users testing a system in their own environment is referred

to as user testing. The user can be the customer of the system and can carry out what is

commonly referred to as “acceptance testing”. Acceptance testing aims to give the

customer a way to formally evaluate the system to determine whether the system can

be accepted or if it needs additional development [12, pp. 224].

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

12

2.3. The Concept of Smells in Software Engineering

Fowler and Beck [17] introduced in their book the concept of bad code smells to

determine when quality of code is low, and refactoring is needed. According to Fowler

and Beck, bad code smells usually arise as the result of incorrect implementation of

coding concepts, such as applying urgent fixes or making suboptimal decisions. Fowler

and Beck [17] listed 22 bad smells in their refactoring book, along with corresponding

refactoring techniques. To detect these bad smells in code can be difficult according to

Fowler and Beck [17], but there is certain concrete, visible symptoms such as hard

coded values, large classes, long methods, lazy classes, or duplicated code that one can

look for to detect these smells. Furthermore, they mention that the process of detecting

these smells in the code sometimes requires specific domain knowledge and experience.

Zhang et al. [18] conducted a comprehensive examination of the state of the art in code

smells. Since the concept of code smells turns out to be a concrete symptom, it has been

transferred by several researchers to be used in context of quality for other various

artifacts. For instance, B. Hauptmann et al. [4] has used the notion of smells through the

term smells for natural language system tests, and H. Femmer et al. [19] used it in

requirements specifications as requirements smells.

2.4. Natural Language Test Smells

Nowadays, the concept of test smells is proposed by several researchers to be used as

indicators of low quality in natural language test specifications. For instance, B.

Hauptmann [1], identifies test clones as a smell that increases time and effort needed to

maintain test cases, while B. Hauptmann et al. [4], identify a long test step and a test

step that contains ambiguous words as smells that make the understandability of a test

step’s intention difficult. Therefore, the authors of [1], [4], claim that natural language

test specifications that contains smells such as test clones, hard-coded values or long test

steps can have a negative impact on the implementation, maintenance, and execution of

test cases during the testing life cycle. To detect these smells in natural language test

specifications, several detection mechanisms are used. As an example, B. Hauptmann et

al. [4], use a list of keywords2 to identify ambiguity in test steps.

2 For example, similar, better, and having in mind etc.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

13

3. Related Works

In this section, we will give an overview about several interesting papers that we

discovered during our research. The section contains two subsections. In the first

subsection we are going to cover several papers that work with detecting smells in

natural language specifications. In the second subsection we are going to describe one

machine-supported analytical measure NALABS and the smell metrics implemented in

it.

3.1. Detecting Bad Smells in Natural Language

The attempts to improve the quality assurance of natural language artifacts by using

machine supported analytical measures has been discovered in several studies. The first

group of papers we discovered was from D. Falessi et al [20] and B. Hauptmann et al.

[14]. D. Falessi et al [20] used several natural language processing (NLP) techniques to

detect similarities between requirements specifications. B. Hauptmann et al. [14] used

another technique to detect similar parts of test cases, because they found that a high

degree of clones between test cases can have a negative impact on the cost for

maintaining and executing them.

The second group of papers we discovered was from B. Hauptmann et al. [4] and H.

Femmer et al. [19]. The authors of these papers transferred the concept of code smells

to be used in the context of quality for two different artifacts. B. Hauptmann et al. [4]

implemented a set of smell metrics based on their experience of working in the software

testing area. According to the author [4] their proposed smell metrics can be used to

detect defects in natural language system tests . H. Femmer et al. [19] also implemented

another set of smell metrics to detect defects in requirements specifications. The

purpose of both smell metrics is to detect defects in natural language artifacts in an

early stage of its quality assurance process.

3.2. NALABS Tool: Detecting Bad Smells in Natural Language

Requirements and Test Specifications

Enoiu and Rajkovic [3] found that a set of bad smell metrics that some studies use to

detect defects in specifications written in natural language are restricted and mostly

focuses on maintainability attributes. Therefore, they implemented another tool

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

14

NALABS3 that extends a set of requirement-based smells with metrics related to

complexity. According to the authors [3] the smell metrics they extended can be used to

detect quality issues in both natural language requirements and test specifications. The

authors [3] claim that the smell metrics they extended have been successfully used to

detect quality issues in natural language requirements specifications, but the smell

metrics remain to be tested on test specifications. In addition, these metrics may not be

complete to capture all quality aspects of natural language test specifications, and

therefore there is a need to extend these metrics by exploring, proposing, or combining

with new bad smell measures to cover more aspects of quality. The following metrics

are implemented in NALABS to automatically detect defects in natural language

specifications:

• Vagueness

Vagueness refers to a metric used to measure properties that add extra complexity to

natural language specifications by making it ambiguous and difficult to understand. The

authors [3] has suggested a list of keywords that indicate vagueness in natural language

specifications. List of keywords: “May“, “could“, “has to“, “have to“, “might“, “will“,

“should have“,“ must have“, “all the other“, “all other“, “based on, some“, “appropriate“, “as

a“, “as an“, “a minimum“, “up to“, “adequate“, “as applicable“, “be able to“, “be capable“,

“but not limited to“, “capability of“, “capability to“, “effective, normal“.

• Referenceability

A specification that contains a reference to another document that must be read in

order to understand the specification contains a bad smell. This is usually an indication

of nesting in the specifications. The author divides keywords that indicate referencing

into two categories. The first category is called NR1 and includes keywords such as

“specified by reference”, “see the reference” etc. The second category is called NR2 and

includes keywords such as “Figure”, “Table”, “for example” and “Note” [3].

3 NALABS is a desktop WPF applications that depend on standard .NET packages and can be accessed

on Github on this link: eduardenoiu/NALABS: NALABS is a requirement quality checker for natural
language requirements. It uses a set of bad smells to indicate problematic requirements.
(github.com)

https://github.com/eduardenoiu/NALABS
https://github.com/eduardenoiu/NALABS
https://github.com/eduardenoiu/NALABS

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

15

• Optionality

Optional words provide the developers with a wide range of interpretations in order to

satisfy the specified claims, therefore their usage in natural language specifications is

generally not recommended [3]. List of keywords: “can”, “may” and “optionally”.

• Subjectivity

This metric is used to measure personal opinions or feelings in sentences. The author

suggests a list of keywords that indicate subjectivity in natural language specifications.

List of keywords: “similar”, “better”, “similarly”, “worse”, “having in mind”, “take into

account”, “take into consideration”, “as possible” [3].

• Weakness

A word or a phrase that leaves room for multiple ways of interpretations by developers

is considered a bad smell in natural language specifications. List of keywords:

“adequate”, “as appropriate”, “be able to”, “be capable of”, “capability of”, “capability to”,

“effective”, “as required”, “normal”, “provide for”, “timely”, “easy to” [3].

• Readability

To measure the readability of natural language specifications, the author [3] decided to

use automated readability index (ARI) over other readability indexes such as Flesch

reading ease index in order to keep the implementation of the readability metric simple.

ARI can be calculated by using the formula WS + 9 × SW, where WS is the average

number of words per sentence and SW is the average number of letters per word.

• Conjunctions

The complexity metric can be measured using different factors. One method that the

authors use is counting the number of occurrences of conjunctions. The authors [3]

found that some conjunctions are often used to show relations between actions, and

they claim that the usage of these words often adds logical complexity to the sentence.

The authors also use the number of words as a measure of the specification size. List of

keywords: “and”, “after”, “although”, “as long as”, “before”, “but”, “else”, “if”, “in order”,” in

case”, “nor”, “or”, “otherwise”, “once”, “since”, “then”, "though”, “till”, “unless”, “until”,

“when”, “whenever”, “where”, “whereas”, “wherever”, “while”, “yet” [3].

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

16

Two additional requirements-based metrics are also implemented in NALABS which are

the imperative and continuous metrics, but they are tailored to detect defects in

requirements specifications. In our study, we find that it would be interesting to include

these metrics to see if they also can help to improve quality assurance of test

specifications.

• Imperatives

The author [21] recommend using the imperative “shall” instead of other imperatives.

They divide imperative words into two categories, but since the two categories

introduced by them, include overlapping words, we decided to combine them into one

category. This is because we did not find any difference between the two categories.

List of keywords: “shall“, “must, “is required to“, “are applicable“, “responsible for“, “will“,

“should“, “could“, “would“, “can“, “may“.

• Continuances

The use of the words listed by the continuance metric is considered by [21] as an

indicator of complexity and excessive details in a sentence. Therefore, this metric is

used by [21] to measure the complexity of the specification. List of keywords: “below“,

“as follows“, “following“, “listed, in particular“, “support“, “and“.

As a second step in the same direction proposed by the authors [3], we will first

investigate which natural language bad smell metrics [3], [21] exists in real-world test

specifications. In addition, to measure the sufficiency of each smell metric that appear in

the test specifications, and to see in which way these metrics can help to improve the

quality attributes of test specifications. Secondly, we will try to extend these smell

metrics by exploring, proposing, or combining with new natural language test smells.

We will refer to all metrics implemented in NALABS as natural language bad smells.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

17

4. Problem formulation

Tests are important artifacts in the software development process. Testing activities

such as test automation, test maintenance, and test suite optimization mainly rely on an

In-depth understanding of the test specifications [14]. Test specifications are usually

written by one or several test designers manually. The manual process of writing test

specifications in natural language can create many different quality issues, such as

ambiguous, redundant, or inconsistent test specifications [1], [3], [14]. One reason for

that is because the test designers who write them do not always have software

engineering best practices in mind or these do not fully understand what needs to be

tested or how to test it [4]. As a result, these quality issues make the understandability

of test specifications difficult, which in turn can lead to testers interpreting and

executing the test cases differently [1], [4]. Furthermore, it increases the cost for

maintaining the test cases [14], and it becomes impractical when it comes to reviewing

and validating a large test specification manually [22]. Consequently, there is a need for

machine-supported analytical measures that can work as a complement to manual

reviews by highlighting certain types of potential quality issues in test specifications

during its quality assurance process [4].

4.1. Research questions

To achieve the aim of the study we have formulated two research questions.

RQ 1: Which natural language bad smell metrics implemented in NALABS can be

applied to detect potential quality issues in test specifications?

RQ 2: Are there additional smells that can be implemented in NALABS to cover more

aspects of natural language test specification quality?

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

18

5. Method

In order to answer the aforementioned research questions, two scientific methods are

used in this thesis. First, we prefer to rely on the case study research method over other

scientific methods such as a controlled experiment to answer RQ1. This is because, we

need to assess the NALABS tool in a practical setting under realistic conditions. We

follow the guidelines from Runeson and Höst [23] to conduct a case study.

To answer RQ2, we perform a literature study of relevant scientific studies to explore if

there are any studies that introduce more natural language test smells that cover more

aspects of test artifact quality. We follow the guidelines from C. Wohlin [24] to conduct a

literature study.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

19

6. Ethical and Societal Considerations

When developing new technology, engineers must ensure that the developed

technology will be used to benefit society, and not to harm it. For instance, that the

developed technology will not be used to harm people physically or mentally [25, pp.

241-243]. In our thesis, the tool we evaluated and improved does not have any negative

impact on society since the work aimed to improve quality assurance of natural

language test specifications that do not contain any personal data or data that can be

used to harm people. Most of the data that was needed to answer RQ1 was collected

from open-source repositories, and there was no need to save it locally on a password-

protected computer. When it came to the data that we needed to collect from companies

or reviewers, we saved it on a local password protected computer and will be removed

at the end of this work. We did not perform any interviews with reviewers or

companies, all communication in this work occurred via E-mail. Personal data that

might be connected to any individuals or companies was anonymized or not included at

all in the report.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

20

7. Case study design

7.1. Case Study Objective

With conducting the case study, we first aim to verify the existence of natural language

smells [3], [21] in real world test specifications and to understand how widespread they

are. However, we cannot rely on the number of findings to determine which bad smells

can be applied, because if a large number of findings are irrelevant to quality attributes

of test specifications, it will hinder quality assurance more than it will help. Therefore,

we will perform manual assessments of the findings to quantify the quality of each smell

metric implemented in NALABS.

7.2. Data Collection Procedures and Data Analysis

7.2.1. Collection of Test Artifacts

The test artifacts were collected from multiple resources. Two of the collected test

artifacts were provided by two different companies. We searched for the remaining test

artifacts in multiple open-source repositories by using keywords such as “test suite”,

“natural language test suite\cases”, “system test” etc. We used open-source repositories

such as GitHub, Zendo and NLRP benchmark. In some of these repositories we were not

able to find any test artifacts related to our thesis. During the process of collecting the

test artifacts that are needed to answer RQ1, we found that the test artifacts manifest

themselves in different writing styles. What is interesting about this is that some test

artifacts only contain a set of test cases such as manual system tests or unit system test,

while others only contain test requirements. The last style we found contains a mixture

of both, test requirements, and a set of test cases (See appendices sections 15.1 and 15.3

for examples). We decided to include all writing styles we found in our study. We

checked every test artifact manually to ensure that it contains enough test cases or test

requirements that tests or describes different functionality of the system in order to get

a reasonable amount of quantitative data, (See Table 2).

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

21

Table 2. An overview of the characteristics of the test artifacts that were collected.

