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Abstract

The automotive industry is dealing with the challenge of adapting the vehicular distributed em-
bedded systems’ technology to the expectations of modern cars. Today, more and more complex
embedded software functions need to be implemented to provide the modern applications of a ve-
hicle. Modern cars today are capable of running multiple critical functions such as airbag control
or anti-lock braking system along with entertainment applications with a lower level of criticality.
Whereas the future of the vehicles envisions partly-to fully-autonomous vehicles. As a result, the
industry is constantly seeking for technology which drives the fulfillment of the future of cars by
means of connectivity, complexity and scalability. One of the challenges ahead is the growth in the
size and bandwidth of the communicated data in the vehicles due to the increase in the number of
sensing and actuation components and embedded functions, which require high-bandwidth and low-
latency in-vehicle scalable communication. The Time-Sensitive Networking (TSN) set of standards
proposed by the IEEE 802.1 TSN task group provides a promising communication technology for
many application domains, including the vehicular systems. Though in practice, TSN still lacks
proper software and hardware engineering frameworks that facilitate the design, development, and
implementation of TSN-based systems. In this thesis, we develop a TSN-based vehicular distributed
embedded system use case. We compare the network’s performance under TSN configurations with
the case of a conventional standard Ethernet network setup. Various complexities were met during
the realization of this thesis and designing such a system. Several proposed solutions represent a
possible basis for future work and research.

Keywords: TSN, Ethernet, Automotive Systems, Response Time, Jitter
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1. Introduction

High-bandwidth and low-latency in-vehicle communication has become a need in modern automo-
tive systems due to the functionality advancements, e.g., in autonomous driving and greater user
interactivity. Standard Ethernet cannot guarantee the timing requirements of the communication
in case of high network utilization because it lacks mechanisms for bandwidth reservation. As a
solution to those problems, TSN is proposed. High bandwidth, compatibility, and scalability are
the reasons why Time-Sensitive Networking (TSN) is a matter of interest mainly in the automo-
tive industry [1]. Since TSN is primarily new in the industry, there are just a few hardware and
software implementations. In practice, adopting the TSN using already proposed solutions raises
new challenges (Check 3.). Realization of a simple framework is essential for wide adaption of TSN
in the industry [2].

A distributed embedded system is an embedded system in which the system’s functionality
is distributed over multiple nodes (end stations) connected via a bus or a network [3]. Without
extensive testing, end-to-end response time and latency analysis can verify timing constraints
given for vehicular distributed embedded systems [4][5]. Examples of those constraints are age
and reaction constraints. Age constraint indicates “how long before each response a corresponding
stimulus must have occurred” [6]. Reaction constraint indicates “how long after the occurrence of a
stimulus, a corresponding response must occur” [6]. One of the biggest challenges for developers is
to create a system capable of meeting deadlines under any conditions. To succeed, the developers
have to do accurate calculations and build the appropriate task scheduling system. If it is possible
to prove or demonstrate, during the design phase, that a system will meet all specified timing
requirements during the execution, then the system is predictable [1][7]. Since the number of TSN
network nodes in distributed automotive systems rises, and not all of them are using the same
TSN classes nor standards, doing timing analysis becomes a challenging job. A possible solution
to this problem is an implementation of the end-to-end data-propagation latency analysis [2].
Since all nodes in large-scale networks can use different TSN standards depending on the required
mechanisms for a specific task, the configuration task represents a real challenge. Even configuring
just one switch with two classes represents a complex assignment since TSN is primarily new in
the industry, and there are not so many hardware and software implementations that can be used.
For these reasons, the possibility of overcoming the mentioned challenges motivates researchers
to continue investigating the complexities of implementing TSN on the hardware available in the
industry.

1.1. Motivation

TSN network utilization is in demand in time-critical applications, i.e., automotive [8], and in-
dustrial automation spheres [9]. Nonetheless, during the TSN utilization process in industrial
applications, a considerable number of challenging tasks can be faced. Performance of TSN con-
figuration can be problematic during design, analysis, and simulation phases when considering
the timing requirements of the specific application. In the design and simulation phases, detailed
and complex measures upon configurations are required. Those measures can be manifested in
terms of creating offline schedules for the periodically scheduled traffic or similar [10]. As TSN
network configuration is currently out of interest for many researchers, the existing and available
TSN network designs and TSN simulation tools are marked with a lack of automation for the pur-
poses of the network configuration [10]. Implementing TSN networks in large-scale applications
that deal with more complex traffic scenarios is deemed as an error-prone, cumbersome, and time-
consuming task [10]. This complexity applies to both TSN simulation platforms and TSN hardware
platforms. Therefore, an adequate automated framework is needed to facilitate the design-time
and pre-simulation configurations of TSN networks [10].

If TSN is requested to be implemented, the network capability is improved in terms of band-
width, latency, additional services, and applications. Those applications, such as voice recognition,
video-on-demand services, etc., put a great demand on network resources and put challenges on
hardware for processing significant volume traffic at a high-speed [11]. Timestamping on the soft-
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ware level has difficulty in achieving the precision which is needed by time-triggered Ethernet
protocols [12]. Consequently, hardware support is required.

Compared to the TSN hardware platforms, TSN simulation platforms enable faster develop-
ment of the TSN applications. They allow changes in the TSN switch configurations via Graphical
User Interfaces (GUI) and provide an abstract view of the network’s structure. Whereas config-
uring the TSN network and TSN switches in the real-world requires thorough knowledge of the
switch’s specifications, which are most commonly vendor-specific and are provided as datasheets.
When configuring the switch, firstly, the switch datasheet has to be revised to determine which
registers need to be set up to allow a specific gate schedule. Times of gate openings are also
defined in registers. If just one of the registers is not appropriately set, the entire system will
not behave as expected. Some problems with wirings, power supply, component availability, CPU
speed, software installations, software-hardware compatibilities, etc. could be detected while using
the hardware platform for TSN utilization. Even though simulation results are a reasonable basis
for all sorts of measurements and evaluations, the hardware platform needs to be included to have
some expectations from a real-world environment. Hardware is used so that all the complexities
mentioned can be addressed so that the research community has an insight into possible solutions
and the ability to upgrade them.

To be able to prove the theory it would be the best to implement a use case that uses both
Ethernet and TSN communication. Since TSN, in theory, guarantees lower latency, and in some
configurations, lower jitter or no jitter at all, measurements obtained in experiment could help
researchers to prove that theory holds in practice. Also use case implementation could detect
possible problems when using hardware available in industry and could also provide their solutions.

1.2. Problem Formulation

As discussed in the subsections above, the configuration of the TSN network can be a challenging
task. Therefore, an appropriate research problem can be addressed. Already explained scientific
and engineering aspects lead to developing a functional prototype in industrial settings. The indus-
trial use case can be based on a network model for an actual application, preferably a network in an
automated construction machine, to address defined complexities when creating such a hardware
system. This use case is meant to explore the effects of different configuration modes in terms of
assumptions on the frame preemption and the configuration of the Credit-Based Shaper (CBS)
and Time-Aware Shaper (TAS) mechanisms. The results obtained with this thesis can favor the
transition from standard Ethernet to TSN network. Therefore, they could represent a basis for the
future research and advancement of TSN configurations in the automotive industry. Furthermore,
it is crucial to measure the variations in the overall network performance, i.e., variations in laten-
cies and release jitter in different TSN traffic classes. These measurements should support theory
and explain why TSN should be used instead of Ethernet.

Meanwhile, the thesis aims to answer the following questions:

e RQ1: What are the main benefits of replacing a conventional Ethernet network with a TSN
network in an automotive use case?

e RQ2: What are the effects of network configurations on the TSN network performance with
respect to response time and jitter in an automotive use case?

The answers to these research questions are obtained from the literature review and the use
case implementation, which is described in the later sections.

1.3. Thesis Outline

This Thesis for the Degree of Master of Science in Computer Science with Specialization in Em-
bedded Systems report consists of the following sections. In Section 2., main terms relevant to the
research are explained and described, such as real-time systems, Ethernet, switched Ethernet, and
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TSN. Section 3. presents already done related work in the field of TSN and real-time communica-
tion. In Section 4., the research methodology is justified. The description of the work is presented
in Section 5., where more information about the use case, hardware setup, blob detection, switch
configuration, and message transmission can be found. In Section 6., obtained results are pre-
sented, as well as the discussion about gathered measurements. The final words, conclusion, and
the future work of this thesis can be found in Section 7..
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2. Background

TSN set of standards is a promising solution to be applied in numerous real-time domains such
as the automotive domain [1]. CAN buses are about to be replaced by automotive Ethernet in
most applications, where high bandwidth is required [13]. Standard Ethernet uses protection
against unnecessary bandwidth consumption, burst sizes, and malicious or improperly configured
endpoints, which could apply to TSN networks. In order to design dependable real-time networks
based on the TSN set of standards, various analyses in terms of timing and scheduling should
be performed. For example, response-time analysis and schedulability analysis. More detailed
definitions and understandings of real-time systems and networking technologies are proposed in
the following sections.

2.1. Real-Time systems

An embedded system is a computing system or device intended for performing a specific function.
Both hardware and software are integrated into an embedded system, and more embedded sys-
tems are combined to make an embedding system [14]. Embedded systems are usually specialized,
efficient, reliable, and reactive. It can be said that embedded systems are specialized because they
are commonly designed for one specific task whose functionality is not changeable. This is the
main characteristic that differs embedded systems from the general-purpose system. Herewith,
all excess functionalities can be taken into account as drawbacks. Over time, it has been shown
that embedded systems can be energy, memory, run-time, and weight-efficient [15]. This property
contributes to the long-term cost calculations. Reliability gives the information about system sus-
ceptibility to failures, and it can be calculated with specific parameters like Mean Time Between
Failures (MTBF) and Mean Time to Repair (MTTR). If an embedded is requested to satisfy some
critical applications, then the mentioned parameters should be of the order of minutes [15]. The
reliability element should be considered in the design stage, and it depends on a product’s purpose.
For some systems, it is not enough to react. It is also important to react at the right time. In
order to satisfy dependability and timing requirements, many embedded systems are implemented
as real-time systems.

A real-time system is a system that is required to provide a logically correct response (output)
at the correct times. Computation correctness depends on logical correctness and time needed for
results production. If a real-time system fails to execute tasks in a defined period, the consequences
could be severe for the environment and human life. A real-time system’s functions are defined by
a chain of real-time tasks that are coordinated to generate the output of the real-time system. The
tasks may be all inside one end station or require communication with each other from different
end stations through networks via messages. In case the tasks communicate through messages, the
communicated message must be delivered in a defined period between real-time tasks’ interactions.
The predictability feature is incorporated within a real-real time system, which means that all
constraints, deadlines, age, reaction response time, etc., are met with 100% certainty. Real-time
systems could be distinguished according to time constraints as hard, firm, or soft [16]. If deadlines
are not met by the tasks and the outcome results in catastrophe, we talk about hard real-time
systems. We can find them in automobiles, airplanes, industrial control, etc. Firm real-time
systems are the ones in which the tasks do not meet deadlines, but outcomes do not lead to severe
consequences, e.g. database system transactions and satellite tracking. Soft real-time systems are
neither hard nor firm. Suppose deadlines are not met by the tasks occasionally in a soft real-time
system. In that case, the outcome can lead to a utility decrease after the expiration of the deadline,
which can affect the Quality of Service (QoS).

2.2. Ethernet

Ethernet is used widely in many applications because of its cost-effectiveness, speed, scalability,
and security features. Ethernet is a standard for data transmission over a local area network
(LAN) [17]. LAN is a computer network that connects more devices within a limited geographical
area. In general, LAN provides high-bandwidth communication, and it is enabled through low-cost
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transmission media. For these reasons, Ethernet and Wi-Fi are the most typically used technologies
for it[18]. In 1976, the concept of Ethernet was firstly presented by XEROX PARC !, and in 1983
it was standardized as IEEE 802.3. Network topologies such as bus, star, line, tree, etc., are
supported by Ethernet (see Fig. 1).

:
Tree i

() ()

o e

Figure 1: Types of network topologies

Ethernet fits the physical layer, and data link layer in the Open Systems Interconnection
Model (OSI) reference model [17]. OSI referenced model is based on a proposal developed by
the International Standards Organization (ISO), and it provides the connection of open systems -
systems that are open to communicating with other systems [19]. The OSI model is shown in Fig.
2.

« End User layer
« HTTP,FTP, S5H, DNS

« Syntax layer

Presentation Layer . SSL, SSH, JPEG

« Synchand send to port

Session Layer . API's, WinSock, Sockets

« End-end connection
« TCP, UDP

Transport Layer

e

« Packets

Network Layer « IR, ICMP, IGMP

e

« Frames

Data link Layer . Ethernet, Switch, Bridge

e

« Phygical structure

Physical Layer « coaxial cable, twisted pair, optical fiber

Figure 2: The OSI reference model

IToday known as Palo Alto Research Centre (PARC).
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The speed of transmission of the data depends on the physical layer, and it can reach up to 400
Gbit/s [20]. In the physical layer, coaxial cable, twisted pair, and optical fiber are commonly used
as media in Ethernet networks. Furthermore, in the data link layer, Media Access Control (MAC)
sub-layer serves for network arbitration, and the Logical Link Control (LLC) sub-layer serves for
flow control, synchronization, and error checking [21].

2.2..1 CSMA/CD

Carrier sense multiple access/collision detection (CSMA/CD) is an access method used by Ether-
net, and it is intended for broadcasting, listening, and detecting collisions. Each node is constantly
listening to the state of the network (Carrier Sense). If a network is quiet, multiple nodes can
detect it and start the transmission (Multiple Access). If collisions happen, every transmission
will fail, and retransmission will be established. However, frequent collisions under heavy traffic
can lead to unbounded end-to-end transmission response time, which is the main disadvantage of
CSMA /CD. Therefore, the arbitration mechanism can be improved by adding the data link layer
device named switch in LAN. [17]. If conventional Ethernet is in use, efficiency could be exponen-
tially decreased when more nodes want to transmit the data. For this reason, switched Ethernet
brings the solution to this problem by not sending data to all nodes in the network but just to the
prechosen ones. Most of today’s LAN is referred to as switched Ethernet because of the achieving
higher efficiency [21].

2.3. Switched Ethernet

Usage of a switch instead of a hub differs switched Ethernet from the traditional Ethernet. A
hub is used for data transmission from the source to all nodes in the network, and it uses a half-
duplex link. On the other hand, a switch is used for data transmission from the source to the
node with the predetermined address, and the full-duplex link is in use so messages can be sent
and received simultaneously by the node [22]. Each switch in the network creates a table of MAC
addresses of the nodes, which are directly reachable. After that, multiple coexisting transmissions
in the network are allowed for different receivers. The disadvantage of having a switch instead of
the hub in the network is reflected in the latency, which is negligible but acceptable. When the
switch decides to transmit the data to the receiver, the table has to be examined for the MAC
address of the receiver so that the messages can be transmitted appropriately [23]. The traffic
control can be controlled, and so end-to-end response times can be bounded [21]. Low jitter,
cost-effectiveness, scalability, easy deployment, easy maintenance, message collision prevention,
sender nodes isolation, full-duplex links, and bounded end-to-end transmission response time make
switched Ethernet adequate for Audio-Video Bridging (AVB) and TSN.

2.4. Ethernet in Real-Time Communication

Higher bandwidth, the IEEE standardization, a broad range of data rates, and Internet Protocol
(IP) support make automotive Ethernet the solution for replacing small networks connected with
gateways with one homogeneous in-vehicle network [1]. As in the automotive industry, Ether-
net is attractive to use even for the other real-time systems’ applications. As previously stated,
conventional Ethernet has disadvantages over guaranteed data transmission. Industrial Ethernet
or Real-time Ethernet standards use modified MAC sub-layer, and they have been proposed to
provide low latency and deterministic behavior overall. Ethernet-based protocols like Internet
Protocol (IP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP) are not
applicable for real-time traffic. However, the hardware needed for the mentioned protocols could
be used with other possible protocols [23]. Ethernet-based real-time communication standards are:
EthernetPowerlink2 2, TTEthernet 3, CC-Link IE Field4 4, Profinet7 °, and TCnet3 6. The men-
tioned standards can not be compatible with the other networking technologies, but TSN offers a

2EthernetPowerlink2: https://www.ethernet-powerlink.org/
3EthernetPowerlink2:https://www.tttech.com/technologies/time-triggered-ethernet/
4CC-Link IE Field 4: https://www.cc-link.org/en/cclink/cclinkie/cclinkie_f.html
5Profinet7: https://us.profinet.com/technology/profinet/

6TCnet3: https://www.toshiba.co.jp/sis/en/seigyo/tcnet/technology.htm
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possible solution to this problem [21]. Likewise, secure data transmission and high data transfer
rates up to the range of gigabytes are supported by TSN. Both talker and listener and Ethernet
switches have to support TSN functions in order to get the best effect while using TSN [24]. The
research based on TSN technology is legitimate and approved because of switched Ethernet, stable
transmission, high bandwidth, low latency, and cost-effectiveness.

2.5. Time Sensitive Networking (TSN)

Time-Sensitive Networking (TSN) is a group of standards developed by the IEEE 802.1 TSN
task group to support high-bandwidth, time-critical, and low-latency communication over the
switched Ethernet [10]. The main TSN principle is controlling the flow of traffic at endpoints,
so deterministic behavior could be created [21]. The TSN standards have roots in IEEE 802.1Q-
2005 and IEEE AVB Task Group. First standard prioritized Best-Effort (BE) traffic with higher
Quality-of-Service (QoS) properties. Double standard, AVB, introduced two new AVB classes
which enable bounded latency. AVB is the forerunner of today’s TSN. This standard offers several
features. Three of them are taken as the most important ones:

e Common notion of time - achieved by synchronizing local clocks of switches (know as bridges
in IEEE terminology) and end stations taking into consideration that they are time-aware
nodes,

e Bandwidth reservation for real-time classes - presented in IEEE 802.1Qat standard; resources
within the switches between the source and the destination can be reserved through Stream
Reservation Protocol (SRP),

e Prioritization and traffic shaping for real-time flows - presented in IEEE 802.1Qav standard;
traffic bursts are prevented through a Credit-Based Shaper (CBS) the at the output ports of
switches and end nodes guaranteeing bounded latency to real-time classes [1].

On top of the AVB standard set, TSN consists of new standards providing several additional
benefits and features that are especially important for applications with critical networks, which
are:

e Real-time - Guaranteed latency, low-jitter, and zero congestion loss for all critical control
loops,

e Convergence - Reducing complexity and costs converging networks,

e Open, Interoperable Standard - truly open standard, hence IEEE 802.1 and other relevant
groups to ensure long-term viability and innovation,

e Immunity - Critical traffic is immune to effects of converged, non-critical traffic,

e Ease-of-Use - making networking easy in both design, provisioning, and maintenance [25].