Test artifact #Tests cases #Words Source

Test suite & Test Requirements A 5 674 Provided by
Company

Test Requirements B — 3153 Github

Test suite C 17 2113 Github

Test suite D 44 825 Github

Test suite E 27 450 Github

Test Requirements F — 2057 Provided by
Company

Test suite & Test Requirements G 16 3891 Github

Test suite & Test Requirements H 13 3215 Github

Total 122 tests 16 378 words —

7.2.2. Using NALABS on the Collected Test Artifacts

We applied NALABS on all collected test artifacts, which produced a list of highlighted

findings that are categorized according to its smell metric, (as shown in Figure 1). This

process provided us a reasonable number of findings of the natural language smell

metrics to be analyzed.

Figure 1. shows a part of the list of detected smells by NALABS for test suite D. The detected
findings are highlighted and categorized according to its metrics.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

22

7.2.3. Manual Quantification of The Findings

With the manual reviews of each finding detected by the smell metrics implemented in

NALABS, we could quantify the appearance of each smell metric in the test artifacts.

This helped us to verify the existence of the smell metrics in the test specifications. By

using the number of words as a measure of the test artifacts size, we could put the

number of findings in each test artifact in relation to its size. This in turn helped us to

understand how widespread the natural language bad smells are in the test artifacts.

7.2.4. Manual Classification of The Findings

In order to quantify the quality of each smell metric implemented in NALABS, we

decided to use the metric precision over other metrics such as recall. Because in our

study, we are only interested in a metric that can measure the number of correct

positive findings out of all the findings that are labeled by each smell metric as positive

findings, and not in a metric such as recall that can measure the number of missed

positive findings by each smell metric [26].

The metric precision is defined as follows:

 Precision =
no .of True Positives

no .of True Positives + no .of False Positives

• A true positive finding is an instance of a bad smell, e.g., the finding indicates

an actual quality issue in the test specification.4

• A false positive finding is an instance of a bad smell but does not indicate a

quality issue in its context.5

When it comes to the ARI metric, we used the readability index measures introduced by

Lehner, F [27] to quantify the number of true positive findings. The author considers a

text that have an ARI-score of around 50 as a simple text, around 60 as a medium

difficult text, and a score over 70 as a difficult text. We decided to quantify and classify

all text that have a score over 70.

4 For example, if the automated analysis of NALABS classified the word “normal” in the sentence
“All inputs in normal state” as a vague or weak word, we considered the finding as a true
positive, because the designer does not describe what the normal state is.
5 For example, if the automated analysis of NALABS classified the word “and” in the sentence
“Read the policy creation and check the initial letter cap” as a conjunction or continuance, we
considered it as a false positive finding because, it does not lead to unnecessary logical
complexity or excessive detail in the sentence.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

23

Sometimes, some of the keywords listed by one metric overlap with other metrics6, in

these cases we quantified and classified the finding for all metrics the finding belongs to.

In addition, we ignored all findings that are irrelevant to the test area such as cover

page, test plan identifier, references, date, table of contents etc.7

6 For example, the verb “may” belong to the vagueness, imperative and optionality metrics.
7 For example, if the automated analysis of NALABS classified the word “may” in the sentence
“Project Schedule i.e., by May 20th 200” as an optionality smell, we considered the finding as
irrelevant.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

24

7.2.5. Validity of Manual Classification

Since there is sometimes a need of domain knowledge in the testing area to determine if

a finding is in fact a quality issue, we can not only rely on our own experience to make a

final decision about the result. Therefore, before we started to classify all the findings,

we decided to classify a random subset of findings to be sent to expert reviewers that

have domain knowledge in the software testing area in order to investigate how the

reviewers would react to the findings.

We selected 6 subsets from random test artifacts. Each subset contains a minimum of 10

findings from at least 2 different smell metrics as far as the artifact allowed (as shown in

Figure 2). All subsets are grouped into a word document, and each finding in the

document is commented as a true or false positive finding according to our classification.

The number of findings the document contains is limited as far as the reviewers’ time

allowed. In case the participants did not agree with the classification of a finding, we

asked them to offer us input on why they would label it differently. After all participants

responded, we analyzed and compared their inputs with each other and finally to our

classifications.

Figure 2. shows one of the random subsets we selected from a manual system test from test suite D.
The detected findings are highlighted and categorized according to its smell metric. Red words
belong to the imperative metric, purple words belong to the conjunction metric and the turquoise
words belong to the optionality metric.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

25

8. Investigating Bad Smells in Natural Language Test
Specifications

We have reviewed articles and papers that introduce or propose new natural language

test smells that can be implemented in NALABS in order to improve quality attributes of

test specification. We searched for articles in different available databases such as

Google scholar, ACM, IEEE, and Science direct. We used keywords such as “test artifact

quality assurance”, “natural language test”, “natural language test smells”, “test quality”,

“natural language test quality”, “natural language test requirement”, “natural language

test specification”, “test suite quality”, and “test cases quality”. During our research we

found that there are a limited number of papers covering test smells in natural language

test specifications. We did not perform a systematic literature study, instead we

checked the references for all the papers that we discovered and reviewed that covered

natural language test quality, imitating a snowballing approach in order to discover any

other interesting papers.

The majority of the papers and articles that we discovered introduce different bad code

smells, and they often overlap with each other. We were unable to go through all the

discovered papers, instead we focused on the most relevant papers for our study. We

decided to go through some of these papers and tried to find any code smells that can be

applied on natural language test specifications. Many of these papers and articles were

discarded, because we found that almost all the code smell metrics introduced by these

papers are tailored to code related aspects and cannot be applied on natural language

test specifications.

We started by reviewing articles that discuss the quality attributes of natural language

test artifacts. The first relevant article we discovered was from B. Hauptmann et al. [14],

that focused on the detection of clones in test artifacts. Two other interesting papers

that we discovered were [28], [29] that just discussed the quality attributes of test

artifacts. However, the authors of these papers did not introduce any bad smell metrics,

instead they focused on the quality characteristics of test artifacts in general which

helped us to capture different ideas and aspects on how the quality assurance of test

artifacts can be improved by using NALABS. By checking the references in the article

[28] we discovered another interesting paper done by B. Hauptman et al. [4].

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

26

By reviewing the paper by B. Hauptman et al. [4], we found that the authors proposed

seven natural language test smells. Some of these metrics overlap with the natural

language metrics implemented in NALABS [3] such as the subjectivity and conjunctions

metrics, but the authors used different names for these metrics and focused on different

quality aspects. Later another interesting paper was discovered by B. Hauptmann [1]

which introduced six more natural language test smells. One of these smells is Hard-

Coded Test Data which overlaps with the paper from B. Hauptman et al. [4]. The bad

smells proposed in both papers [4], [1], are tailored to detect natural language test

smells in test specifications for manual system tests (i.e., test cases). In addition, some of

the bad smells that they proposed are defined as a list of keywords, the authors did not

mention that this list of keywords can also be applied to detect smells in test

specifications for test requirements.

During our attempt to transfer some code smells into natural language test smells, we

just found that one code smell introduced by three papers [30], [31], [32] can be applied

on test specifications. We confirmed our transformation by manually reviewing if the

smell appears in the test artifacts we analyzed. The table below shows a brief overview

of the natural language smell metrics we found with its corresponding description and

paper.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

27

Table 3. An overview of the discovered natural language test smells.

Smell name Description Paper

Hard-Coded Values When a test specification contains “magic numbers” or strings
that indicate test data or names of user interface elements.

[4],[1]

Long Test Steps A test step is very long. [4]

Conditional Tests A test steps description contains conditional logic which is
phrased in natural language.

[4]

Badly Structured
Test Suite

The test suite's structure does not follow the structure of the
tested functionality.

[4]

Tests Clones Many tests in the suite share large similar parts introduced by
(copy paste).

[4],[14],[1]

Ambiguous Tests Test steps that are written in ambiguous ways leave room for
multiple ways of interpretations.

[4]

Inconsistent
Wording

For the same domain concept, several names are used in the
test suite, e.g., the test suite does not use its domain concepts in
a consistent way.

[4]

Branches in Test
Flow

The test flow contains branching or alternate flows that are
manifested in the test steps' text as conditions.

[1]

Merged Test Steps Several independent tasks or actions are combined to one
single test step.

[1]

Complicated or
Bloated Phrases

A test step contains unnecessary or redundant information
such as rationales or side information that is not needed to
understand the test step.

[1]

Ambiguous Phrases Ambiguous phrases in the test specification leave room for
multiple ways of interpretations.

[1]

Dependent Test The degree of dependence between one test case and other test
cases in the same test suite.

[30],[31],[32]

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

28

9. Results

The result section is divided into two subsections. In the first subsection we are going to

analyze the result of manual quantification of findings, manual assessment of findings

by reviewers and the result of evaluating the natural language smell metrics. At the end

of the first subsection, we provide an answer to RQ1. In the second subsection, we are

first going to describe several natural language test smells that we discovered during

our research. Then we are going to propose a set of natural language smells that

provides an answer to RQ2.

9.1. Result RQ 1

9.1.1. Manual Quantification of Findings

Figure 3. Shows the number of findings for each bad smell metric in every test artifact.

0

50

100

150

200

250

Vagueness NR1 NR2 Optionality Subjectivity Weakness Conjunction Imperative Continuance ARI

Test suite & test requirements A Test requirements B Test suite C

Test suite D Test suite E Test requirements F

Test suite & test requirements G Test suite & test requirements H

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

29

The result of the analysis of eight test artifacts shows that the number of findings of

each smell metric differ between the test artifacts, and that not all smell metrics exist in

the test artifacts we analyzed. Furthermore, the appearance of one smell metric in the

test artifacts does not mean that all words listed by that metric exist in the test artifacts.

This is because in some instances we were not able to find certain words belonging to

that metric in any of the eight-test artifacts we analyzed8.

As Figure 3 shows, we were not able to find any appearances of the metrics subjectivity

and NR1 in any of the test artifacts. In addition, when it comes to the NR2, Weakness,

ARI, and optionality metrics, we found that the appearances of these metrics are rare.

For instance, we were not able to detect a large number of findings of the optionality

metric. The largest number of findings for the metric optionality is found in test artifact

H, which has 14 findings out of 3215 words. Weakness is the metric that we found the

least findings of. The largest number of findings of the weakness metric is found in test

artifact A which contains 6 findings out of 674 words (See the result of analyzing test

artifacts A and H by using NALABS in the Appendices sections 15.2 and 15.4). Despite the

small number of findings of the weakness, NR2, and optionality metrics, we send some of

these findings to reviewers to make sure if the appearances of these metrics can lead to

any quality issue in the test specifications.

The result of the manual quantification of findings also shows that the appearance of the

metrics conjunctions, continuous imperatives, and vagueness are common in the test

specifications, because they have a large number of findings compared to other smell

metrics such as weakness and optionality. On the other hand, these metrics appeared in

all test artifacts we analyzed. In addition to that, as Figure 3 shows, the greatest

number of findings that we found in each test artifacts are from one of these metrics.

Therefore, we included a large number of findings for these metrics in the reviewees’

document.

We also analyzed the number of findings in each test artifact relative to its size (as

shown in Table 4). The number of findings in the table does not include the number of

findings for the ARI metric, since it does not make sense to put the number of ARI

findings in relation to the artifact’s size (number of words). Table 4 shows that the

8 For example, we were not able to find the word “optionally” in the metric optionality in any of
the test artifacts. The same holds for the words “adequate”, “be capable of”, “timely” or “easy to”
in the metric weakness.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

30

number of findings per 100 words vary between the test artifacts. The test artifacts that

produce the greatest number of findings per 100 words are the test suites C, D and E

that only contain a set of test cases. We also discovered that when the test artifacts

contain a mixture of a test suite and test requirements the number of findings per 100

words decreases. We confirm our result by analyzing the test artifacts that only contain

test requirements. The result shows that the test artifacts that only contain test

specifications in terms of test requirements produce the least number of findings per

100 words compared to other test artifacts that contain a set of test cases or a mixture

of test cases and test requirements.

Table 4. shows the number of findings per 100 words for each test artifact.

Test artifact #Words #Findings #Findings per 100 words

Test suite & Test Requirements A 674 63 9.3

Test Requirements B 3153 221 7.0

Test suite C 2113 240 11.3

Test suite D 825 104 12.6

Test suite E 450 72 16

Test Requirements F 2057 129 6.2

Test suite & Test Requirements G 3891 438 11.2

Test suite & Test Requirements H 3215 309 9.6

As a result, the test artifacts that contain a test specification for test cases such as

manual system tests produce a higher number of findings per 100 words compared to

test artifacts that only contain a test specification for test requirements.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

31

9.1.2. Manual Assessment of Findings by Reviewers

The goal of the manual assessment of findings by reviewers is to receive their feedback

regarding if the quality issues cause by the smell metrics [3], [21] are relevant to quality

attributes of test specifications. We got responses from two experts in the software

testing area at Mälardalen University. The reviewers responded on every finding in the

document. Furthermore, both reviewers left feedback as to why they consider the

findings as relevant or irrelevant (as shown in Table 5).

Table 5. some examples of the reviewers’ answers.

Smell
metric

Text Feedback R 1 Feedback R 2

Weakness,
Vagueness

Be true before the start of testing.
When the simulation is
activated (By default setting), most
of the inputs for the safety functions
are simulated to the normal state
(To the safety state).

False positive. The
meaning is clarified
immediately after

False positive.
Normal state is
explained in
brackets.

Vagueness Prerequisite for test: As inputs below.
All related systems have to
be ready and in the normal
state (in the safety state) to allow test.

False positive. It is
analogous to must.

True positive.
 If including” have
to be ready”.

Optionality Test that each user can only have
one job function.

False positive. Not
optionality.

False positive. Not
optionality

Vagueness Test that each job function has proper
access & privileges based on the job
function.