2.5..1 Standards

Available TSN standards are:
e IEEE Std 802.1AS-2020 - Timing and Synchronization for Time-Sensitive Applications,
e IEEE Std 802.1CB-2017 - Frame Replication and Elimination for Reliability,
e IEEE Std 802.1CM-2018 - Time-Sensitive Networking for Fronthaul,

e [EEE Std 802.1CMde-2020 - Enhancements to Fronthaul Profiles to Support New, Fronthaul
Interface, Synchronization, and Syntonization Standards,

e [EEE Std 802.1CS-2020 - Link-local Registration Protocol,
e [EEE Std 802.1Qbu-2016 - Frame Preemption,
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IEEE Std 802.1Qbv-2015 - Enhancements for Scheduled Traffic,

IEEE Std 802.1Qca-2015 - Path Control and Reservation,

IEEE Std 802.1Qch-2017 - Cyclic Queuing and Forwarding,

IEEE Std 802.1Qci-2017 - Per-Stream Filtering and Policing,

IEEE Std 802.1Qcc-2018 - SRP Enhancements and Performance Improvements,
IEEE Std 802.1Qcp-2018 - YANG Data Model,

IEEE Std 802.1Qcr-2020 - Asynchronous Traffic Shaping,

IEEE Std 802.1Qcx-2020 - YANG Data Model for Connectivity Fault Management 7.

Each of the TSN standards targets one or more of the following four design aims:

Bounded low latency

— IEEE 802.1Qbv-2015 - Leverages on a transmission gate mechanism that is applied to the
egress queues of a switch port to allow for transmitting traffic according to a predefined
schedule, implemented as a list of timed gate operations that cyclically repeats,

— IEEE 802.1Qbu-2016 in combination with IEEE 802.1Qbr - Allows for frame preemption
to intersperse express (i.e., real-time) frames among best-effort ones,

— IEEE 802.1Qch-2017 - Introduces a mechanism according to which frames are received
and transmitted alternately for a fixed interval of time, called a cycle time; this way,
real-time frames are accumulated during a cycle and transmitted in the following one,
thus minimizing the transmission jitter and guaranteeing bounded end-to-end response
times,

— IEEE 802.1Qcr-2020 - Defines the Asynchronous Traffic Shaping (ATS) stream selection
that enables the transmission of mixed real-time traffic types, such as periodic, rate-
constrained, and event-driven (sporadic),

Timing and synchronization

— IEEE Std 802.1AS-2020 - Improves clock synchronization reliability and provides repli-
cation mechanisms to limit the probability of decreasing the synchronization accuracy
in case of switch fault or frame loss,

e High reliability

— IEEE Std 802.1CB-2017 - Deals with frame replication and elimination for reliability; by
leveraging frame identification capability, it allows for duplicating frames and sending
them over multiple disjoint routes in order to increase the probability that at least one
of the replicas will eventually reach the final destination,

— IEEE Std 802.1Qci-2017 - Introduces support for per-stream metering and monitoring,
error detection, and error mitigation by blocking a stream or a port to enforce the error
containment so that it will not propagate on the network,

Resource management and network configuration

— IEEE Std 802.1Qat - Defines SPR,

— IEEE Std 802.1Qcc-2018 - Extends the capabilities of SPR and describes protocols to
provide support for Configurable Stream Reservation (CSR) classes and stream [1].

"Time-Sensitive Networking (TSN) Task Group: https://1.ieee802.org/tsn/
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2.5..2 Types of Traffic

The transmission selection algorithm in the IEEE 802.1Q standard defines two classes, critical and
non-critical ones. Critical traffic classes are Classes A, the higher priority one, and B. Non-Critical
class is defined as the best-effort (BE) class with the lowest priority. The scheduled traffic (ST)
class is defined in the standard with strict temporal isolation via the TAS mechanism [37]. This
method works by implementing a gate mechanism that prevents traffic from accessing a queue until
it is permitted, according to the gate control list (GCL) that repeats periodically. Each queue in
a TSN switch has its gate configuration to achieve temporal isolation. There can be up to eight
different classes in each port that can be open or closed; the queue with the highest priority is
drained first [21].

2.5..3 Scheduling Mechanisms

Available TSN standards as a feature propose various traffic shapers, such as Time-Aware Shaper
(TAS) standardized by IEEE 802.1Qbv, Credit-Based Shaper (CBS) standardized by IEEE 802.1Qav,
and Asynchronous Traffic Shaper (ATS) standardized by IEEE 802.1Qcr [26]. These shapers are
most commonly used for flow control and execution of traffic shaping, that is, the scheduling. Since
presented shapers are unique and can be used separately and in combination, it is difficult for the
end-users to choose the right shaper for their application.

TAS is used for prerun-time scheduling of deterministic time-triggered traffic and preemption
of the frames. Frame preemption is essential in stopping the ongoing frame transmission in favor
of an urgent case frame. Thereby, latency and jitter reduction will be the outcome for time-
triggered frames. There can be found up to 8 queues on the egress port of the switch. Between
each queue and the transmission selection, a so-called gate is placed. To enable time-triggered
communication, TAS relies on the global network clock used to control the gate of each queue on
a predefined schedule [26]. This schedule is also known as a gate-control list (GCL) that repeats
itself cyclically. Each gate can be defined as either closed or open. If the gate is opened, the
frames can be forwarded through the egress port. Frames that are being forwarded are sorted
in each queue according to another scheduling algorithm. One of the simplest algorithms states
that the one with the highest priority is released among all open queues with a pending packet [27].

CBS represents an asynchronous bandwidth management shaper that sets the amount of band-
width for AVB traffic. In other words, it is used for critical classes (A and B) for starvation
prevention of low-priority critical traffic [37]. Classes A and B correspond to a FIFO queue, and
they have their credit value that the CBS shaper uses to govern AVB frame transmission [26]. CBS
is sometimes assigned a private queue between a gate and a queue of egress ports. The frame can
be sent only if the credit value of the queue is non-negative. If the frames are waiting inside the
queue, the credit value rises with an “idle slope” rate. If they are being sent through the queue, the
credit value decreases with the “send slope” rate. Credit is set to zero if credit has a positive value,
but there is no frame pending for transmission. The explained method prevents lower priorities
from being annulled over a more extended period [27].
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3. Related Work

Through time embedded software and systems have enabled rapid development of the automotive
industry. Rapid development and functionality advancements of considered systems resulted in
complex software solutions dealing with the problem of fulfilling strict timing requirements. As a
possible solution to some of the problems, the TSN task group has been proposed as an extension
to IEEE 802.1 Ethernet. With the TSN standard, high bandwidth and low latency requirements
are addressed. Compared to Ethernet, TSN also considers safety and security requirements that
allow its usage in safety-critical applications. In work, Ashjaei et al. (2021) [1] debate recent
developments in the field of automotive embedded systems that impose the adoption of TSN and
give an overview of the current usage of TSN in automotive applications. Several features have
been singled out that set TSN apart from standard Ethernet. Those are possible support of reliable
clock synchronization, the ability to reserve resources for the different traffic types, the ability to
apply traffic prioritization and traffic shaping, and overall efficiency. They agreed that the best
way to investigate the potential of TSN in the automotive domain thoroughly is to make it part of
the new development processes of automotive embedded systems. In the future, they plan to focus
on TSN sub-standard, IEEE 802.1Qcr-2020, as it proposes bounded latency asynchronous shaping
with robustness properties.

It is always hard for a person who proposes a solution based on a TSN to choose an appropriate
standard that will be the best fit for the application that is taken into consideration. Zhao et al.
(2021) in [26] try to provide information that will help researchers with the selection of appropriate
TSN sub-standards for the use cases. These standards introduce various traffic shapers such as
TAS, ATS, CBS, and Strict Priority (SP). To analyze the quantitative performance of individ-
ual and combined traffic shapers, many experiments were done. Upper bound of delay, backlog
and jitter were one of the parameters that were considered. To their knowledge, they were the
first to do this kind of quantitative analysis. They concluded that SP shaper is more beneficial
to high-priority traffic transmission delay than CBS. At the same time, CBS specifies bandwidth
reservations for each priority traffic. When compared to SP and CBS, ATS positively affects low
priority traffic, while it has some limitations when considering high-priority traffic. Only if high-
priority traffic in the network reaches around 80% of the average traffic load than it can show its
superiority. TAS shaper that implemented flow-scheduling of Time-Triggered (TT) traffic showed
the highest performance with ultra-low latency, jitter, and backlog. The only problem that arises
when considering a large number of flows in networks is a synthesis of optimized GCLs. A com-
bination of different traffic shapers in the same architecture is proposed as a possible solution to
this problem.

Performance study in [37] can also help researchers to understand how different configurations
implicate the performance of TSN networks. In this work, unexplored configurations that include
TAS and CBS together with frame preemption were discussed. Frame preemption, in this case,
helps to reduce latency and jitter of high priority frames by stopping the transmission of an ongoing
frame in favor of an urgent one. Critical traffic classes A and B undergo the CBS mechanism to
prevent starvation of low-priority critical traffic, while ST traffic undergoes strict temporal isola-
tion via the TAS mechanism. Suppose ST class is not present in the network, then TAS is not
used. So considered configurations are divided into ones that have TAS enabled and those that
have it disabled. It is concluded that when TAS is enabled, and A and B classes are set as express,
ST classes experience a blocking delay. If ST classes are set to express, they experience blocking
delay, which is bounded by the maximum size of one frame, whereas if they are set as preemptable,
blocking delay can be longer depending on the number of express frames in the transmission queue.
If TAS is disabled, then the class that is set as express will have improved response times as long
as lower priority classes are not set to express. Since available tools that simulate TSN do not
support configurations that combine TAS, CBS, and frame preemption, this study also proposed
a C/C++ simulation platform that was developed by the writers and can be easily integrated into
NeSTIiNg or CoRE4INET.