True positive. Here are
the access and
privileges on the job
function defined?

False positive.

Continuance The functions to be tested are
 listed in Section 5.1 of this document.

True positive.
It makes the
understandability of
the specification
difficult.

False positive.
I would consider
it not a quality
issue to reference
other places in a
document,
considering what
the alternative
would be.

Conjunction To check if the system is compatible
 with company’s browser standards.

True positive. What
compatible exactly
means?

False positive.
 Not a conjunction

Conjunction Check for the file name downloaded.
 (In case if the file name is static
while download).

False positive. This is
the precondition that
needs to be valid for
the test to have sense

True positive.
Complex test step.

Conjunction Verify by entering the filename to download the file.
 (In case if user is required to input file
name while downloading the file).

False positive. True positive.
Complex test step.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

32

Imperative System should allow user to enter file
 name while exporting file.
(In this case, max characters should be
 fixed to set for file name download).

True positive. It is not
clear how relevant is
this test. If it is critical,
“shall” is better

False positive.
The verb “should”
does not have to
be “shall”.

NR2 Test: This case tests the safety
function outputs when the safety
function inputs are set as in the Inputs table below.

False positive.
Not reference.

False positive.
Not reference.

By analyzing the reviewers’ documents and comparing them with each other, we found

that some of the same findings are considered by one reviewer as true positives, while

the other reviewer considers them as false positives (See Table 6).

Table 6. Shows the individual precision by each reviewer for every smell metric.

 Vagueness NR2 Optionality Weakness Conjunction Imperative Continuance

#Findings 9 5 3 4 34 21 16

R1 77% 0% 66% 50% 23% 57% 31%

R2 55% 0% 0% 50% 14% 0% 12%

Table 5 shows that, the similarity between the reviewers occurs when it is easy to

determine if a finding causes a defect, and the differences occurs when it becomes

difficult to determine if a finding in fact causes a defect. This is because, different

reviewers have different experience and criteria to judge a finding. That is, the

classification of one finding is sometimes dependent on the human reading it, and how

they give their subjective review. Therefore, we found 23 conflicts between the

reviewers out of 92 findings that the document contains.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

33

9.1.3. Evaluation of Natural Language Smell Metrics

During the process of determine which writing style produces a higher number of true

positive findings, we found that the number of correct findings differ strongly between

the same writing style as well as between the different writing styles. For instance, the

number of findings in test artifact G is 455 (including ARI findings), we classify 116

findings as true positives which resulted in a precision of 25.3%. In comparison, in the

test artifact H, we classify 186 findings as true positives out of 334, which resulted in a

precision of 55.5%. Therefore, we decided to calculate the precision for the total number

of findings for each smell metric (See Table 7).

Table 7. The overall result of the precision for each smell metric.

Smell metric #Findings #Perceived
true positives

#Perceived
false positives

Precision

Vagueness 142 66 76 46.5%

NR1 — — — —

NR2 25 3 22 12%

Optionality 33 22 11 66,5%

Subjectivity — — — —

Weakness 16 10 6 63%

Conjunction 621 318 303 51,2%

Imperative 304 93 211 30.5%

Continuance 435 132 303 30.1%

ARI 68 37 31 52.1%

Total 1644 681 963 41,4%

During, the manual assessment of the metric vagueness we found that the using of vague

words in a test specification can lead to quality issues in terms of understandability and

complexity. We classified some of these findings as true positives because we discovered

that using words listed by this metric in some instances make the understandability of

the test specification ambiguous.

When it comes to the metric NR2, we classify most of the findings as false positives,

because most of the findings indicate that the test artifacts contain tables. Using tables

in test artifacts is common because they usually contain necessary input and output

data for the specific test, which in turn does not indicate any quality issue in the test

artifacts. However, some findings of this metric are classified as correct findings since

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

34

they indicate nesting in the test artifacts. This in turn makes the readability of the test

specification difficult.

As Table 7 shows, there are twice as many true positive findings as false positive

findings for the optionality metric. This is because, in some instances we found that the

designers who write the tests use optional words in a way that does not leave any room

for multiple ways of interpretations. In other cases, the using of optional words lead to

different expectations by the reader. It may lead to testers executing test cases

differently depending on their perception. The same holds for the weakness metric.

An almost equal amount of true and false positive findings is also found in the

conjunction metric. In many cases, we found that the use of conjunctions in the test

specification adds more logical complexity to a sentence or a test step by adding

information that is unnecessary to understand it.

When it comes to the imperative metric, in most cases we did not find that changing

imperative words to “shall” would help to improve the quality of the test specification.

But in some cases, there is a need to change some imperative words to “shall”. Äs an

example, we found that the using of different imperative words in the same sentence or

test step may lead to a misunderstanding of the test specification, in the case where

different imperatives exist in the same sentence.

In the metric continuance we classify most of the findings as false positives, because in

most cases, using words listed in this metric does not lead to quality issues in the test

specification. However, we found that in some instances their usage is an indicator of

complexity and excessive details in a test step. In these cases, the test step may have to

be split into two smaller parts to improve the understandability of the test step.

When it comes to ARI, we found that in most cases the ARI-score is between 40-70, and

in some cases the score is over 70, (See the result of analyzing test artifacts A and H by

using NALABS in the Appendices sections 15.2 and 15.4). We classify an ARI-finding that

have an ARI-score over 70 as true positive when we found that, the readability of a

sentence or a test step mostly depends on the experience of the reader to understand it.

In addition, when the sentence or test step indicate a high level of difficulty in terms of

readability.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

35

Table 8 shows a subset of findings that are detected by the natural language smell

metrics implemented in NALABS. We classified all the findings in the table as true or

false positives and describe their corresponding quality issue.

Table 8. Shows some examples that are detected by the smell metrics implemented in
NALABS.

Test specifications Smell
metric

Class-
Ification

Quality issue

Can the user easily identify the settings icon?

Optionality True Different testers have
different criteria.

That is one user can only give one update. Optionality False “Can only give” does not
leave any room for
multiple ways of
interpreting.

This load target can be determined via log queries
and should be updated quarterly as needed.

Optionality True It does not specify how.

Check whether labels float upward or not
when the text field is in focus or filled?

Check whether Sign-Up Button is present or not.

Conjunction True “Or not” Here does not
add any meaning to the
text, it just adds more
logical complexity to the
sentence.

Read the Premium payment and check
the initial letter cap.

Check all the fields and buttons displayed on the
Registration Page.

Conjunction,
Continuous

False It does not add any
complexity or excessive
details to the sentence.

Internet connectivity should be available and
registration page must be loaded.

Imperative True Seem to indicate a
difference in priority or
importance of the test
pre-condition.

Initial latter should be caped.

All Buttons and form Fields should be displayed properly.

Standard font, text color and color coding should be there.

Imperative False Using of verb “shall”
does not make the
sentence clearer here.

Touch on the "Symptoms" feature took us to a
screen where all the symptoms of COVID-19 were
listed - like Fever, Dry cough, Headache, Breathless,
tired etc., with images.

Continuous True Test step contains
excessive detail.

Touch on the "Preventions" feature took
us to a screen where all the preventions were
 listed – like stay home if sick, cover cough,
cough on your elbows, clean and disinfect,
avoid close contact, cover mouth and nose etc., with images.

Conjunction,
Continuous

True Complex test step.
Include excessive details.

Touch on the "Feedback Us" Feature took user
to another screen where user must select one
option out of 5 (5 emoticon) after selecting
user must tap on submit to successfully
 submitting the feedback.

Conjunction True Complex and long test
step.
The step must be split
into smaller test steps in
order to determine

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

36

which functionality of
the test step failed.

This shall be input data the program may be presented,
but that will not produce any meaningful output.

Vagueness True It is difficult to
understand the test
intention.

The safety functions that are not
tested have to be simulated by the internal
simulation.

Vagueness False It does not make the
sentence difficult or
complex to understand.

Both [SYSTEM] numbers are changed simultaneously.

ARI
Score = 72

False It is not difficult to read
the sentence.

In ideal scenario we can have more details in the report
giving a tracking ID to each test, developer who developed
it, date on which issue was identified, steps followed to
find a bug, screenshots of these steps, Priority to be
resolved, etc.

ARI
Score = 85

True It is difficult to read the
sentence.

It will display number of new cases coming in
on daily bases, a linear & logarithmic
curve of graph showing total cases
form last one year, graph of daily new cases, daily deaths,
population of the country vs corona affected count, a table
of all the countries with the counts etc.

ARI
Score = 91

True It is difficult to read the
sentence.

Just after submitting the review,
user will be able to see one pop
up saying "your review is submitted".

Weakness false It does not leave room
for multiple
interpretations.

The safety function isn't in the normal state because 0
isn't allowed as the safety identity number.

All inputs in normal state.

Weakness True Difficult to understand
the test intention. The
designer does not
describe what the
normal state is, which
leave room for multiple
ways of interpretations.

If affected user has added his/her location
on the "Add Location" features,
then only he/she will get the notification
(i.e., you Entered the affected place or you
leave the affected place)

NR2 True Additional reading is
required to understand
the test step.

The safety function inputs are set as in the Inputs table.

NR2 False It does not indicate any
quality issue.

Touch "Feedback Us" feature available on the
home screen of the application,
after touching it should redirect it
to a new screen from which user has to select a
rating and then click on submit button.
After Submitting the feedback, it should
show in Firebase Database.

Conjunction,
Continuous

True Complex and long test
step.
The step must be split
into smaller test steps in
order to determine
which functionality of
the test step failed.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

37

Answer to RQ1: The result of the manual quantification shows that most of the natural

language smell metrics implemented in NALABS exists in the real-world test

specifications. The most common findings for the smell metrics are conjunctions,

continuance, imperative, vagueness, ARI, optionality, NR2 and weakness respectively. No

findings for the smell metrics NR1 and subjectivity have been found. The result of the

manual assessment of the findings shows that the appearance of one finding listed by

any smell metric does not necessarily lead to a quality issue in the test specifications.

Therefore, the findings of these metrics must be judged manually by reviewers to

determine if a finding is in fact a quality issue.

We consider the metrics weakness, optionality and ARI that have a small number of

findings and a precision over 50% as reasonable indicators of low quality in the test

specifications. Because if the most findings of these metrics are considered by other

reviewers as false positives, it will not hinder quality assurance significantly by

increasing the time and effort needed to inspect them manually.

When it comes to the metrics continuous, conjunctions, imperative and vagueness that

have a large number of findings, we cannot only rely on the number of true positive

findings to determine which metrics are sufficient to be applied. Despite the conjunction

metric having a precision over 50%. Because, we have had limited control over the

number of true positive findings due to the metric’s subjectivity. This means that, if a

large number of findings are considered by other reviewers as false positives, it will

hinder quality assurance by increasing the time and effort needed to inspect them

manually. Consequently, these smell metrics can only improve the quality assurance by

providing pointers to certain locations that may need to be inspected for defects. In

other words, it is up to reviewers if they would inspect them.

Finally, we do not consider the metric NR2 as a reasonable indicator of low quality in

test specifications because most of the findings do not lead to any defects in the test

specifications.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

38

9.2. Results RQ2

This section is divided into two subsections. In the first subsection we are going to cover

all the natural language test smells we discovered during our research. Every part in

this subsection describes one test smell with its corresponding quality issue and

detection mechanism. In the second subsection we are going to propose a set of natural

language smells that will provide an answer to RQ2.

9.2.1. Discovered Natural Language Test Smells

Smell - Hard-coded values:

Hard-coded values are a common problematic property when it comes to the

maintenance of test cases. Because if a test case contains several hard-coded values, it

becomes difficult to find out where to perform changes if these values must be changed.

To detect this smell in natural language test cases, B. Hauptmann et al. [4] calculate the

number of Hard-coded values relative to the number of words in the test case. Firstly,

they calculate the number of words in the test case. Then they calculate the number of

hard-coded values in the test case. They consider a word as hard-coded values if the

word is in quotation marks or just consists of numbers. The test case contains a smell if

the number of hard-coded values in the test case text relative to the number of words in

the test case text is more than 10%.

Smell – Long test steps:

Many papers have identified the understandability of a test step as an important quality

attribute [4], [28], [29]. A very long test step makes it difficult for testers to understand

the step’s intention. One measure of the understandability of the test step is only found

in one paper [4]. The authors use the number of words in the test step as a measure of

the step’s understandability. If the number of words in an action or its expected result

consists of more than 50 words, the test case contains a smell.

Smell – Conditional tests:

The using of conditional words in a test case specification makes the test case very

complex, and it becomes very difficult for testers to understand the intention of the test

case. According to [4] complex tests cases are more likely to have errors. Therefore, the

authors count the overall occurrences of keywords that indicate conditions in the test

specification. A test case contains a conditional smell if its text contains at least one of

the following keywords. List of keywords: “if“, “whether“,“depending“, “when“, “in case”.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

39

Smell - Branches in Test Flow

Test procedures must be established and be deterministically executable in order for

the outcomes of the test runs to be understandable and comparable. As a result, test

case descriptions should not include any branching logic, such as indeterministic case

differentiation or optional parts. However, because of the nature of natural language, it

becomes easy for the testers to ignore branching logic that are phrased in the test case

descriptions. The metric that detects branches in test flow is found in one paper [1]. The

author suggests a list of keywords that may indicate a branch in the test case flow.

List of keywords: “if“, “whether“, “depending“, “when“. The same list of keywords is

used by [4] in the smell - conditional tests.

Smell – Badly Structured Test Suite

Another important quality attribute of a test suite is the structure of its test cases. Well-

structured test cases have a positive impact on the efficiency [28] and maintenance [14]

of the test cases. This is because, a tester who is familiar with the structure of the test

cases and the essential components of the system interface perform the test cases more

quickly, and they are aware of potential problems. Furthermore, if the test cases follow

the same structure, it becomes easy to find out where to perform changes during

maintenance of the test cases to ensure that the changes are made consistently [14].

Badly structured test suites can impact the understandability of test cases negatively

because, it becomes difficult for testers to understand the functionality that the test

intends to verify [4].

A mechanism to detect badly structured test cases in natural language test suites has

only been found in one paper [4]. The authors of this paper suggest a detection

mechanism based on natural language processing techniques. Firstly, they remove all

stop words9 from all test cases text. The authors then normalize the remaining words by

reducing them to their word stem. Thereafter, they use the term frequency-inverse

document frequency (TF-IDF) metric to determine the most dominant concepts of the

remaining words for every test case. They presume that a test suite is organized from

the beginning in folders and subfolders in a hierarchical manner. In addition, they

assume that test cases that verify the same functionality should share the same domain

concepts and should not be in different folders. If there is any test case that shares the

9 e.g., a, and, or how.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

40

same dominant concept with other test cases that are located in different folders, the

test contains a smell [4].

Smell – Test clones

Many papers have identified redundancies in test cases as an indicator of low quality of

test artifacts, since redundancies in test cases impair their understandability and

maintainability [14], [4], [1]. Test cases that share large similar parts that are not

identical make it hard for testers to distinguish between the test cases, and it becomes

difficult to understand the test’s intention. Furthermore, it increases the effort and the

time needed to maintain duplicate parts of the test cases, since it becomes hard to find

out where maintenance must be performed [14], [4]. The definition of a test clone in

test cases has been found in three papers [14], [4], [1]. For the simplicity of

implementation in NALABS, we decided to use the definition proposed by B. Hauptmann

et al. [4]. A test case contains a smell if it contains at least one test clone that fulfills the

following definition.

"a test clone is a substring of a test with at least 30 words appearing at least twice in a test

suite. To find clones which differ slightly (e. g., because of inconsistent typo fixes), clones

are allowed to have minor variations such that the difference (the gap) accounts for less

than 10% of the length of the clone".

Smell – Ambiguous Tests

A couple of papers consider ambiguity in a test case description as a low-quality

attribute of a test artifact [4], [1]. Since test cases are written in natural language, it is

easy to write them in an ambiguous way that leaves room for multiple ways of

interpretations. This causes the testers to have different expectations, which may result

in different test results in case a test case is executed by different testers. The metric

that measures the ambiguity in test case descriptions is found in one paper [4]. A test

case contains a smell if it contains at least one of the following keywords.

List of keywords: “similar“, “better“, “similarly“, “worse“, “having in mind“, “take into

account“, “take into consideration“, “clear“, “easy“, “strong“, “good, bad“, “efficient“,

“useful“, “significant“, “adequate“, “fast“, “recent, far“, “close“.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

41

Smell - Ambiguous Phrases

Ambiguous phrases in test steps lead to the same quality issue as mentioned in the

previous smell ambiguous tests, the difference between the smells ambiguous tests and

ambiguous phrases is that the author of [1] searches for ambiguous phrases in test steps

instead of ambiguous words [4]. B. Hauptmann [1], combines two techniques to detect

ambiguous phrases in test steps which are word list and text patterns. Firstly, he detects

all phrases that contain words that are likely to be ambiguous in their interpretation by

using a list of keywords.

List of keywords: “should“, “most“, “any“, “more or appropriate“.

Thereafter, he uses a list of anti-patterns such as “most recent ...” or “more than

(NOUN)”. A test case contains a smell if it contains at least one detected phrase that does

not match any of the listed anti patterns.

Smell - Inconsistent Wording

Inconsistent wording is considered as another common problematic quality attribute

when it comes to understanding test case descriptions. The smell arises when the

designers who write the test specification do not use domain concepts in a consistent

way e.g., several names are used for the same domain concept in the same test suite.

The measure of inconsistent wording in test suites is found in [4].

Similarly, to the first two steps in the smell badly structured test suite, the authors first

remove all stop words from the text and normalize the remaining words to their word

stem. Secondly, all words that have the same meaning are grouped together. Afterwards

they calculate the most frequently used synonym in every group. Thereafter they go

through every test step word by word to determine for each word if there is a more

often used synonym for that word in the test suite. The test case contains a smell if there

is at least one word that does not use the most frequently used synonym in its group [4].

Smell – Merged test steps

A couple of papers have identified the simplicity of test steps as one of the most

important quality attributes [28], [1]. H.K.V. Tran [28], found that a good test case is a

case that is comprised of steps that are well connected and do not include any

unnecessary information. According to B. Hauptmann [1], a single test step should be

clear and not include multiple independent tasks. Because when a test step consists of

many independent test steps, it becomes hard to locate reasons for failed test cases

since it is not clear which part of the test step failed. Furthermore, when a test step is

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

42

comprised of multiple tasks, it becomes difficult to understand the test step’s intention.

To detect merged test step, B. Hauptmann [1] calculates the number of words for each

step in the test cases. A test case contains a smell if at least one of its steps consists of

more than 130 words.

Smell - Complicated or Bloated Phrases

A complicated or bloated phrase in a test step can also have a negative effect on its

maintainability and understandability. B. Hauptmann [1], identifies a complicated or

bloated phrase as a phrase that is bloated up with unnecessary information. As

mentioned before, a couple of papers have identified simplicity of test steps as an

important quality attribute [28], [1]. Unnecessary information in a test step makes it

difficult for testers to grasp what they should do [1]. To detect complicated or bloated

phrases in the test steps, B. Hauptmann [1] calculates the number of words for each

sentence in the test steps. A test case contains a smell if at least one of its test steps

contains a sentence that consists of more than 45 words.

Smell - Dependent Test

One of the most important bad code smells is dependencies between test cases. A couple

of papers found that dependencies between tests can have a negative effect on the

execution of test cases [30],[31]. This is because a successful execution of one test case

is dependent on the successful execution of other test cases in the test suite. That is, the

test cases can only be run as a part of a collection of test cases in the test suite, not on its

own. Dependencies between test cases can also mean that the test cases share a static

field, stream, or file etc. This in turn can lead to one test case failing when it should not

[32]. By manually checking the appearance of this smell in the eight test artifacts we

analyzed, we found that there is a high degree of dependencies between test cases in the

test suite A10 (See Appendices section 15.1). No other dependencies between test cases

have been found in the remaining artifacts. We suggest a list of keywords that indicate

potential dependencies between test cases according to our findings.

List of keywords: Completed test case + any number, completed tests, completed previous

test\tests.

10 Example 1: Completed Test case 1 to obtain the normal state in the tested safety function and
in all related systems to allow test.
Example 2: Completed previous tests to obtain the necessary state of the tested safety function
and all related systems.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

43

9.2.2. Proposed Improvements of NALABS

The result of the literature study shows that there are additional smells that can be

implemented in NALABS to cover more aspects of natural language test specification

quality. Most of these smells are tailored to improve the quality assurance of test

specifications for manual system tests (i.e., test cases). Some of the discovered natural

language bad smells are already partially implemented in NALABS. For instance, the

author [3], use the number of words as a measure of specifications size, while the

number of words is used by other authors to measure the complexity of a test step [4],

[1]. In addition, the list of words that NALABS use to measure subjectivity in natural

language specifications overlaps with the list used by B. Hauptman et al. [4] to detect

ambiguity in test steps.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

44

Answer to RQ2: The table below shows all discovered natural language bad smells that

we propose to be implemented in NALABS to improve quality assurance of test

specifications. The table also specifies which smells are partially implemented and what

remains to be implemented in NALABS.

Table 9. Shows the proposed natural language bad smells that can be merged with the

natural language smells implemented in NALABS.

Smell name Impleme
nted

Smell name
in NALABS

Already
implemented

Implementation needs

Hard-Coded Values No — — See detection mechanism in
the smell description above.

Long Test Steps Partially Number of
words

Word count Threshold: 50 words per
action or its expected result
in the test step.
Improve GUI to indicate the
smell.

Conditional Tests Partially Conjunctions List of keywords: if,
when, in case.

List of keywords: Whether,
depending.

Badly Structured
Test Suite

No — — See detection mechanism in
the smell description above.

Tests Clones No — — See detection mechanism in
the smell description above.

Ambiguous Tests Partially Subjectivity
Weakness

List of keywords:
similar, better,
similarly, worse,
having in mind,
take into account,
take into
consideration,
adequate.

List of keywords: clear, easy,
strong, good, bad, efficient,
useful, significant, fast,
recent, far, close.

Inconsistent
Wording

No — — See detection mechanism in
the smell description above.

Branches in Test
Flow

Partially Conjunctions List of keywords: if,
when.

List of keywords: whether,
depending.

Merged Test Steps Partially Number of
words

Word count Threshold: 130 words per
test step text. Improve GUI
to indicate the smell.

Complicated or
Bloated Phrases

Partially Number of
words

Word count Threshold: 45 words per
sentence in a test step.
Improve GUI to indicate the
smell.

Ambiguous
Phrases

No — — See detection mechanism in
the smell description above.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

45

Dependent Test No — — List of keywords: Completed
test case + any number,
completed tests, completed
previous test\tests

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

46

10. Threats to Validity

External validity:

All the test artifacts we analyzed to answer RQ1 are collected from different companies

and open-source repositories, and they are real-world examples. It is possible that, the

artifacts are created by different testers who might have used different tools and

processes. In addition, the artifacts test different application domains. We consider the

external validity threat in our study to be mild. But to mitigate it and reach a more

generalizable result, the study has to be repeated. To make the replication of the study

possible, we used a publicly available tool NALABS that can be accessed in GitHub11. As

a result, other researchers can repeat our study by using different test artifacts that test

different application domains. The discovered natural language test smells that are used

to answer RQ2 are collected from scientific papers, and all the smells are tested and

considered by the authors of these papers as actual bad smells.

Internal validity:

Since the classification of the findings has been performed manually in RQ1, it is

possible that, the number of true positive findings depends on the reviewer’s opinion

thus introducing bias and subjectivity. To reduce this risk, before we started the manual

assessment of the findings, two researchers that have domain knowledge in the

software testing area and are not a part of the study team, have performed manual

assessments of a subset of findings. This resulted in us forming a common

understanding of the smell metrics and their corresponding quality issues. The manual

assessment of the findings has been performed on a randomly selected subset of all the

smell findings by the reviewers, we think it is possible that this introduces inaccuracy.

To double check our understanding of the natural language smell metrics, we

performed an individual classification of 20% of all findings. Afterwards, we reviewed

and compared our classifications to each other to clarify in which context a finding is an

instance of an actual smell. We repeated the classifications until we came to an

agreement and gained an in depth understanding of the smell metrics that helped us to

classify all the findings.

11NALABS can be accessed on GitHub at: eduardenoiu/NALABS: NALABS is a requirement quality
checker for natural language requirements. It uses a set of bad smells to indicate problematic
requirements. (github.com)

https://github.com/eduardenoiu/NALABS
https://github.com/eduardenoiu/NALABS
https://github.com/eduardenoiu/NALABS

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

47

11. Discussion

In this work, we focused on evaluating and improving one machine-supported analytical

measure NALABS that can work as a complement to manual reviews by highlighting

defects in natural language test artifacts during its quality assurance process. The

purpose was to make manual quality assurance of test artifacts significantly faster and

more convenient.

In the first step, we investigated whether the already implemented smell metrics in

NALABS can be applied to detect defects in natural language test specifications. We

performed manual assessments of each smell metric by reviewing its detected findings.

The result of the evaluation of the natural language smells shows that, the appearance

of one natural language bad smell metric in the test specifications does not always lead

to a defect in the test specifications, it sometimes just provides pointers to certain

locations that the quality assurance may need to be inspected. We think that the result

we reached for RQ1 is reasonable compared to the result of the study made by H.

Femmer et al [19]. The author mentioned that the appearance of their proposed list of

smells in requirements artifacts cannot always be considered as an actual defect, and

the findings must be judged manually by the context.

According to the claim we made in section 7.1 which was, “if most of the findings of one

smell metric are false positives, it will hinder quality assurance more than it will help”, we

evaluated which smell metrics are reasonable to be applied. After manually assessing

the ARI, optionality, and weakness metrics we have found that the appearances of these

metrics are rare in the test specifications. In addition, in most cases the appearance of

these metrics actually causes defects in the test artifacts. If we consider these metrics as

reasonable indicators of low quality and our evaluation is not entirely accurate. It will

not significantly hinder quality assurance by increasing the time and effort needed to

inspect them manually. In case other reviewers consider a large number of these

findings as false positives. Therefore, these metrics are considered as reasonable

indicators of low quality in test specifications.

For the conjunctions, imperatives, continuous and vagueness metrics that have a large

number of findings, if we consider them as reasonable indicators of low quality and a

large number of these findings are considered by other reviewers as false positives, it

actually happened in the manual assessment of findings by reviewers. For instance, in

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

48

the case of the metric imperatives, one reviewer considers 12 findings out of 21 findings

as true positives, while no findings are considered by the other reviewer as true

positives. In that way the findings of these metrics will have a negative impact on quality

assurance by increasing the time and effort needed to inspect them. On the other hand,

if we consider them as unreasonable indicators of low quality due to the large number

of false positives the metrics produce, it may lead to reviewers stop checking the

appearances of these metrics and consequently miss defects caused by them. This

means that the test artifact still contains defects. Therefore, we could just consider them

as pointers to certain locations that the quality assurance may need to inspect. In other

words, it is up to reviewers if they prefer to inspect them. We still recommend

refactoring the true positive findings of these metrics. This is because, we found that

refactoring the true positive findings of these metrics could help to improve

understandability and decrease complexity of the test specifications.