In addition to analytical techniques for schedulability analysis, TSN simulation and modeling

10



Dalila Alibegovié, TSN Configurations on Network Performance
Lejla Smajlovi¢ in Real-Time Communication

tools can be helpful for more efficient configuration design and scheduling of TSN networks [1].
OMNeT++ 8 is one of open-source simulation platforms primarily used for network simulation.
INET2 ? is another tool that is used for modeling wired, wireless, and mobile networks. INET4
10 is a extension to INET2. Its main benefits are the more powerful multidimensional represen-
tation of radio signals and support for TSN infrastructures. Core4dINET [28] and NeSTiNg [29]
simulation frameworks are built on OMNeT++ [2]. NeSTiNg simulation framework supports sev-
eral TSN features, including the scheduled traffic (IEEE 802.1Qbv), frame preemption (IEEE Std
802.1Qbu and IEEE Std 802.3br), credit-based shaper (IEEE Std 802.1Qav), and time synchro-
nization (IEEE Std 802.1AS) [?].

Mubeen et al. (2021) in [30] provided an additional offline schedule optimization solution that
configures TAS for ST classes to achieve high QoS of lower priority BE traffic. They propose three
alternative objective functions, namely Maximization, Sparse and Evenly Sparse, followed by a set
of constraints on ST streams. After conducting experiments in NeSTiNg, it is shown that pro-
posed functions outperform the state-of-the-art ST scheduling solutions that focus on minimizing
the offsets of the ST classes. Not only the given solution affects positively on BE classes, but it is
believed that it can also affect A and B classes.

Since TSN is relatively new, there are not so many hardware and software tools that support
its implementation. For this reason, Krumacker et al. (2021) [27] decided to design and implement
their own TSN mechanism based on a network simulation framework. The developed solution is
highly flexible and can be used in various use cases. They decided to use the ns-3 simulator since
it allows them to achieve an implementation that will fit into its modular framework.

It was already mentioned in [26] that large networks demand complex design of configura-
tions. So if researchers decide to configure large networks, they would need to do that manually
since existing frameworks support only manual configurations of TSN. Houtan et al. (2021) de-
cided to design a modular framework that will automate the process of offline scheduling. They
used available state-of-the-art simulation frameworks for demonstration and evaluation purposes,
mostly NeSTiNg. The designed framework allows automatic translation of TSN flow schedules
without manual intervention. Usage of the proposed framework saves the user from error-prone,
time-consuming, and challenging manual configurations. In the future, the plan is to integrate this
framework into existing industrial tools that use TSN network communication.

To overcome challenges posed by the rising number of network participants, usage of the Au-
tomotive Open System Architecture (AUTOSAR) adaptive software platform is proposed in [31].
Combined with Open Platform Communications United Architecture (OPC UA), a communica-
tion standard popular in modern industrial automation, PubSub, an architecture that promotes
scalability and works in conjunction with TSN, provides deterministic high-speed communication.

80OMNeT++: https://omnetpp.org/
9INET2:https://inet.omnetpp.org/
10INET4:https://inet.omnetpp.org/
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4. Method

Experimental study methods allow the experimenter to understand better and evaluate the factors
that influence a particular system using statistical approaches. These kinds of approaches combine
theoretical knowledge of experimental designs and a working knowledge of the particular factors
to be studied [32]. Each experiment is conducted in several steps, as shown in Fig. 3. These steps
can be done in few iterations depending whether the results are good or bad. If they are good,
conclusion can be made, if not than independent variables are again defined and steps 2, 3, 4 and
5 are repeated. In addition to the previously defined steps, each experimenter must generate a
research question, state a hypothesis, and define variables. A proper experimental design relies
on the relationships testing between and among variables. In general, one variable, meaning the
independent variable, is controlled in order to measure its effect on other dependent variables [33].
The focus of this thesis work are the effects of various configuration modes [23] on the overall
performance of the network in an automotive use case.

In this specific experiment, we evaluate the network performance of a vehicular use case -
taking into account jitter and delay as performance metrics. The change of dependent variables,
jitter and delay, is the result of experimental manipulation of independent variables defined in the
use-case study that is going to be used. Egress port configuration consists of several independent
variables such as gate-control list, clock cycles, port delays, etc. The use-case is based on a network
scenario for an actual application, preferably a network in an automated construction vehicle.
The use case - is selected to represent a typical automotive use case and has been previously
prepared at Volvo CE. Alongside the on-site experiments, we also take advantage of simulation
tools at the configuration time and before implementing the use-case on the actual hardware. This
would allow us to understand our targeted network metrics better. Moreover, the research is done
experimentally on the actual hardware by setting up the use-case in industrial settings on-site at
Volvo CE, configuring the network, performing experiments, and evaluating the measurements’
extracted data.

Planning/
designing
process

Analysis/
modeling

Figure 3: The steps of experimental research applied on system under study
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Implementation of an experiment is just one part of the research process. The whole research
work can be divided into the following steps, such as:

1. Literature review;

2. Review of hardware;

3. Configuration;

4. Implementation; and
5. Evaluation (see Fig. 4).

If obtained results in evaluation step are not good enough, than independent variables need to
be defined again, which means that switch needs to be configured from the beginning. Thereby,
whole process is considered to be done in few iterations. This is the reason why researcher can go
back from step 5 to step 3 in Fig. 4.

I .‘
& O o ?
ge 4

O O

Figure 4: Research steps
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5. Description of the work

Before the experimental setup, a literature study is performed on theories behind TSN and the
state-of-the-art use of TSN. In this section, the idea and the process of the project are about to be
described. Accordingly, the next phase is related to constructing a vision and the system on which
the experiment can be performed. The discussion about the use case implementation is presented
in the later phase. The end-to-end latency evaluation is carried on after the use case realization
with the appropriate hardware and software tools. It is important to point out that due to the
company’s guidelines and rules, the details about hardware and codes ! will not be presented in
the thesis.

5.1. Vision

As day by day passes, technology and science evolve, and the industry has to keep up with the chal-
lenges. The processing of large amounts of data in real-time systems questions whether hardware
and software platforms can stand up to the challenge. It is necessary to examine TSN network
performance and compare it to the conventional Ethernet performance. When it comes to real-time
communication applications like vehicular systems, TSN is a promising communication solution.
TSN is primarily new, so TSN-supported simulation and hardware environments are not widely
available. Hence, the authors of this work have decided to implement a single-use case based
on TSN communication technology to inspect the advantages and disadvantages of replacing the
conventional Ethernet network with TSN. The designed hardware system needs to mimic the one
already implemented in today’s vehicles.

The vehicular system’s network is consisted of around 100 ECUs, and they can perform engine,
brake, transmission control, etc. [34]. With other additional components, ECUs and switches
together make a real-time system. If TSN is requested to be implemented and the network perfor-
mance to be measured, then the system has to consider its total capacity. The complexity arises
with the reached number of 100 million source lines of code (SLOC), which is equal to over 1 GB
of the software code number of lines of code [1]. This complex network can be simulated in one of
the simulation tools like OMNeT++ or NeSTiNg. However, hardware implementation in a real-
world environment is more complex and challenging to deploy. The authors of this work consider
the general use case presented in Fig. 5. As mentioned before, the goal is to have all real-time nodes.

To implement the idea of making this kind of a system, available hardware, including real-time
operating ECUs and TSN supported switches, should be at the disposal. Every Ethernet switch
needs to have options for implementing TSN standards to enable scheduling mechanisms like CBS
and TAS. Hypothetically, if the system is constructed with all of the components from the Fig.
5, it would be difficult to add or remove one of the TSN flows. It is recommended to have the
same switches in the system since one of the TSN s disadvantages is the complexity of the con-
figuration. The switch can be configured on the lower level by setting registers and ports with
the information obtained from datasheets. If one of the registers of the switch is not set correctly,
TSN advantages can not come to the fore. These problems are not present in simulation tools. In
general, problems detected in simulation tools are easier to deal with than those in real-hardware
platforms. The collection of the simulation results is accessible in the same tool simulation was
implemented. On the other hand, obtained results from real hardware platforms are challenging
to access, and additional software and hardware need to be included. This leads to new problems
and obstacles to the final goal.

No matter how the implementation may seem complex, the focus has to be put on the TSN
advantages, such as low latency and high bandwidth, compared to the conventional Ethernet
network. Consequently, a simpler version of the system can be implemented to get the needed
information about hardware setup and to evaluate end-to-end latencies and jitter.