When it comes to the metrics NR1 and subjectivity, we were not able to find any

appearances of these metrics. Therefore, we could not determine if these metrics can be

applied. If these metrics does not appear in the test artifacts we analyzed, it does not

mean that they do not exist in other real world test artifacts. Consequently, there is a

need to analyze other test artifacts that tests other application domains to investigate

these smells further.

In the second step, we investigated the literature to explore if there are more bad smells

that can cover more aspects of test specifications quality. In our attempt to create a

comprehensive quality model we found that, there are limited papers that study the

natural language test smells, which confirms the claim made by B. Hauptmann et al [4].

As a result, it hinders our ability to achieve the study goal. Because it is difficult to claim

that the combination of the smell metrics introduced by [3] with the smell metrics

introduced by [1], [4] will be complete to capture all quality aspects of natural language

test specifications. In addition, the limitation of test artifacts provided by companies or

those that exist in open-source repositories restricts our attempt to create a sufficient

list of keywords that can detect all dependencies between natural language test cases.

Therefore, this list has to be extended by analyzing other test artifacts that tests other

application domain.

Finally, the combination of the already implemented smells in NALABS and the

discovered and proposed smells cannot be applied to detect defects in other artifacts

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

49

such as natural language requirements specifications, because most of the discovered

smells are tailored to detect smells in natural language test specifications according to

the authors of [1], [4].

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

50

12. Conclusions

In this work we investigated which natural language test smells implemented in

NALABS are sufficient to detect defects in natural language test specifications. The work

also focused on extending these smell metrics to cover more aspects of natural language

test quality. The purpose was to combine the existing natural language test smells in a

single index of quality.

The result of our study shows that most of the natural language smell metrics

implemented in NALABS have been found in the natural language test specifications.

The most common findings for the smell metrics are conjunctions, continuance,

imperative, vagueness, ARI, optionality, NR2 and weakness respectively. No findings for

the metrics NR1 and subjectivity. The appearance of one finding detected by any smell

metric does not necessarily lead to a defect in test specifications. Therefore, the finding

still should be judged manually by reviewers. Some of these metrics can uncover many

potential quality issues related to for example the understandability and complexity,

while other metrics can just provide pointers to certain locations that may need to be

inspected for defects, i.e., it is up to the reviewers to inspect them. As a result, the

machine-supported analytical measure NALABS can work as a complement to manual

reviews to make the manual quality assurance of test specifications faster and more

convenient. Our study has also extended the smell metrics implemented in NALABS to

cover more aspects of natural language test quality. The extension of natural language

test smells is not implemented yet. In addition, the extended list of smell metrics may

also not be complete and can possibly be extended further.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

51

13. Future Work

This work mostly focused on combining existing natural language test smells in a single

index of quality in order to build a comprehensive quality model. The natural language

test smells that we proposed or discovered remains to be implemented in NALABS. In

addition, the combined list of discovered and already implemented smells in NALABS

may not be sufficient enough to capture all quality aspects of natural language test

artifacts. As a future work, we propose to first check the literature and investigate if

there are any new bad smells that can cover more aspects of natural language test

quality, and finally to implement all smells in NALABS.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

52

14. References

[1] B. Hauptmann, "Reducing System Testing Effort by Focusing on Commonalities in
Test Procedures" Ph.D. dissertation, Institut f¨ur Informatik der Technischen
Universit¨at M¨unchen, Germany, 2016. [Online]. Available: 1294074.pdf (tum.de)

[2] J. Katharina, T. Matthias and F. Houdek, "Challenges concerning test case
specifications in automotive software testing: assessment of frequency and
criticality," Software Quality Journal, vol. 29, (1), pp. 39-100, 2021.

[3] Rajkovic, & Enoiu, E. (2022). NALABS: Detecting Bad Smells in Natural Language
Requirements and Test Specifications. [online] Available: (PDF) NALABS: Detecting Bad
Smells in Natural Language Requirements and Test Specifications (researchgate.net)

[4] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas and P. Braun, "Hunting for
smells in natural language tests," 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 1217-1220, doi: 10.1109/ICSE.2013.6606682.

[5] B.I.E. Elmar, "Quality Assurance of Test Specifications for Reactive Systems" Ph.D.
dissertation, Department, Georg-August-Universität zu Göttingen, Germany, 2010.
[Online]. Available: main-final.pdf (uni-goettingen.de)

[6] K. Wiegers and J. Beatty, Software Requirements, Third Edition. One Microsoft Way,
Redmond, Washington 98052-6399: Microsoft Press A Division of Microsoft
Corporation.

[7] L. Kof, “Natural language processing: Mature enough for requirements documents
analysis?” in Natural Language Processing and Information Systems: 10th International
Conference on Applications of Natural Language to Information Systems, NLDB 2005,
Alicante, Spain, June 15-17, 2005. Proceedings, ser. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, vol. 3513, pp. 91,102.

[8] R. R. Young, The Requirements Engineering Handbook. Artech House, 2004

[9] Ian Sommerville and P. Sawyer, REQUIREMENTS ENGINEERING Good Practice
Guide. Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd,
1997.

[10] N. Fenton and J. Bieman, Software Metrics A Rigorous and Practical Approach
THIRD EDITION. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-
2742: CRC Press Taylor & Francis Group, 2015.

[11] M. J. Ali, Metrics for Requirements Engineering. Ume˚a University, Department of
Computing Science, 2006.

[12] Sommerville, I., Pieper, K. and Alm, P., n.d. Software Engineering. 9th ed. USA.
Addison-Wesley. Pearson: 2015

[13] Masri, & Zaraket, F. (2016). Coverage-Based Software Testing. In Advances in
Computers (Vol. 103, pp. 79–142). Elsevier. Available: Test Requirement - an overview |
ScienceDirect Topics

https://mediatum.ub.tum.de/doc/1294074/1294074.pdf?fbclid=IwAR1Eu_TTYgIQ5MbEIuMWNSzNuNuEUhN0oHQ7wjj586FebkWIJKCLyc57dSg
https://www.researchgate.net/publication/358578742_NALABS_Detecting_Bad_Smells_in_Natural_Language_Requirements_and_Test_Specifications
https://www.researchgate.net/publication/358578742_NALABS_Detecting_Bad_Smells_in_Natural_Language_Requirements_and_Test_Specifications
https://www.swe.informatik.uni-goettingen.de/sites/default/files/publications/main-final.pdf
https://www.sciencedirect.com/topics/computer-science/test-requirement#:~:text=Definition%E2%80%94A%20test%20requirement%20describes,or%20a%20repeated%20test%20requirement.
https://www.sciencedirect.com/topics/computer-science/test-requirement#:~:text=Definition%E2%80%94A%20test%20requirement%20describes,or%20a%20repeated%20test%20requirement.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

53

[14] B. Hauptmann, M. Junker, S. Eder, E. Juergens and R. Vaas, "Can clone detection
support test comprehension?" 2012 20th IEEE International Conference on Program
Comprehension (ICPC), 2012, pp. 209-218, doi: 10.1109/ICPC.2012.6240490.

[15] Y. Falcone, J. Fernandez, L. Mounier, and J. Richier. “A compositional testing
framework driven by partial specifications”. In TESTCOM/FATES 2007, volume 4581 of
LNCS, pages 107-122. Springer, 2007.

[16] Y. Singh, Software Testing, Cambridge, UK:Cambridge University press, 2012.
Available:https://books.google.se/books?hl=en&lr=&id=HdKwDwAAQBAJ&oi=fnd&pg=
PT3&dq=+%22software+testing%22&ots=79gKn3oD9-
&sig=1uCP7bRcr48lmLbPYdgLFTAa8IA&redir_esc=y#v=onepage&q=%22software%20
testing%22&f=false

[17] M. Fowler and K. Beck, Refactoring: improving the design of existing code. Addison-
Wesley, USA, 1999.

[18] M. Zhang, T. Hall, and N. Baddoo. “Code bad smells: a review of current knowledge”.
Journal of Software Maintenance and Evolution, vol. 23(3), pp.179–202, April. 2011.

[19] H. Femmer, D. M. Fernandez, S. Wagner, and S. Eder, “Rapid quality assurance with
requirements smells,” Journal of Systems and Software, vol. 123, pp. 190–213, Jan. 2017.

[20] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing
techniques,” IEEE Transactions on Software Engineering, vol. 39, no. 1, pp. 18–44, 2011.

[21] K. Rajković, “MEÄSURING THE COMPLEXITY OF NÄTURÄL LANGUAGE
REQUIREMENTS IN INDUSTRIÄL CONTROL SYSTEMS,” Mälardalen university, Västerås,
Sweden, Dissertation, 2019. [Online] Available: FULLTEXT01.pdf (diva-portal.org)

[22] A. Viggiato, D. Paas, C. Buzon, and C. Bezemer. “Using natural language processing
techniques to improve manual test case descriptions.” International Conference on
Software Engineering - Software Engineering in Practice (ICSE - SEIP) Track. May. 2022.

[23] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical software engineering, vol. 14, no. 2, p. 131,
2009

[24] C. Wohlin, "Guidelines for snowballing in systematic literature studies and a
replication in software engineering", Proc. 18th Int. Conf. Eval. Assessment Softw. Eng.
(EASE), 2014.

[25] K. Säfsten, M. Gustavsson, Research methodology-for engineers and other problem-
solvers, Studentlitteratur AB Lund, 2019.

[26] M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for
classification tasks", Inf. Process. Manag., vol. 45, no. 4, pp. 427-437, Jul. 2009

[27] Lehner, F. “Quality control in software documentation: Measurement of text
comprehensibility,” Information and Management, vol. 25, pp.133–146, Sep. 1993.

https://books.google.se/books?hl=en&lr=&id=HdKwDwAAQBAJ&oi=fnd&pg=PT3&dq=+%22software+testing%22&ots=79gKn3oD9-&sig=1uCP7bRcr48lmLbPYdgLFTAa8IA&redir_esc=y#v=onepage&q=%22software%20testing%22&f=false
https://books.google.se/books?hl=en&lr=&id=HdKwDwAAQBAJ&oi=fnd&pg=PT3&dq=+%22software+testing%22&ots=79gKn3oD9-&sig=1uCP7bRcr48lmLbPYdgLFTAa8IA&redir_esc=y#v=onepage&q=%22software%20testing%22&f=false
https://books.google.se/books?hl=en&lr=&id=HdKwDwAAQBAJ&oi=fnd&pg=PT3&dq=+%22software+testing%22&ots=79gKn3oD9-&sig=1uCP7bRcr48lmLbPYdgLFTAa8IA&redir_esc=y#v=onepage&q=%22software%20testing%22&f=false
https://books.google.se/books?hl=en&lr=&id=HdKwDwAAQBAJ&oi=fnd&pg=PT3&dq=+%22software+testing%22&ots=79gKn3oD9-&sig=1uCP7bRcr48lmLbPYdgLFTAa8IA&redir_esc=y#v=onepage&q=%22software%20testing%22&f=false
http://www.diva-portal.org/smash/get/diva2:1332337/FULLTEXT01.pdf

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

54

[28] H. K. V. Tran, N. B. Ali, J. Börstler and M. Unterkalmsteiner, "Test-case quality–
understanding practitioners’ perspectives", International Conference on Product-Focused
Software Process Improvement, pp. 37-52, November 2019.

[29] H. K. V. Tran, M. Unterkalmsteiner, J. Börstler, and N. bin Ali. “Ässessing test artifact
quality––Ä tertiary study”. In: Information and Software Technology Volume 139
(2021).

[30] W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M.W. Mkaouer, A. Ouni, C.D.
Newman, A. Ghallab, and S. Ludi. “Test Smell Detection Tools: A Systematic Mapping
Study. In Evaluation and Assessment in Software Engineering” (Trondheim, Norway)
(EASE 2021). Association for Computing Machinery, New York, NY, USA, pp.170–180.
2021.

[31] M. Kummer, “Categorizing test smells”, BSc thesis, Institute of Computer Science and
Applied Mathematics, University of berns, Switzerland, 2015. [online] Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type
=pdf

[32] M. Waterloo, S. Person and S. Elbaum, "Test Analysis: Searching for Faults in Tests
(N)," 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2015, pp. 149-154, doi: 10.1109/ASE.2015.37.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

55

15. Appendices

15.1. Test artifact A

1. Test

In this chapter you can find a set of tests for this safety function. A set of the tests
have been selected based on the functionality of this safety function, to cover the
largest parts of the function.

1. Action before test

To test this safety function correctly, other the safety functions that are not
tested have to be simulated by the internal simulation. The internal simulation is
controlled from the visualization as shown in the picture below
(ANONYMYZED).

The Category 1 Stop Ok must be True before the start of testing. When the
simulation is activated (by default setting), most of the inputs for the safety
functions are simulated to the normal state (to the safety state). The remaining
safety function inputs / variable / Parameters s have to by forced in the
beginning of test application.

Table 3 Forced Safety Function Inputs in Test application

Input /
variable

Data
Type

Description

IN1 BOOL Applicable for (X), (Y), (Z). In True during all test
cases.

IN2 BOOL In True during all test cases.

IN3 BOOL In False during all test cases.

IN4 BOOL In False during all test cases.

2. Test case: 1 – All inputs in normal state

Prerequisite for test: As inputs below. All related systems have to be ready and in the
normal state (in the safety state) to allow test.

Test: This case tests the safety function outputs when the safety function inputs are
set as in the Inputs tables below. The [SYSTEM] numbers are same to reach the
safety state.

Expected result: The safety function outputs must be True. The safety function is in
the normal state. All inputs are in the safety state and therefore the [SYSTEM]
can operate.

[SYSTEM] Control Inputs Value

Outputs Expected Value

v_in.[SYSTEM]1 15 OUT1 True

v_in.[SYSTEM]2 15 OUT2 True

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

56

 OUT3 True

 OUT4 True

3. Test case: 2 – Change of [SYSTEM] number

Prerequisite for test: As inputs below. Completed Test case 1 to obtain the normal
state in the tested safety function and in all related systems to allow test.

Test: This case tests the safety function outputs when the safety function inputs are
set as in the Inputs table below. One of the [SYSTEM] numbers is changed.

Expected result: The safety function outputs must be False.

[SYSTEM]Control Inputs Value

Outputs Expected Value

v_in.[SYSTEM]1 15 OUT1 False

v_in.[SYSTEM]2 5 OUT2 False

 OUT3 False

 OUT4 False

4. Test case: 3 – Change of [SYSTEM] number

Prerequisite for test: As inputs below. Completed previous tests to obtain the
necessary state of the tested safety function and all related systems.

Test: This case tests the safety function outputs when the safety function inputs are
set as in the Inputs table below. One of the [SYSTEM] numbers is changed.

Expected result: The safety function outputs must be False.

[SYSTEM]Control Inputs Value

Outputs Expected Value

v_in.[SYSTEM]1 5 OUT1 False

v_in.[SYSTEM]2 15 OUT2 False

 OUT3 False

 OUT4 False

5. Test case: 4 – Change of both [SYSTEM] numbers

Prerequisite for test: As inputs below. Completed previous tests to obtain the
necessary state of the tested safety function and all related systems.

Test: This case tests the safety function outputs when the safety function inputs are
set as in the Inputs table below. Both [SYSTEM] numbers are changed
simultaneously.

Expected result: The safety function outputs must be True.

[SYSTEM]Control Inputs Value

Outputs Expected Value

v_in.[SYSTEM]1 5 OUT1 True

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

57

v_in.[SYSTEM]2 5 OUT2 True

 OUT3 True
 OUT4 True

6. Test case: 5 – Change of both [SYSTEM] numbers

Prerequisite for test: As inputs below. Completed previous tests to obtain the
necessary state of the tested safety function and all related systems.

Test: This case tests the safety function outputs when the safety function inputs are
set as in the Inputs table below. Both [SYSTEM] numbers are changed to 0
simultaneously.

Expected result: The safety function outputs must be False. The safety function isn't
in the normal state because 0 isn't allowed as the safety identity number.

[SYSTEM]Control Inputs Value

Outputs Expected Value

v_in.[SYSTEM]1 0 OUT1 False

v_in.[SYSTEM]2 0 OUT2 False

 OUT3 False
 OUT4 False

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

58

15.2. The result of analyzing Test artifact A by using NALBAS

Text NW NC NV Opt Subj NR NR2 Weak NI1 NI2 Con ARI

Completed previous tests to obtain the
 necessary state of the tested safety
 function and all related systems.

17 2 0 0 0 0 0 0 0 0 2 66

6. Test case: 5 Change of both [SYSTEM]
 Numbers

9 0 0 0 0 0 0 0 0 0 0 50

Prerequisite for test: As inputs below. 6 0 0 0 0 0 0 0 0 0 1 57

Expected result: The safety function
 outputs must be True.

9 0 0 0 0 0 0 0 2 2 0 59

One of the [SYSTEM] numbers is
changed.

7 0 0 0 0 0 0 0 0 0 0 49

Test: This case tests the safety function
outputs when the safety function inputs
are set as in the Inputs table below.

21 1 0 0 0 1 0 0 0 0 1 63

Completed previous tests to obtain
the necessary state of the tested safety
function and all related systems.

17 2 0 0 0 0 0 0 0 0 2 66

Completed previous tests to obtain the
necessary state of the tested safety
function
and all related systems.

17 2 0 0 0 0 0 0 0 0 2 66

Prerequisite for test: As inputs below.
All related systems have to be ready
and in the normal state (in the safety
state)
to allow test.

25 2 3 0 0 0 0 2 0 0 3 53

A set of the tests have been selected
based
on the functionality of this safety
function, to
cover the largest parts of the function.

24 0 1 0 0 0 0 0 0 0 0 65

Prerequisite for test: As inputs below. 6 0 0 0 0 0 0 0 0 0 1 57

Prerequisite for test: As inputs below. 6 0 0 0 0 0 0 0 0 0 1 57

5. Test case: 4 Change of both [SYSTEM]
Numbers

9 0 0 0 0 0 0 0 0 0 0 50

4. Test case: 3 Change of [SYSTEM]
number

9 0 0 0 0 0 0 0 0 0 0 57

Test: This case tests the safety function
outputs when the safety function inputs
are set as in the Inputs table below.
One of the [SYSTEM] numbers is
changed.

28 1 0 0 0 1 0 0 0 0 1 56

. Completed Test case 1 to obtain the
normal
state in the tested safety function and in
all

23 2 2 0 0 0 0 2 0 0 2 62

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

59

related systems to allow test.

Prerequisite for test: As inputs below. 6 0 0 0 0 0 0 0 0 0 1 57

The remaining safety function inputs /
variable / Parameters s have to by forced
in the beginning of test application.

20 0 1 0 0 0 0 0 0 0 0 64

Expected result: The safety function
outputs must be False.

9 0 0 0 0 0 0 0 2 2 0 60

The safety function is in the normal state.
All inputs are in the safety state and
therefore the [SYSTEM] can operate.

21 2 2 2 0 0 0 2 0 2 2 53

Expected result: The safety function
outputs must be False.

9 0 0 0 0 0 0 0 2 2 0 60

The internal simulation is controlled
from the visualization as shown in the
picture below (ANONYMYZED).

15 0 0 0 0 0 0 0 0 0 1 69

The safety function isn't in the
 normal state because 0 isn't
allowed as the safety identity
number.

17 0 2 0 0 0 0 2 0 0 0 61

Expected result: The safety
function outputs must be False.

9 0 0 0 0 0 0 0 2 2 0 60

Both [SYSTEM] numbers are
changed to 0 simultaneously.

8 0 0 0 0 0 0 0 0 0 0 60

Test: This case tests the safety
function outputs when the safety
function inputs are set as in the
Inputs table below.

21 1 0 0 0 1 0 0 0 0 1 63

Both [SYSTEM] numbers are changed
simultaneously.

6 0 0 0 0 0 0 0 0 0 0 72

Expected result: The safety function
outputs must be True.

9 0 0 0 0 0 0 0 2 2 0 59

2. Test case: 1 All inputs in normal state 9 0 2 0 0 0 0 2 0 0 0 45

The Category 1 Stop Ok must be True
before the start of testing.
When the simulation is activated
 (by default setting), most of the inputs
for
the safety functions are
simulated to the normal state
 (to the safety state).

39 2 2 0 0 0 0 2 2 2 0 62

This case tests the safety function
outputs when the safety function
 inputs are set as in the Inputs tables
below. The [SYSTEM] numbers are
same to reach the safety state.

31 1 0 0 0 0 0 0 0 0 1 58

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

60

To test this safety function correctly,
other the safety functions that are
not tested have to be simulated by
the internal simulation.

22 0 1 0 0 0 0 0 0 0 0 68

Table 3 Forced Safety Function
Inputs in Test application

9 0 0 0 0 1 0 0 0 0 0 58

In this chapter you can find a set
of tests for this safety function.

14 0 0 2 0 0 0 0 0 2 0 50

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

61

15.3. Test artifact H

Introduction/Overall Test Objectives

This test case is intended to verify that the following functionality is working

successfully:
This are all the main features of the application and our objective is to get them

into working efficiently.

• Feature 1 – “Äpplication Sliders on start-up” - User will get some
necessity DO’s, so that they can follow the same and protect
themselves from this virus.

• Feature 2 – “Prevention” - User will get some advice on how to prevent
them self from this virus.

• Feature 3 – User should get to know about the symptoms.
• Feature 4 – Total Number of cases - User should get to know about the

active/recovered cases.
• Feature 5 – “Ädd Location” – User should be able to add multiple

locations.
• Feature 6 – “Äpp Feedback” – This feature allows user to give us a.

Limitations/Dependencies/Requirements

1.1 Test Case Limitations

* We can only test one feature at a time, the reason is if we are trying to

add multiple location then application start giving both notification
(You are in affected zone & You are in a safe location) which is very
confusing to the user.

* When user is giving multiple feedback, our app just updates the
feedback. That is one user can only give one update.

* For now, only admins can add their location if they are tested positive.

1.2 Test Case Dependencies / Assumptions

* As we are using free version of Firebase, it only allows us to use 5

physical devices to connect at once, that means only five device can
give a feedback at once.

* For a user to get a notification, other users (admins) should have added
location if they ae affected they only other users can get notification if
they enter affected area.

* Our application is dependent on worldometer website, as one of our
features show us the total number of corona virus count in united
states, that feature is linked with worldometer website, if that website
is down or out of service than “Total number” feature will not work.

* There’s a feature (Find Location & Ädd Location), both of these feature
are fully dependent on Google Maps, are to use that google map we are
using a library “com.google.android.gms.maps.GoogleMap”.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

62

1.3 Default Setup

Database – Firebase Real Time database
Tools – Appium (For automation testing; work in progress), Android Studios
(Functional Testing)
Libraries – There are various libraries we need to make our application works
smoothly without any lag.
 Some of those libraries are:

1) Dagger2
2) Location Services
3) Retrofit
4) Glide

1.4 Process Flow

Test Process – Out test process was basically a functional testing where we
started testing every feature, we have 6 main features and after testing all those
features, we went deep into testing sub-features.

For example – We started our test right after we tap on Application icon, after
tapping on the icon there’s 3 sec delay and in that delay, we are showing one
symbol which says covid 19 and right after 3sec delay, there are 3 basic DO’s
which user should follow before doing anything.

Since we worked on the development part of this application, we are completely
aware of how this application should work, so we wrote test cases for all the
scenarios, for all the touch/click on the application and what will the expected
output be. And we tested all the test cases and made a note of it whether it passed
or failed.

Test Set Up – It is done in the android studio, when we developed it initially, we
worked on unit testing where we tested all the individual screen and we also
tested after integrating/linking all the screens which was integration testing, but
we never wrote test cases back then but now we considered full-fledged test
cases.

Also, we are working on automation testing where we are using Appium testing
tool to test all the test cases at one time. In this we must write test cases and once
we run it, it will give the test results telling how many test cases passed and how
many of them failed along with the time taken to execute.

Test Report – Below is our test case report where we have listed all the test cases
along with the result either it Passed or Failed the test case along with the steps
on how to test and its expected results. In ideal scenario we can have more details
in the report giving a tracking ID to each test, developer who developed it, date on
which issue was identified, steps followed to find a bug, screenshots of these
steps, Priority to be resolved, etc.,
These details will give us the Pass percentage and fail percentage of the test cases
executed. Also, these details will be very beneficial to know the current quality of
the product or give status report to stake holders of the projects or when is it
ready to be released etc.,

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

63

2 Test Case Specification

Test case1: To test if user can download the file and open it.

Step
Num

Step
Description

Path and Action
Test
Data

Expected Results Pass/Fail Comments

0
1.

Checking if
user can
access the
application
and open
it.

Download
the file.

Attach
the file
here.

Application
downloaded in the
mobile.

At this time, we
DO NOT have the
application
available on play
store, so we just
have an
executable file to
install the
application.

0
2.

Click on the

application to
open it.

-
Was able to access
the application.

 Tested both in
android & iPhone.

End Test case to download and open the application was Passed without any issues.

Test case2: To test if it displays a flash screen of COVID-19 as soon as you
open.

Step
Num

Step Description
Path and

Action
Test
Data

Expected Results Pass/Fail Comments

0
1.

To test if the
initial flash
screen is
displayed as
soon as we open
the application.

Click on
the application
to open it.

-

Application displays an
initial flash screen
which says COVID-19
as soon as we click on
the application to open
it.

End Test case to display initial flash screen of the application was Passed without any issues.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

64

Test case3: To test initial safety measures screen upon opening the
application. (Application just shows few safety measures with images and a
short message as soon as you open the application)

Step
Num

Step
Description

Path and
Action

Test
Data

Expected Results Pass/Fail Comments

0
1.

Test case to
test the
initial
screen of
the
application
upon
opening
the
application.

Click on
the application
to open it,
which should
show initial
screen of
safety
measures.

-

Application
opened in
mobile.
Displays initial
screen - "Keep
Distance:
Distance means
so little, when life
means so much"
with an image
and a short
message.

Since this
application

was
developed
8 months
ago it just
has basic

information
about
COVID

(what we
knew at

that point
of time)

0
2.

To test the
second
safety
measure.

Swipe left
to see the next
safety
measure.
This action
should move
to next screen
with different
safety
measure.

-

This left swipe
moved the screen
left and displayed
a new screen
with a different
safety measure -
"Wear a mask:
Don’t die, please
buy" with an
image and a short
message.

0
3.

To test the
third safety
measure.

Swipe left
to see the next
safety
measure.
This action
should move
to next screen
with different
safety
measure.