HException is code for blob detection.
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Figure 5: Starting vision of the use case scenario

5.2. Use Case Description

As proof of the mentioned concept in the previous section, the demonstrator can be developed in
the industrial settings at Volvo CE, one of the vehicle providers in the construction vehicle domain.
When considering current industrial in-vehicle platforms, it is essential to mention that neither one
of the nodes is in real-time. This opposes the vision that we had. The communication is reduced
from one node to another. End-to-end communication incorporated with TSN offers real-time
properties of the network. It is crucial to analyze timings with the assumption of having a defined
workload and delays. With the newer functionalities brought up with the technologies like artificial
intelligence and machine learning, the nodes are obligated to do more calculations than they do
now. It would be demanded to process 100 MGB of data under microseconds in the upcoming
years. Therefore, a problem might arise regarding the timing constraints for end-to-end commu-
nication. These advanced technologies demand better timing investigation and higher bandwidth.
Wherefore, the authors of this thesis decided to test TSN communication by incorporating one
of the complex operations like image processing. For this reason, data might be generated from
only one source, and the network can be additionally congested by producing some bulk. Messages
sent through the TSN switch are generated in an app that detects color blobs. Since none of
the available ECU’s operating systems can support installing and using applications needed for
more complex operations, such as the one mentioned, we need to use a PC. It is essential to note
that the available PC’s operating system is Windows. However, it is possible to run codes from
Virtual Box and XUbuntu. So, ECU 1 in Fig. 5 might be replaced with a PC and media converter.

At this moment, there are only two identical Ethernet switches available in the Volvo industrial
environment that enable TSN features and standards. These switches only support Qav and Qbv,
meaning CBS and TAS can be enabled, respectively. One switch is connected to the two ECUs
on the mutual hardware platform. One ECU is Rubus-based, and one is Android-based. Through
the text, this hardware platform is referred to as SECU. Only one SECU will be considered for
simplicity’s sake. Android-based ECU is not used in work.

Once a vision for developing such a system was proposed in the section above, the investigation
of real-time properties was conducted in the industrial environment. Therefore, it has been seen
that there are many engineering challenges. Because of the difficulties defined, it is optimal to
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simplify the desired system to the one with the devices mentioned before (see Fig. 6). The usage
and evaluation of simple use cases are beneficial due to the fast error detection and more accurate
measurements.

In the following, a simple use case is considered for implementing TSN network configuration.
The system consists of a USB camera, PC, switch, ECU, and signalizing light. The idea is to
write a code for blob detection while the camera is turned on and send messages through TSN
to the switch and ECU. A message is a simple form of zeros or ones depending on if the blob is
detected. The ECU can be connected to a signalizing light. The signalizing light can represent a
real-world indication of potential disturbance or danger. In this way, the briefly explained small
system mimics complex real-world systems and accompanying processes. Essential parts: the data
source, primary communication, and control parts are included in the system. Through the next
part of the thesis, evaluation and discussion of results acquired from the system in Fig. 6 are
conducted.

it
E PC Switch ECU

BULK

Figure 6: The use case network topology

A simple USB camera is placed for video streaming and blob detection. The camera is con-
nected to the PC, from which simple messages will are sent to the switch and ECU. Besides the
data coming from the camera, a bulk producer can be placed additionally. The purpose of the
bulk traffic node is to occupy the link between the PC and the Ethernet switch. Thereupon, the
message can be sent to the final destination. The bulk traffic is generated without knowing the
actual size and the period of the packages in time. The intent is to observe whether all packets
are coming from the sender to the receiver despite having bulk. The ability to provide determinis-
tic behavior over Ethernet despite the traffic load is going to be shown as a property related to TSN.

Obtaining results from existing industrial tools for modeling automotive embedded systems and
providing TSN configuration is the action taken with this thesis. The switch, already set to the
industrial settings, has to be examined for AVB/TSN support. As the purpose is to have a system
as operable and straightforward as possible, TAS scheduling is chosen instead of CBS. Therefore,
the traffic in the network is limited to ST and other traffic for the rest of the bandwidth. Qbv
standard must be included when selecting adequate registers and properties because TAS is chosen.
After the appropriate system configuration and testing, more ECUs and switches can be included
in the network.

A two different configurations on the same network topology shown in Fig. 6 can be inspected.
They are described as:

1. Ethernet configuration
2. TSN configuration - Qbv standard

Each of the configurations is observed with no frame preemption. The intention is to demonstrate
a use case under Ethernet and TSN scenarios and to examine results in terms of response time
and jitter.
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5.3. Hardware setup

Before writing adequate codes for blob detection, switch configuration, and message transmission,
an appropriate hardware setup is needed. Hardware components are gathered according to the
use case description, explained in 5.2.. A detailed reading of datasheets of the required hardware
components is needed. One of the most challenging parts of this thesis is the switch configuration.
The steps to be taken in the configuration process are manual setup and low-level programming.
More details about it are written in 5.5.. Thus, it is important to show that TSN can be enabled on
the industrial Ethernet switch currently in use. If this happens to be impossible, the economic cost
of implementing new advancements could be increased. Therefore, an Ethernet switch and ECU
are chosen as commonly used ones in the automotive industry and as the ones that are currently
only available. The switch is already configured to the Ethernet, and in that way, it can be used
for getting the measurements for later comparison. The ethernet switch is chosen because TSN is
an Ethernet-based set of standards.

The ECU is connected to the switch on a mutual platform, and they are both connected to the
power supply of 12 V and 5 A through an appropriate connector. Likewise, the switch and ECU are
connected to the outer connection board needed for linking up with the debugger. The debugger
is requested to download the configuration code to the microprocessor and read the parameters.
The parameters’ reading proceeds after writing code for the switch configuration because before
sending frames with TSN, it is essential to check registers’ values with the debugger. After the
parameters have been successfully read, the process can be continued. Processes of debugging
and code downloading are done using the appropriate software tool installed on a PC because the
debugger is connected directly to the PC via a USB cable.

Since PC is suitable for handling complex operations like image processing, it is placed instead
of ECU for use case realization. First, the PC’s operating system was Windows with installed Vir-
tual Box and Xubuntu. Linux is an open-source operating system, and Windows is a commercial
one. Therefore, privacy could be an issue for Windows, where data is not protected as it is in
Linux. In some versions of Linux, data can be military-grade encrypted, so the information is not
possessed by anyone except the official user. One of the disadvantages of Windows can be mani-
fested in its firewall, which monitors incoming and upcoming traffic. Linux firewall is better than
Windows because Linux uses the Netfilter Linux kernel subsystem, and Windows uses a program
running in the user node. Linux firewalls have greater control over network connections and more
advanced features. When experiment started, Xubuntu in Virtual Box was too slow while running
blob detection app. To prevent additional delays and potential problems when starting a camera,
the authors of this work decided to use the Windows operating system.

A USB camera is attached to the second PC for color blob detection.+ If the video resolution is
chosen as 1080 pixels, thirty frames per second are sent from the camera. On the other hand, if the
video resolution is selected as 720 pixels, then sixty frames per second are sent from the camera.
For this project, full HD frames are sent, which means that frames are sent with the frequency of
30Hz. A media converter is needed between the PC and the switch for sending messages so TSN
communication can be established successfully. Media converters allow the interconnection of two
different cabling technologies. In Ethernet systems, most commonly copper (twisted-pair) segment
is connected with the fiber optic segment [35].

As an output of the overall system, signalizing light, whose state identifies whether the blob is
detected or not, is used for the demonstration. Signalizing light represents a simple LED placed
on the ECU, which is a part of the mutual hardware platform (the one where the Ethernet switch
and ECU are installed). The code for controlling LED is incorporated within the same project as
the code that reads a signal value from the frame that came to the ECU port.

To be able to calculate time constraints, one more media converter is connected between the
ECU and the third PC, which reads the messages that are being sent through the frames in the
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app that tracks the traffic. The app is called Wireshark 2. Overall, three PCs are being used. The
first one that downloads and debugs the code on a switch can be left out, and those operations can
be done on any of the other PCs present in the designed system. Because of the simplicity and
not wanting to burden other PCs that measure times, it is better to use all three PCs. A more
detailed hardware schema is presented in Fig. 7.

SECU
- '
p— ' LED
T —=— &
== | |
Fe——i Debugger : H p—
| . |
PC 1 § ¥ e | Py .l-
| | [
Switch ECU Media Converter 2 T
& — § ; PC3
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USB = Media Convertert &+
Camera PC2

Figure 7: Detailed hardware schema

5.4. Blob Detection

Before the designed use-case can send TSN messages, those messages need to be generated some-
how. An app that is recording a video using a USB camera and detects a blob of defined color is
generating the desired message depending on whether the color object is detected.

For a PC video represents an array of frames where each frame represents an image. When
a user is looking at the video on a PC, she/he is looking at several images at one moment. The
images change in frequency, which is invisible to the human eye. Every image can be seen as a
unique information carrier. Several image processing techniques can be done to identify and detect
a single feature or an object of interest. For implementing the software solution in this use case,
the OpenCV library is used in the python environment. OpenCYV is a highly optimized open-source
library that supports computer vision and machine learning, focusing on real-time applications.

As a color of interest in this use case, blue is chosen. The best way to identify objects of a certain
color is to threshold the image’s pixel values in a defined color space. If appropriate threshold values
are chosen, then it is certain that just objects in that color-space range are highlighted. Threshold
values also depend on the color space in which the image is represented. Most popular color-spaces
are RGB (R- red, G - green, B - blue) and HSV (H - hue, S - saturation, V - value). The authors
of this work decided to use HSV color space because in the Fig. 8 very similar shades of green
color can be seen and have completely different values in RGB color space.

® #00FF1C #00FF1C I #00D918 #00D918
[
HSV v RGB v HSV v RGB v
127 Hue 0 Red 127 Hue 0 Red
100 Saturation 255 Green 100 Saturation 217 Green

100 Value 28 Blue 85 Value 24 Blue

Figure 8: RGB and HSV values of slightly different green color in Microsoft Paint

This is why the image is transferred to HSV color-space when the multi-spectral threshold
method is used. The final thing left is to define the range of the H, S, and V for blue color.