-

This left swipe
moved the screen
left and displayed
a new screen
with a different
safety measure -
"Wash your
hands: Please
wash for at least
20 seconds" with
an image and a
short message.

0
4.

To test
"BACK"
touch
button.

There will
be a "BACK"
touch button
on second and
third screen.
Once BACK
button is

-

Upon touching
the BACK button
from 2nd and 3rd
screen, it was
taken back to 1st
and 2nd screen
respectively.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

65

touched, it
should take
the user back
to previous
screen.

0
5.

To test
"FINISH"
touch
button.

There is a
"FINISH" touch
button in the
last screen of
the safety
measures, it
should take
user to main
home screen
of the
application
upon touching
it.

-

Upon touching
the FINISH button
from the last
screen, it took us
to main home
page of the
application.

End Test case to test the initial screen of safety measures was Passed successfully.

Test case4: To test the symptoms feature of the application (This feature
will list major symptoms of COVID-19)

Step
Num

Step
Description

Path and
Action

Test
Data

Expected
Results

Pass/Fail Comments

0
1.

Test case to
test the
symptoms
feature of
the
application.

Touch
"Symptoms"
feature
available on
the home
screen of the
application,
this should
take user to a
new screen
where all the
major
symptoms of
COVID-19 are
listed.

-

Touch on the
"Symptoms"
feature took us
to a screen
where all the
symptoms of
COVID-19 was
listed - like
Fever, Dry
cough,
Headache,
Breathless, tired
etc., with
images

We have
numerous
symptoms

at this
point of

time, but
the

application
will list

only 5-6
major

symptoms
which was
highlighted

last year
same time.

0
2.

To test
"BACK"
touch
button.

BACK
touch button
should
navigate the
user back to

-

This took us
back to main
home screen,
tried this serval
time by

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

66

main home
screen of the
application.

navigation to
different
screens and it
worked fine.

End Test case to test SYMPTOMS feature of the application was Passed successfully.

Test case5: To test the Prevention feature of the application (This feature
will list how can we Prevent ourselves from getting infected by COVID)

Step
Num

Step
Description

Path and
Action

Test
Data

Expected Results Pass/Fail Comments

0
1.

Test case to
test the
Prevention
feature of
the
application.

Touch
"Preventions"
feature
available on
the home
screen of the
application,
this should
take user to a
new screen
where all the
major
Preventions of
COVID-19 are
listed.

-

Touch on the
"Preventions"
feature took us
to a screen
where all the
preventions was
listed - like stay
home if sick,
cover cough,
cough on your
elbows, clean
and disinfect,
avoid close
contact, cover
mouth and nose
etc., with
images.

0
2.

To test
"BACK"
touch
button.

BACK
touch button
should
navigate the
user back to
main home
screen of the
application.

-
This took us back
to main home
screen.

End Test case to test PREVENTION feature of the application was Passed successfully.

Test case6: To test the admin login
Step
Num

Step
Description

Path and
Action

Test
Data

Expected Results Pass/Fail Comments

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

67

0
1.

Test case
to test
admin
login
feature.

Touch
"Add
location"
feature on the
home screen
of the
application,
this should
take user to
admin login
screen (we
have
restricted
adding
location by all
users at this
point of time).

-

"Add location"
touch button took
us to admin login
screen.

Pass

0
2.

To test
admin

login for
various
inputs.

Leave
both email
and password
blanks and try
to login.

-

It displayed a small
pop-up at the
bottom of the
screen telling-
"Please enter
email and
Password to login".

0
3.

Enter
only email
and leaving
the password
blanks.

-

Received a pop-up
telling- "Please
enter password to
login".

0
4.

Enter
only
password and
leave email
blanks.

-

Received a pop-up
telling- "Please
enter email to
login".

0
5.

Enter
incorrect
email and
password.

-

Received a pop-up
telling-
"Incorrect!!Please
enter valid
credentials to
login".

0
6.

Enter
correct email
and
password.

-
Was able to login
successfully.

End Test case to test admin login feature was Passed successfully.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

68

Test case7: To test the Total number feature of the application (Displays the
total number of COVID cases in individual countries and across the world)

Step
Num

Step
Description

Path and
Action

Test
Data

Expected Results Pass/Fail Comments

0
1.

Test case
to test the
total
number of
cases
across the
world.

Touch the
"Total
number"
feature from
the main
screen, this
should take
user to a new
webpage
where it
displays total
number of
cases till date.

-

This feature took
us to new web
page called
world meter
where it had
information
about total
number of
corona cases till
date, number of
deaths, number
of recoveries.

0
2.

Touch
countries in
the link to see
the total
number of
cases in
individual
countries
across the
world.

-

This displayed
the number of
cases, deaths &
recoveries of all
the countries
across the world.

0
3.

Further

scrolling
down.

-

It will display
number of new
cases coming in
on daily bases, a
linear &
logarithmic curve
of graph showing
total cases form
last one year,
graph of daily
new cases, daily
deaths,
population of the
country vs
corona affected
count, a table of
all the countries
with the counts
etc.,

End Test case to test "Total number" feature was Passed successfully.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

69

Test case8: To test the add location feature of the application (This feature
will let the user add his/her own location)

Step
Num

Step
Description

Path and
Action

Test
Data

Expected
Results

Pass/Fail Comments

0
1.

Test case
to test the
add
location
feature of
the
application

Touch
"Add Location"
feature
available on
the home
screen of the
application,
this should
take user to a
new screen
where user is
directed to
add his/her
location
manually.

-

Touch on the
"Add Location"
Feature took us
to a screen
where user can
manually add
the location and
with that
location, this
application will
show the result
like (Active
cases, notify
about the area is
safe or not)

End
Test case to test ADD LOCATION feature of the application was Passed
successfully.

Test case9: To test the find location feature of the application (This feature
will let the user add his/her own location)

Step
Num

Step
Description

Path and Action
Test
Data

Expected Results Pass/Fail Comments

0
1.

Test case
to test the
Find
location
feature of
the
application

Touch "Find
Location"
feature available
on the home
screen of the
application, this
should take user
to a new screen
where user is
directed to
google maps.

-

Touch on the "Find
Location" Feature
took user to a
screen where user
can see his actual
location on the
google maps.

0
2.

Test case
to test
when user
hovering
around
googles
maps.

If affected user
has added
his/her location
on the "Add
Location"
features, then
only he/she will
get the

-

Yes, after directing
it to google maps
screen, notification
pop ups are there.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

70

notification (i.e.,
you Entered the
affected place or
you leave the
affected place)

End Test case to test FIND LOCATION feature of the application was Passed successfully.

Test case10: To test the Feedback Us feature of the application (This feature
will ask user about his/her experience using this app)

Step
Num

Step
Description

Path and Action
Test
Data

Expected Results Pass/Fail Comments

0
1.

Test case
to test the
"Feedback
Us"
feature of
the
application

Touch
"Feedback Us"
feature available
on the home
screen of the
application,
after touching it
should redirect
it to a new
screen from
which user has
to select a rating
and then click
on submit
button.

-

Touch on the
"Feedback Us"
Feature took user
to another screen
where user must
select one option
out of 5 (5
emoticon) after
selecting user must
tap on submit to
successfully
submitting the
feedback.

0
2.

On second
screen, user will
see 5 emoticons
which will be the
rating he/she
wanted to give
to developer.

-
User was able to
select an emoticon.

03.

After
selecting one of
the emoticons,
user must touch
on submit
button in order
to submit
his/her review.

-
User was able to
submit his/her
review.

 04.

Just after
submitting the
review, user will
be able to see

-
User was able to
see the pop-up
message.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

71

one pop up
saying "your
review is
submitted"

End Test case to test FEEDBACK US feature of the application was Passed successfully.

Test case11: To test the Feedback Us confirmation feature of the application
(This feature will let the owner know about the feedback given by the users)

Step
Num

Step
Description

Path and Action
Test
Data

Expected Results Pass/Fail Comments

0
1.

Test case
to test the
"Feedback
stored in
the
database"
feature of
the
application

Touch
"Feedback Us"
feature available
on the home
screen of the
application, after
touching it
should redirect it
to a new screen
from which user
has to select a
rating and then
click on submit
button. After
Submitting the
feedback, it
should show in
Firebase
Database.

-

User feedback was
there in the
Firebase Database
in the form of
point, scaling from
0-5.

End
Test case to test FIREBASE DATABASE feature of the application was Passed
successfully.

Test case failed 1 - admin login
(crashed)
Step
Num

Step
Description

Path and Action
Test
Data

Expected Results Pass/Fail

0
1.

Test case to
test admin
login
feature.

Touch "Add
location" feature
on the home
screen of the
application, this
should take user to
admin login screen
(we have restricted
adding location by
all users at this

-
"Add location" touch
button took us to admin
login screen.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

72

point of time).

0
2.

To test
admin login
for various

inputs.

Leave both
email and
password blanks
and try to login.

-

It doesn’t work every
time, sometime
application gets crashed
and doesn’t show any
pop-up text.

0
3.

Enter only
email and leaving
the password
blanks.

-

If email does not contain
any "@xx.com", instead
of throwing a pop-up
text "email incorrect",
application redirect user
to main screen.

0
4.

Enter only
password and
leave email blanks.

-
Received a pop-up
telling- "Please enter
email to login".

0
5.

Enter
incorrect email and
password.

-

Received a pop-up
telling-
"Incorrect!!Please enter
valid credentials to
login".

0
6.

Enter correct
email and
password.

-
Was able to login
successfully.

End Test case to test ADMIN LOGIN feature was FAILED.

Test case failed 2 - Find location has the location which was already
added by the admin

Step
Num

Step
Description

Path and Action
Test
Data

Expected Results Pass/Fail

0
1.

Test case to
test Find
Location
feature.

Touch "Find
location" feature
on the home
screen of the
application, this
should take user to
check the location
in google maps (we
have restricted
adding location by

-
"Find location" touch
button took us to google
maps screen.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

73

all users at this
point of time).

0
2.

To test find
location for

multiple
location.

When user is
in google maps
screen, he/she can
only look for the
places added by
admin.

-

Result should show
user's current location
and application should
tell user about the
affected area. Instead of
that user can only see
the location which was
marked by the admin.

End Test case to test FIND LOCATION feature was FAILED.

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

74

15.4. The result of analyzing Test artifact H by using NALBAS

Text NW NC NV Opt Subj NR NR2 Weak NI1 NI2 Con ARI

Touch on the Feedback Us" Feature took
user to another screen where user must
select one option out of 5 (5 emoticon)
after selecting user must tap on submit to
successfully submitting the feedback."

34 2 0 0 0 0 0 0 4 4 0 77

Touch Feedback Us" feature available on
the home screen of the application, after
touching it should redirect it to a new
screen from which user has to select a
rating and then click on submit button."

36 4 1 0 0 0 0 0 3 3 2 77

Test case to test the Feedback Us" feature
of the application"

11 0 0 0 0 0 0 0 0 0 0 53

Yes, after directing it to google maps
screen, notification pop ups are there

13 1 0 0 0 0 0 0 0 0 0 58

If affected user has added his/her
location on the Add Location" features,
then only he/she will get the notification
(i.e., you Entered the affected place or
you leave the affected place)"

31 3 3 0 0 0 0 0 3 3 0 62

Test case to test when user hovering
around google maps.

10 1 0 0 0 0 0 0 0 0 0 52

Touch on the Find Location" Feature took
user to a screen where user can see his
actual location on the google maps."

22 1 0 2 0 0 1 0 0 2 0 61

Touch Find Location" feature available
on the home screen of the application,
this should take user to a new screen
where user is directed to google maps."

27 1 0 0 0 0 0 0 3 3 0 70

Enter incorrect email and password. 5 2 0 0 0 0 0 0 0 0 2 60

Enter only password and leave email
blanks.

7 2 0 0 0 0 0 0 0 0 2 54

Enter only email and leaving the
password blanks.

8 2 0 0 0 0 0 0 0 0 2 55

Leave both email and password blanks
and try to login.

10 4 0 0 0 0 0 0 0 0 4 50

There is a FINISH" touch button in the
last screen of the safety measures, it
should take user to main home screen of
the application upon touching it."

28 0 0 0 0 0 0 0 3 3 0 68

To test FINISH" touch button." 5 0 0 0 0 0 0 0 0 0 0 51

Upon touching the BACK button from
2nd and 3rd screen, it was taken back to
1st and 2nd screen respectively.

20 4 0 0 0 0 0 0 0 0 4 60

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

75

There will be a BACK" touch button on
second and third screen. Once BACK
button is touched, it should take the user
back to previous screen."

26 3 3 0 0 0 0 0 6 6 2 53

Received a pop-up telling- Please enter
password to login"."

9 0 0 0 0 0 0 0 0 0 0 61

Add location" touch button took us to
admin login screen."

10 0 0 0 0 0 0 0 0 0 0 54

Enter correct email and password. 5 2 0 0 0 0 0 0 0 0 2 57

These are the test cases for our manual
testing. Also, we are working on scripts
for automation test using Appium tool to
complete this is less amount of time. This
will also reduce the manual effort and
will be more accurate.

41 2 6 0 0 0 0 0 6 6 2 55

To test BACK" touch button." 5 0 0 0 0 0 0 0 0 0 0 48

To test find location for multiple location. 7 0 0 0 0 0 0 0 0 0 0 55

Touch on the Preventions" feature took
us to a screen where all the preventions
was listed - like stay home if sick, cover
cough, cough on your elbows, clean and
disinfect, avoid close contact, cover
mouth and nose etc., with images."