12Wireshark: https://www.wireshark.org/
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This can be done by visual inspection or using some software tools'®. Lower HSV (represented
as (H,S,V)) boundary for blue color is taken as (100,90,36) while upper boundary is taken as
(130,255,255). Each value ranges from 0 to 255 since each pixel represents an 8-bit value. H, S, V
boundaries can be additionally changed using the sliders on the bottom of the Fig. 9. Black and
white image on the Fig. 9 is a result given after applying multi-spectral threshold on Fig. 10.

[

v Object Color identification =

Hlow  {100/255) °
H High {130/255) °
Slow  (090/255)
S High (255/255)
View  {(036/255) T
V High  (255/255) °
Area  (00801/10000) =
(x=546, y=148) ~ L0

Figure 9: Result of using multi-spectral threshold in HSV color-space

After all blue objects have been classified, the next logical step is to identify the contours of each
detected object somehow so that a rectangle surrounding that object can be drawn. Sometimes
some of the identified contours can represent a false-positive result, and sometimes some of them
cannot be recognized as a unity. These are the hidden problems that lay behind this interpretation.
In order to minimize the error of the first-mentioned problem, two solutions are presented in the
following. One of them is identifying just one blue object, which is the one with maximum area.
The problem with this solution is that sometimes several blue objects must be identified. Then
the second solution should be used. In the second solution, every object with an area smaller than
a minimum area value is neglected. After applying all previously defined steps, it can be said that
blue blobs are successfully detected. Final result is given on Fig. 10.

131 e. Microsoft Paint
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bt frame - X

(x=157, y=139) ~ R:177 G:158 B:149

Figure 10: Result of blob detection app

5.5. Switch Configuration

Before hardware setup is explained in 5.3., documentation of the switch that is in use has to be
read through to examine if AVB/TSN could be enabled. After a detailed examination and identifi-
cation of the possibilities, it was concluded that AVB/TSN reconfiguration of the switch is possible
using Qbv or Qav standard. However, the preemption feature is not included in the settings list.
Thereby, it is not considered in the experimental study. As the chosen switch is embedded in the
company’s products, the procedure of the Ethernet configuration has already been established.
The configuration code is written in C++ in Visual Studio. As TSN is an Ethernet-based set of
standards, only a few modifications are needed to set appropriate registers for AVB/TSN. The
switch device contains global registers, affecting all AVB and TSN functions. These registers can
be accessed using the AVB command register and the AVB data register. Offsets of the global
register for AVB command and data register are needed to be set to continue the configuration.
AVB data register has a field for 16 bits of data, which indicates whether the data is read or
written, depending on the AVB command register. AVB command register is divided into the bit
fields: busy unit, operation code unit, port, block, and address.

The global AVB registers are used to access AVB blocks with the specific values for 802.1AS
Precision Time Protocol (PTP) and Time Application Interface (TAI) registers, 802.1BA Audio
Video Bridging (AVB/TSN) Policy registers, 802.1Qav per Class Shaping and Pacing registers,
802.1Qbv per Queue Time-Aware Shaper registers. Since TAS is chosen, the Qbv feature needs to
be enabled. Consequently, Qbv registers for delay times for each time window, port table control,
and table control must be set. GCL is set differently depending on the configuration that we
consider. It is going to be further explained in Section 6.. Two time delays with two different
entry sets can be chosen. The maximum resolution is 64 ns of delay per count, so the range is
between 0 and 4.194 ms. Port table control refers to the pointer and the queue’s state. The
pointer points to the desired Qbv port table to what data to read or write. The index registers
are accessed for entry sets and guard bands with the pointer bits. For the Qbv and guard band
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entries, queue state bits indicate which egress queues on a port are allowed to participate in the
selection for the next frame during the transmission. At most, 16 entries can be set. In the table
entry register, window time and guard band are fixed. In increments of 8ns, the window time is
fixed, so the maximum time is 262.136 us. Alongside, selection of the time sets is proposed with
the Qbv control register.

5.6. Message Transmission

As part of the use case realization, messages have to be transmitted from the PC through the
switch to the ECU. As the PC’s operating system is Windows, and for better performance and
the presence of the company’s firewalls, it was demanded to install Virtual Box and Xubuntu.
A Linux-based environment is commonly used among programmers to establish communication
because Linux offers better security and reliability. The writing of Python code and installing
OpenCV is not as complex as it could be by using Windows. After doing some testing and ob-
taining some results, it was concluded that Xubuntu is too slow for blob detection app and that
available PCs cannot support this virtual operating system in its full capacity. To prevent addi-
tional delays and to have better performance of PCs Windows operating system was used at the end.

Two frames, which are being sent through the switch to the ECU, are generated in two sep-
arated .py scripts. There are two types of frames. The first frame has the highest priority and
carries the information of the detected blob, while the second frame has the lowest priority and
represents the bulk traffic. Information carrier frames are generated in the blob detection script.
They carry 13 bits of data where two of them contain information about the ordinal number of
the frame (in the range of 0-255), one bit that signalizes whether the blob is detected or not, and
six bits that represent the time when the frame is sent (see Fig. 11). These frames are sent every
50 ms. UDP protocol is chosen above TCP on the application level for this type of frame due to
the company’s guidelines.

ff ff £ff ff ff ff b8 27 eb 95 42 a2 08 00 45 00
00 29 00 01 00 90 40 11 88 72 cO a8 38 01 c@ a8
38 ff ¢3 50 c3 b4 80 15 fc 60 03 08 Ga 08 42 [2d]
[@0][96 4a @e 48 3a a8 00|

Time from 1970/01/01
00 - blue kloh detected 00:00:00.000 until the

D1 - blue blob not detected  MeMent in time when the
frame is sent

ONumber of the frame O

Figure 11: Sample of a high-priority frame sent from the PC2

The bulk frames are generated to congest the network with the help of the Internet Control
Message Protocol (ICMP). Network devices can use ICMP for sending error messages and infor-
mation, which indicates failure or success of communication to the other IP address. In an Internet
Protocol version 4 (IPv4) packet, the ICMP packet is encapsulated, and it consists of header and
data sections (see Fig. 12). The maximum length of ICMP error messages is 576 bytes [36]. Both
Python scripts are run at the same time. The bulk framers are sent one after the other without
specific sleep time.

ff £f £ £f ff ff b8 27 eb 95 42 a2 98 0@ 45 00
00 1c @0 01 00 00 40 61 88 8f c@ a8 38 01 cO a8
38 ff 08 00 7 ff 00 GO 0O 00 00 006 00 00 20 20
PO 00 00 00 00 08 00 00

Figure 12: Sample of a low-priority bulk frame sent from the PC2

As one of the research questions of this thesis is associated with network performance measure-
ments, timestamps added when the message is sent and when it is received are considered. The
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difference between those two times represents a delay. If the delays are not consistent and there are
some oscillations in the values, then that occurrence is called jitter. In theory, jitter is downsized
with the usage of TSN.

A software tool that monitors the traffic on both PC2 and PC3 Wireshark '* will be used.
Wireshark is an open-source tool intended for analyzing network protocols. Wireshark provides
information about frame number, time from the 1970/01/01 00:00:00.0000 until the moment in
time when the frame is received (time format can be adjusted), source and destination IP address,
the protocol that frame uses (in this case UDP or ICMP), length, and other helpful information
(see Fig. 13). Also, by selecting one of the preview frames, it is possible to see every bit of a
frame and its meaning. Before generating traffic, it is important to have the same subnet mask
set for the sender PC and the receiver PC. By this, the packets from the sender can be sent to the
receiver, which is detecting them.

Am @ REQe«sEgET 5 aqarE
[W]Apply @ display filter ... <Ctr- <+
io. Time Source Destination Protocol  Length Info
1785 1652448115 456165 192.168.56.1 192.168.56.255 TcHp 56 Echo (ping) request id=0x@000, seq=0/6, ttl=64 (no response found!) 1
1786 1652448115 466243 192.168.56.1 192.168.56.255 IcHP 56 Echo (ping) request 1d-0x8000, seq=0/8, ttl=64 (no response found!)
1787 1652448115 476559 192.168.56.1 192.168.56.255 CMP 56 Echo (ping) request id=0x@000, seq=0/0, ttl=64 (no response found!)
1788 1652448115.489120 192.168.56.1 192.168.56.255 Icmp 56 Echo (ping) request 1id=0x0000, seq=0/@, ttl=64 (no response found!)
1789 1652448115 .498859 192.168.56.1 192.168.56.255 ICMP 56 Echo (ping) request 1id-0x@00@, seq=0/0, ttl=64 (no response found!)
1790 1652448115 515660 192.168.56.1 192.168.56.255 TcHP 56 Echo (ping) request id=0x@000, seq=0/0, ttl=64 (no response found!)
1791 1652448115 525109 192.168.56.1 192.168.56.255 IcHP 56 Echo (ping) request 1d-0x8000, seq=0/8, ttl=64 (no response found!)
1792 1652448115 530950 192.168.56.1 192.168.56.255 CMP 56 Echo (ping) request id=0x@000, seq=0/0, ttl=64 (no response found!)
1793 1652448115.538869 192.168.56.1 192.168.56.255 Icmp 56 Echo (ping) request 1id=0x0000, seq=0/@, ttl=64 (no response found!)
1794 1652448115.539467 192.168.56.1 192.168.56.255 uop 56 50000 > 50100 Len=13
1795 1652448115.543555 192.168.56.1 192.168.56.255 TcHP 56 Echo (ping) request id=0x@000, seq=0/0, ttl=64 (no response found!)
1796 1652448115 548983 192.168.56.1 192.168.56.255 IcHP 56 Echo (ping) request 1d-0x8000, seq=0/8, ttl=64 (no response found!)
1797 1652448115 557588 192.168.56.1 192.168.56.255 CMP 56 Echo (ping) request id=0x@000, seq=0/0, ttl=64 (no response found!)
1798 1652448115.563336 192.168.56.1 192.168.56.255 Icmp 56 Echo (ping) reguest 1id=0x0000, seg=0/@, ttl=64 (no response found!)
1799 1652448115.573510 192.168.56.1 192.168.56.255 TcMP 56 Echo (ping) request id=0x@000, seq=0/0, ttl=64 (no response found!)
1200 1482412115 ER1428 107 148 54 1 107 148 A 288 Trmo SR Frha /nina) rammact  3A-OwO000 can—0/0 ++1-AA fan racnnnca Fannd 1\

Frame 1794: 56 bytes on wire (448 bits), 56 bytes captured (448 bits) on interface \Device\NPF_{C7A75138-AFFE-42D@-97FE-621201C26A5A}, id @
Ethernet II, Src: Raspberr 05:42:a2 (b8:27:eb:95:42:a2), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: 192.168.56.1, Dst: 192.168.56.255
User Datagram Protocol, Src Port: 50000, Dst Port: 50100
Data (13 bytes)
Data: 03000200422d0096420e483aa8
[Length: 13]

v v v v

ff ff ff ff £f £f b8 27 eb 95 42 a2 @8 00 45 00 ' B E
00 29 00 01 60 00 40 11 88 72 P a8 38 01 c@ a8 )] @ -r--8
38 ff ¢3 50 c3 b4 @0 15 fc 60 03 00 @a @0 42 2d 3--P N B-
00 96 4a Qe 48 3a a8 60 J-H:

Figure 13: Wireshark interface

The existing literature restricts the TSN network configurations by two assumptions: the pri-
ority of the scheduled traffic (ST) class is higher than other classes’ priorities, and the ST class is
express while other classes are preemptable. A preemptable class can be preempted by the express
class, which can not be preempted by any other high-priority express class [37]. Frame that carries
information is marked as ST traffic class. Since Qbv standard is used it implicates the usage of
TAS scheduler. This scheduler guarantees that all time-critical traffic classes, in this case high
priority ST frames, will arrive exactly on time without any jitter by granting exclusive access to
transmission flows.

5.7. Limitations

Almost all limitations were mentioned and described in more detail in the sections above. In this
section, just a short overview is given.

A physical demonstrator, including electronic control units (ECUs) and cables, was built based
on the use case. Different configuration modes were investigated depending on the physical switch
capabilities in the used ECU. Therefore, some features, e.g., preemption, may not be feasible to
include in the experiment. In those cases, an alternative switch may also be used. Since the switch,
together with two other ECUs, is integrated into SECU, it cannot directly communicate with the

4Wireshark:https://www.wireshark.org/
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ECU of the author’s choice. This limits the possibility of choosing an ECU with a different oper-
ating system or different features. Refresh time of integrated Rubus-based ECU can vary between
5 and 20 milliseconds. This may represent a problem in applications where an instant response is
needed.

The need for OpenCV in combination with Python or C/C++ for detecting a blob of the
desired color is a limitation of another kind. Since there is no available ECU running on a Real-
Time Operating System (RTOS) that supports OpenCV, at least one node of a network needs
to be a non-real-time node. This changes the nature of the proposed vision. PC that sends the
frames and PC that receives them does not support TSN communication, so a mediator between
the PCs and switch two media converters are used. This is one more limitation of having a PC
instead of an ECU. Both PCs run on Windows operating system, but Linux is preferred because
of its reliability, security, and easier usage.
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6. Industrial configuration of the use case

The first step in setting up a use case was an examination of hardware available in industrial
settings of Volvo CE. In addition to existing hardware, an HD camera suitable for the use case was
bought. Before connecting all nodes and components, the authors of this thesis had to exhaus-
tively examine the datasheet to enable one of the TSN standards on the Ethernet switch. As it
was possible to enable appropriate registers for Qav or Qbv, for simplicity’s sake, Qbv was chosen
for activating the TAS scheduling mechanism. As previously said, TAS was elected as a result of
putting into consideration just one high and one low priority class. Qbv leverages a transmission
gate mechanism applied to the egress queues of a switch port to allow for transmitting traffic ac-
cording to a predefined schedule, implemented as a list of timed gate operations that periodically
reruns. The next step was writing a .cpp and .hpp scripts containing functions that set up the cor-
rect values in a register. In the same script, an additional function that reads the registers’ values
was also written to ensure that all registers were set appropriately. The second step was connecting
all network nodes so that PCs that send and receive the frames are able to communicate. On both
PCs, Wireshark is started, so all message logs are recorded. The traffic was recorded for a couple
of minutes while sending information about when the blob was detected and when not. In order
to have answers to the research questions presented in Section 1., measurements obtained from
use case realization need to be extracted and evaluated. The measurements are presented in this
section.

6.1. Comparative evaluation of measured end-to-end latencies

For stability and correct functionality of software operations ensurement, end-to-end latencies are
significant [38]. A time interval needed for a frame to be transmitted from a sender to a receiver is
called end-to-end latency [10]. End-to-end latencies could vary, and therefore they are calculated
for each sent frame. Latency is considered as the difference between the packet receiving time and
the packet sending time. Both moments in a specific time are recorded on the receiver PC and
sender PC by Wireshark. Additionally, jitter is the change in latency [39]. Jitter is calculated
as the absolute difference between two consecutive delays. End-user devices and applications are
designed to accept the tolerable amount of jitter by buffering the data flow and compensating for
small latency changes. Therefore, information about latency and jitter is essential when charac-
terizing the network performance over time [39].

Exploring TSN network configuration on a real hardware platform offers the opportunity for
further advancements in the realization of the general use case explained in 5.1.. In this subsection,
measurements gained from two scenarios are presented. In the first scenario switch is configured
to Ethernet, and in the second to TSN. MATLAB tool is used for the purpose of graphical repre-
sentation of latency and jitter values in Ethernet and TSN configurations.

6.1..1 Ethernet configuration

The Ethernet configuration of the chosen industrial switch has already been tested in other projects
at the company. Thereby, the first step is to obtain results with a switch configured to the Ethernet.
By conducting this experiment, it would be shown if there are any problems with the hardware,
establishing the appropriate connection, and expected results. The latency values are shown in
15. The jitter values obtained with Ethernet configuration are shown in Fig. 16 and Fig. 17. The
maximum and minimum values of latencies and jitter, as well as average jitter value, are shown in
Table 1.

6.1..2 TSN configuration

After getting results from the Ethernet configuration scenario, the next step is to check the TSN
configuration. The TSN configuration code is downloaded to the switch, and the process is re-
peated. TAS scheduling mechanism is enabled with Qbv registers on the industrial Ethernet switch,
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and block diagram for it is shown in Fig. 14. In the first period, only highest priority gate is opened
while all others are closed. In the second one, all gates are opened at the same time. The sleep
time is set to 50 ms.

Qo Q7 Gate Control List

Qo0 1 Q2 Q3 Q4 Q5 Q6 Q7 1: Open Gate
To 1 0 0 0 0 0 0 0 0 Close Gate
Ti 1 1 1 1 1 1 1 1
Loop in LCM
L 4 L 4 L 4 L 4 L 4 L 4 L 4 L 4

Gates L ~—X
<% 7

h J A A
| Transmission selection |

)

‘ | | | | | | | | (Gate driver

Figure 14: Time-Aware Shaper (TAS) block diagram

Graphs on Fig. 15, 16 and 17 are result of analyzing 429 frames. Number of frame is places
on y-axis. On x-axis latency, jitter and average jitter values are placed. The latency values are
shown in Fig. 15. Obtained results are in seconds. Since frames are being sent every 50 ms, it
was expected that measured latencies are in range of milliseconds, not in seconds. TSN latencies
are marked in red colour, and Ethernet latencies are marked in blue. TSN latencies seem to be
constant over time, while Ethernet ones are decreasing. This decrease in Ethernet latencies can be
consequence of the clock drift.
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Figure 15: Comparison of Ethernet and TSN latencies

The jitter values obtained with TSN configuration are shown in the Fig. 16 and Fig. 17.
Jitter values are obtained in miliseconds. Values corresponding to TSN are marked in red, and
ones corresponding to Ethernet are marked in blue. Since it is hard to make any conclusion when
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analyzing Fig. 16, average value of jitter was calculated and presented on Fig. 17. On both graphs
it can be seen that TSN jitter values are approximately two times less that Ethernet ones. A
detailed discussion of the results obtained on these graphs will be presented in 6.2..
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Figure 17: Comparison of Ethernet and TSN average jitter

Table 1 is comparing measurements for Ethernet and TSN. It presents the maximum and min-
imum values of latencies and jitter, as well as average jitter values. This table provides numerical
values which are easier to compare when analyzing which communication has better performance
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and whether obtained results are in satisfying ranges.