41 6 0 0 0 0 0 0 0 0 5 63

Touch Preventions" feature available on
the home screen of the application, this
should take user to a new screen where
all the major Preventions of COVID-19
are listed."

28 1 0 0 0 0 0 0 3 3 1 73

Further scrolling down. 3 0 0 0 0 0 0 0 0 0 0 66

Test case to test the Prevention feature of
the application.

10 0 0 0 0 0 0 0 0 0 0 55

Test case to test the symptoms feature of
the application.

10 0 0 0 0 0 0 0 0 0 0 54

Upon touching the FINISH button from
the last screen, it took us to main home
page of the application.

19 0 0 0 0 0 0 0 0 0 0 58

Test case to test Find Location feature. 7 0 0 0 0 0 0 0 0 0 0 50

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

76

Result should show user's current
location and application should tell user
about the affected area. Instead of that
user can only see the location which was
marked by the admin.

30 2 0 2 0 0 1 0 6 8 2 60

When user is in google maps screen,
he/she can only look for the places added
by admin.

17 1 0 2 0 0 0 0 0 2 0 54

Find location touch button took us to
google maps screen."

10 0 0 0 0 0 0 0 0 0 0 54

Touch Find location" feature on the home
screen of the application, this should take
user to check the location in google maps
(we have restricted adding location by all
users at this point of time)."

35 0 0 0 0 0 0 0 3 3 0 77

Was able to login successfully. 5 0 0 0 0 0 0 0 0 0 0 53

Enter correct email and password 5 2 0 0 0 0 0 0 0 0 2 55

Received a pop-up telling-
Incorrect!!Please enter valid credentials
to login"."

10 0 0 0 0 0 0 0 0 0 0 73

Enter incorrect email and password. 5 2 0 0 0 0 0 0 0 0 2 60

Add location" touch button took us to
admin login screen."

10 0 0 0 0 0 0 0 0 0 0 54

It doesnâ€™t work every time, sometime
application gets crashed and doesnâ€™t
show any pop-up text.

15 2 0 0 0 0 0 0 0 0 2 63

Leave both email and password blanks
and try to login.

10 4 0 0 0 0 0 0 0 0 4 50

Touch Add location" feature on the home
screen of the application, this should take
user to admin login screen (we have
restricted adding location by all users at
this point of time)."

32 0 0 0 0 0 0 0 3 3 0 75

User was able to submit his/her review. 7 0 0 0 0 0 0 0 0 0 0 49

After selecting one of the emoticons, user
must touch on submit button in order to
submit his/her review.

18 2 0 0 0 0 0 0 2 2 0 62

This feature took us to new web page
called world meter where it had
information about total number of
corona cases till date, number of deaths,
number of recoveries.

29 2 0 0 0 0 0 0 0 0 0 71

Touch the Total number" feature from
the main screen, this should take user to
a new webpage where it displays total
number of cases till date"

26 2 0 0 0 0 0 0 3 3 0 66

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

77

Received a pop-up telling-
Incorrect!!Please enter valid credentials
to login"."

10 0 0 0 0 0 0 0 0 0 0 73

For a user to get a notification, other
users (admins) should have added
location if they ae affected they only
other users can get notification if they
enter affected area.

30 2 1 2 0 0 0 0 3 5 0 73

Test case to test the Find location feature
of the application

11 0 0 0 0 0 0 0 0 0 0 53

Touch on the Add Location" Feature took
us to a screen where user can manually
add the location and with that location,
this application will show the result like
(Active cases, notify about the area is safe
or not)"

39 4 3 2 0 0 0 0 3 5 2 80

Touch Add Location" feature available on
the home screen of the application, this
should take user to a new screen where
user is directed to add his/her location
manually."

29 1 0 0 0 0 0 0 3 3 0 73

Test case to test the add location feature
of the application

11 0 0 0 0 0 0 0 0 0 0 52

To test BACK" touch button." 5 0 0 0 0 0 0 0 0 0 0 48

This left swipe moved the screen left and
displayed a new screen with a different
safety measure - Wash your hands:
Please wash for at least 20 seconds" with
a image and a short message."

35 4 0 0 0 0 0 0 0 0 4 74

Checking if user can access the
application and open it.

10 3 0 2 0 0 0 0 0 2 2 52

These details will give us the Pass
percentage and fail percentage of the test
cases executed. Also, these details will be
very beneficial to know the current
quality of the product or give status
report to stake holders of the projects or
when is it ready to be released etc.,

50 5 6 0 0 0 0 0 6 6 2 66

Also, we are working on automation
testing where we are using Appium
testing tool to test all the test cases at
one time. In this we must write test cases
and once we run it, it will give the test
results telling how many test cases
passed and how many of them failed
along with the time taken to execute.

60 6 3 0 0 0 0 0 5 5 4 67

Since we worked on the development
part of this application, we are
completely aware of how this application

43 3 3 0 0 0 0 0 6 6 2 85

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

78

should work, so we wrote test cases for
all the scenarios, for all the touch/click
on the application and what will the
expected output be
When user is giving multiple feedback,
our app just updates the feedback. That
is one user can only give one update.

21 1 0 2 0 0 0 0 0 2 0 52

If email does not contain any @xx.com",
instead of throwing a pop-up text "email
incorrect", application redirect user to
main screen."

21 1 0 0 0 0 0 0 0 0 0 60

Received a pop-up telling- Please enter
email to login"."

9 0 0 0 0 0 0 0 0 0 0 58

Enter only password and leave email
blanks.

7 2 0 0 0 0 0 0 0 0 2 54

Enter only email and leaving the
password blanks

8 2 0 0 0 0 0 0 0 0 2 54

User was able to see the pop-up message 8 0 0 0 0 0 1 0 0 0 0 44

Just after submitting the review, user will
be able to see one pop up saying your
review is submitted""

19 1 5 0 0 0 1 2 3 3 0 59

User was able to select an emoticon 7 0 0 0 0 0 0 0 0 0 0 44

On second screen, user will see 5
emoticons which will be the rating
he/she wanted to give to developer.

19 0 6 0 0 0 1 0 6 6 0 59

Test case to test the total number of
cases across the world.

12 0 0 0 0 0 0 0 0 0 0 49

Was able to login successfully. 5 0 0 0 0 0 0 0 0 0 0 53

Received a pop-up telling- Please enter
email to login"."

9 0 0 0 0 0 0 0 0 0 0 58

Add location" touch button took us to
admin login screen."

10 0 0 0 0 0 0 0 0 0 0 54

We can only test one feature at a time,
the reason is if we are trying to add
multiple location then application start
giving both notification (You are in
affected zone & You are in a safe
location) which is very confusing to the
user.

45 2 0 2 0 0 0 0 0 2 0 83

Test case to test admin login feature. 7 0 0 0 0 0 0 0 0 0 0 48

This took us back to main home screen. 8 0 0 0 0 0 0 0 0 0 0 42

BACK touch button should navigate the
user back to main home screen of the
application.

15 0 0 0 0 0 0 0 3 3 0 58

This took us back to main home screen,
tried this serval time by navigation to

21 2 0 0 0 0 0 0 0 0 2 61

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

79

different screens and it worked fine

BACK touch button should navigate the
user back to main home screen of the
application.

15 0 0 0 0 0 0 0 3 3 0 58

Touch on the Symptoms" feature took us
to a screen where all the symptoms of
COVID-19 was listed - like Fever, Dry
cough, Headache, Breathless, tired etc.,
with images"

29 1 0 0 0 0 0 0 0 0 1 58

Touch Symptoms" feature available on
the home screen of the application, this
should take user to a new screen where
all the major symptoms of COVID-19 are
listed."

28 1 0 0 0 0 0 0 3 3 1 72

Swipe left to see the next safety measure.
This action should move to next screen
with different safety measure.

19 0 0 0 0 0 1 0 3 3 0 54

To test the third safety measure. 6 0 0 0 0 0 0 0 0 0 0 48

This left swipe moved the screen left and
displayed a new screen with a different
safety measure - Wear a mask: Do die,
please buy" with an image and a short
message."

32 4 0 0 0 0 0 0 0 0 4 71

Swipe left to see the next safety measure.
This action should move to next screen
with different safety measure.

19 0 0 0 0 0 1 0 3 3 0 54

Application displays an initial flash
screen which says COVID-19 as soon as
we click on the application to open it.

20 0 0 0 0 0 0 0 0 0 0 63

Click on the application to open it. 7 0 0 0 0 0 0 0 0 0 0 45

Click on the application to open it. 7 0 0 0 0 0 0 0 0 0 0 45

Application downloaded in the mobile. 5 0 0 0 0 0 0 0 0 0 0 64

In ideal scenario we can have more
details in the report giving a tracking ID
to each test, developer who developed it,
date on which issue was identified, steps
followed to find a bug, screenshots of
these steps, Priority to be resolved, etc.,

43 0 0 2 0 0 0 0 0 2 0 85

Test Report â€“ Below is our test case
report where we have listed all the test
cases along with the result either it
Passed or Failed the test case along with
the steps on how to test and its expected
results.

41 4 0 0 0 0 0 0 0 0 4 77

For example “ We started our test right
after we tap on Application icon, after

53 8 0 0 0 1 0 0 3 3 4 92

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

80

tapping on the icon theres 3 sec delay
and in that delay, we are showing one
symbol which says covid 19 and right
after 3sec delay, there are 3 bas which
user should follow before doing anything.
Our application is dependent on
worldometer website, as one of our
features show us the total number of
corona virus count in united states, that
feature is linked with worldometer
website, if that website is down or out of
service than â€œTotal numbr feature
will not work.

47 2 3 0 0 0 0 0 3 3 0 90

For now, only admins can add their
location if they are tested positive.

13 1 0 2 0 0 0 0 0 2 0 54

Test case to test admin login feature. 7 0 0 0 0 0 0 0 0 0 0 48

User feedback was there in the Firebase
Database in the form of point, scaling
from 0-5.

16 0 0 0 0 0 0 0 0 0 0 57

Touch Feedback Us" feature available on
the home screen of the application, after
touching it should redirect it to a new
screen from which user has to select a
rating and then click on submit button.
After Submitting the feedback, it should
show in Firebase Database."

46 5 1 0 0 0 0 0 6 6 2 67

Test case to test the Feedback stored in
the database" feature of the application"

14 0 0 0 0 0 0 0 0 0 0 58

It displayed a small pop-up at the bottom
of the screen telling- Please enter email
and Password to login"."

19 2 0 0 0 0 0 0 0 0 2 61

It will display number of new cases
coming in on daily bases, a linear &
logarithmic curve of graph showing total
cases form last one year, graph of daily
new cases, daily deaths, population of the
country vs corona affected count, a table
of all the countries with the counts etc.,

51 0 3 0 0 1 0 0 3 3 0 91

This displayed the number of cases,
deaths & recoveries of all the countries
across the world.

16 0 0 0 0 0 0 0 0 0 0 60

Touch countries in the link to see the
total number of cases in individual
countries across the world.

18 0 0 0 0 0 1 0 0 0 0 60

Touch Add location" feature on the home
screen of the application, this should take
user to admin login screen (we have
restricted adding location by all users at
this point of time)."

32 0 0 0 0 0 0 0 3 3 0 75

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

81

To test the second safety measure. 6 0 0 0 0 0 0 0 0 0 0 49

Application opened in mobile.
Displays initial screen - Keep Distance:
Distance means so little, when life means
so much" with an image and a short
message."

26 3 0 0 0 0 0 0 0 0 2 58

Click on the application to open it, which
should show initial screen of safety
measures.

15 0 0 0 0 0 0 0 3 3 0 60

Test case to test the initial screen of the
application upon opening the application.

14 0 0 0 0 0 0 0 0 0 0 60

To test if the initial flash screen is
displayed as soon as we open the
application.

16 1 0 0 0 0 0 0 0 0 0 54

Was able to access the application. 6 0 0 0 0 0 0 0 0 0 0 51

Test Set Up, It is done in the android
studio, when we developed it initially, we
worked on unit testing where we tested
all the individual screen and we also
tested after integrating/linking all the
screens which was integration testing,
but we never wrote test cases back then
but now we considered full-fledged test
cases.

56 8 0 0 0 0 0 0 0 0 2 99

And we tested all the test cases and made
a note of it whether it passed or failed

18 5 0 0 0 1 0 0 0 0 4 50

Out test process was basically a
functional testing where we started
testing every feature, we have 6 main
features and after testing all those
features, we went deep into testing sub-
features.

31 4 0 0 0 0 0 0 0 0 2 78

Database â€“ Firebase Real Time
database
Tools â€“ Äppium (For automation
testing; work in progress), Android
Studios (Functional Testing)
Libraries â€“ There are various libraries
we need to make our application works
smoothly without any lag.
 Some of those libraries are:
1) Dagger2
2) Location Services
3) Retrofit
4) Glide

47 0 1 0 0 0 0 0 0 0 0 74

* Thereâ€™s a feature (Find Location &
Add Location), both of these feature are
fully dependent on Google Maps, are to
use that google map we are using a

30 0 0 0 0 0 0 0 1 0 0 57

Anas Aboradan, Josef Landing FINDING BAD SMELLS IN NATURAL LANGUAGE TEST SPECIFICATIONS USING NALABS

82

library
â€œcom.google.android.gms.maps.Googl
eMapâ€•.
As we are using free version of Firebase,
it only allows us to use 5 physical devices
to connect at once, that means only five
device can give a feedback at once

32 2 0 2 0 0 0 0 0 2 0 68