Configuration | Max.latency [s] | Min. latency [s] | Max. jitter [ms| | Min. jitter [ms] | Avg. jitter [ms]
Ethernet 2.58032 2.45383 1.08647 1.43051x1073 0.31286
TSN 0.97387 0.96353 1.40882 2.384186x10~* 0.17932

Table 1: Minimum and maximum latency and jitter values obtained from measurements

6.2. Discussion

In this subsection, the results related to the use case explained in 5. are analyzed and discussed.
Furthermore, the critical points for additional improvements to the project and usability of TSN
configuration are shown.

Understanding latency and jitter in network performance is essential in comparing commu-
nication technologies and upgrading systems for future demands, i.e., faster data processing. In
Fig. 15, it could be seen that Ethernet latency slowly decreases as the number of sent frames in-
creases. On the other hand, TSN latency stays approximately constant over time. The latency was
measured in seconds, which could be the result of the clock drift or timestamping. Even though
measured latencies are not in a expected range, it is clear that in each case constant system delay
is present, but still delay in case of TSN is constant over time and is approximately two times
less than Ethernet one. Jitter is accumulated more in the case when Ethernet was configurated,
and it was graphically presented on Fig. 16. The order of measured jitter is in milliseconds. Only
problem is that jitter should not be present when considering ST traffic class scheduled by TAS
in TSN communication. Usage of Windows instead of Linux, measuring times when frame was
sent and received in Whireshark, instead of analyzing timestamps of frames, are possible sources
of jitter. This is why low jitter presence is justified and does not affect conclusions made when
comparing TSN with Ethernet.

This thesis’s aim is to examine the possibilities of TSN configuration in industrial settings and
measure network performance in terms of latency and jitter. The configuration of the TSN net-
work can be a challenging task. Already explained scientific and engineering aspects have led to
developing a functional prototype in industrial settings. The industrial use case was based on a
network model for detecting color blobs and measuring network performance. This use case was
meant to explore the effects of Ethernet and configuration modes in terms of assumptions on the
TAS scheduling mechanism. The results obtained with this thesis are in favor to the the transition
from standard Ethernet to TSN network. As shown in theory, the latency and jitter were proved to
be smaller for TSN configuration than for standard Ethernet configuration. Therefore, this could
represent a basis for further research and advancement of TSN configurations in the automotive
industry. The considered use case had several limitations. More nodes could be added to the
network, making it more complex. The usability of the current switch configuration to TSN could
be extended for additional switches. Therefore, if the switches, the network would be, to a greater
extent, more similar to the one present in modern vehicles. Reaching the final goal of replacing
conventional Ethernet with TSN has become closer for a step further.

In the following subsections, it is discussed more about the key improvement areas of this
experimental study.

6.2..1 Improvement area 1 - Precision of the measurements

Keeping in mind that the settings in Wireshark were set to show the time passed from 1970,/01/01
00:00:00.0000 until the moment in time when the frame is received, the number of digits and
decimals was too big to be presented in the .csv file. The .csv file was needed for MATLAB
representation of latency and jitter graphs and also for easier data manipulation. Therefore, the
first five or six decimals were only taken for further calculations. Timestamping on the software

27



Dalila Alibegovié, TSN Configurations on Network Performance
Lejla Smajlovi¢ in Real-Time Communication

level has difficulty in achieving the precision which is needed by time-triggered Ethernet protocols
[12].

6.2..2 Improvement area 2 - Increase of the number of included traffic classes and
usage of other scheduling mechanisms

As it was already discussed, because of simplicity and because only two traffic classes were con-
sidered TAS mechanism was used to avoid the complexities of CBS. The only problem that arises
when considering a large number of flows in networks using TAS is a synthesis of optimized GCLs.
A combination of different traffic shapers in the same architecture is proposed as a possible solution
to this problem. To test how available hardware reacts when CBS or a combination of CBS and
TAS are used, AVB traffic classes, classes A and B should be added. As a future work, a use case
containing a larger number of switches can be designed. Large-scale networks can use different
TSN standards depending on the required mechanisms for a specific task. When considering these
kinds of networks configuration of switches together with designing offline schedules for considered
classes presents a real challenge. If behavior of used switches is investigated when using just one
of the mechanisms, and their combination, at least configuration challenges are decreased.

6.2..3 Improvement area 3 - Hardware setup

This improvement area refers to the precision of measurements area, too. During the hardware
setup, multiple problems were met. As xUbuntu is installed within Virtual box, additional files
had to be installed regarding Visual Studio, Opencv, drivers for camera, libraries included in .py
scripts, etc. While the data was transmitted from the camera a few times, the PC was slowed
down and did not recognize the camera as a device. With these and other problems related to
hardware-software compatibility, the process of experimenting was slowed down.

Likewise, the PCs which were in use during the experimentation had Windows and Virtual box
installed. The frames were sent from the sender PC’s Virtual box to the receiver PC’s Windows.
Hereby, jitter could be accumulated because of the large amount of data passing through the
network and cause the congestion. If the older hardware equipment was in use, i.e., the worn put
cables, then it could be possible that it is not designed for handling large amounts of traffic. If the
Virtual box has adequately allocated resources, but they can not be provided in time, then problems
with network jitter could affect the performance of audio/video streaming [40]. Furthermore, ECU’s
CPU refresh time could affect on receiving messages and LED control. Herewith, the efficiency and
better results could be obtained by exempting and changing some things in the hardware setup.
Moreover, considering of replacing PC and media converters with ECU could lead to lower latency
and jitter. Consequently, the unnecessary jitter would not affect the measurement process.

6.2..4 Improvement area 4 - Isolation of computation delays from communication
delays

Limitations that obstructed us to isolate communication from computation are as fallows:

e Whireshark - Whireshark detects all frames, not just ones that are important for analysis.
This is the reason why there is unexplained jitter when evaluating latencies of ST traffic
classes.

e Operating system - When Windows is used on a PC that sends frames containing information
a lot of applications can run in the background and interfere with frame priority.

e Timestamping frames - Frames that were sent from PC are timestamped when created. Prob-
lem is that they can not be timestamped when received on Rubus-based ECU because of the
complex implementation of APIs and not being able to access it at all. This is the reason
why Wireshark had to be used.

All these limitations are reason why jitter is present when considering TSN communication and why
delay is represented in seconds, not milliseconds. Authors of this work tried to convert timestamps
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extracted from frames and compare them with times obtained in both Wiresharks. Conversion of
only ten timestamps and its comparison took more time than it was expected so this procedure was
marked as unnecessary. If Linux OS is used instead of Windows, some background applications can
be shut down and just blob detection app can be the one that sends the frames with the assigned
priority. This can prevent other frames from being detected in Wireshark and can minimize jitter
obtained in TSN communication. Also measurement procedure would be less time-consuming if
researchers could access logs of the messages. Switches with graphical user interface and user
friendly configuration could help to overcome these issues.
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7. Conclusions

This thesis aimed to examine TSN configurations on network performance implemented with a real
hardware platform. Before creating the use case, the requisite background knowledge in real-time
systems, Ethernet, TSN, and scheduling mechanisms were presented. After the background section
was introduced to the reader, the related works done on TSN, switch configuration, and scheduling
mechanisms were presented.

Within this thesis, the future vision of TSN implementation in the real-world system has been
shown. As TSN is a relatively new set of standards in the industry, not many configuration so-
lutions are available. However, a use case on a smaller scale was created in order to show TSN
advantages on network performance in terms of latencies and jitter. The use case was realized in
a few steps: hardware set up, writing codes for color blob detection, message transmission, bulk
creation, and switch configuration. The timing measurements were obtained from two scenarios.
In the first, the switch was configured to the Ethernet and the second to TSN.

The research questions proposed in this thesis in Section 1. are answered through the discussion
about obtained results in Section 6.2.. The highlights of the discussion were possible improvement
areas in measurement precision, an increase in the number of included traffic classes, and usage
of other scheduling mechanisms and hardware setup. Complexities of designing such a system
were also addressed through the design process together with limitations. Results obtained from
measuring network performance were evaluated, and theoretical assumptions were therefore proved
in industrial settings. Science and theory helped authors to better understand the system and when
something is not configured the way it should be, because then obtained results did not support
theoretical assumptions. Industrial approach to the problem gave a different perspective to the
authors and helped them realize that theory doesn’t always hold in practice and that theory is
powerful tool in hands of engineers who know how and when to use it. That is how this work
contributes both to science and industry. Without science, industrial implementation would be
impossible. Given theoretical and numerical analysis can be further improved based on knowledge
gained in this work.

7.1. Future Work

The results made from this experimental study will be taken into account as this thesis is a part
of a more significant project at Volvo CE. With this work, it has been shown that TSN configura-
tions are possible with the usage of tools and equipment in the current use. The simple use case
explained in 5. can be upgraded by adding more nodes into the network, e.g., more switches and
ECUs. The configuration of the newly added switches would be approximately the same as the
one used in this experimental study. If more nodes are included in the network, the use case will
represent more of a real-world in-vehicle network. Due to the recognized limitations and obstacles
during the realization of the experimental study, additional changes could be made. The PCs,
which were used during the experimentation, were too slow at some moments. A more powerful
PC with a better processor and bigger memory space could be requested. However, the final goal is
to replace PC with ECU and get all real-time nodes with ECUs operating on a real-time operating
system. In that manner, new obstacles could be met in the future. Used switches did not support
preemptions, and because of that, other TSN switches could be considered if needed for other
purposes. Furthermore, instead of using TAS, CBS could be assessed by considering more traffic
classes such as A and B traffic classes.

It has been predicted that TSN will be dominant over industrial Ethernet because of its scal-
ability feature. Consequently, the research area in this field is expanding, leading to an increased
number of conducted experiments and analyses.
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