
ISBN 978-91-7485-528-9
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Space Computing using COTS
Heterogeneous Platforms
Intelligent On-Board Data Processing in
Space Systems

Nandinbaatar Tsog

Mälardalen University Doctoral Dissertation 347

N
a

n
d

in
b

a
a

ta
r Tso

g
SPA

C
E C

O
M

PU
TIN

G
 U

SIN
G

 C
O

TS H
ETER

O
G

EN
EO

U
S PLA

TFO
R

M
S - IN

TELLIG
EN

T O
N

-B
O

A
R

D
 D

A
TA

 P
R

O
C

ESSIN
G

 IN
 SPA

C
E SYSTEM

S
2021

Mälardalen University Press Dissertations
No. 347

SPACE COMPUTING USING COTS HETEROGENEOUS PLATFORMS

INTELLIGENT ON-BOARD DATA PROCESSING IN SPACE SYSTEMS

Nandinbaatar Tsog

2021

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 347

SPACE COMPUTING USING COTS HETEROGENEOUS PLATFORMS

INTELLIGENT ON-BOARD DATA PROCESSING IN SPACE SYSTEMS

Nandinbaatar Tsog

2021

School of Innovation, Design and Engineering

1

Copyright © Nandinbaatar Tsog, 2021
ISBN 978-91-7485-528-9
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Copyright © Nandinbaatar Tsog, 2021
ISBN 978-91-7485-528-9
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

2

Abstract

Space computing is growing due to the technological advances of high perfor-
mance commercial off-the-shelf (COTS) computing platforms. Space offers a
complex and challenging environment, with size, weight, power, and timing
constraints, communication limitations, and radiation effects.

The research presented in this thesis aims at investigating and supporting
intelligent on-board data processing using COTS heterogeneous computing
platforms in space systems. We investigate platforms with at least one Cen-
tral Processing Unit (CPU) and one Graphics Processing Unit (GPU) on the
same chip. The main goal of the research presented in this thesis is twofold.
First, investigate the heterogeneous computing platforms to propose a solution
to tackle the above-mentioned challenges in space systems. Second, to com-
plement the proposed solution with novel scheduling techniques for real-time
applications that run on COTS heterogeneous platforms in harsh environments
like space.

The proposed solutions are based on the system model that considers the
use of alternative executions of parallel segments of tasks. Although offload-
ing a parallel segment to a parallel computation unit (such as GPU) improves
the best-case execution times of most applications, it can increase the response
times of tasks in some applications due to the overuse of GPU. Hence, us-
ing the proposed task model can be a key to decreasing the response times of
tasks and improving schedulability of the system. The server-based schedul-
ing techniques support the proposed task model by guaranteeing the execution
slot for parallel segments on CPU(s). Our experimental evaluation shows that
the proposed allocation can increase the number of schedulable task sets of the
real-time systems up to 90% compared to the static allocation of applications.

We also present a dynamic allocation method using server-based schedul-
ing with the proposed task model that can improve the schedulability up to
16%. Finally, the thesis presents a simulation tool that supports designers in
choosing heterogeneous processing units using the proposed task model while
considering the different levels of radiation tolerance to the processing units.

iii

Abstract

Space computing is growing due to the technological advances of high perfor-
mance commercial off-the-shelf (COTS) computing platforms. Space offers a
complex and challenging environment, with size, weight, power, and timing
constraints, communication limitations, and radiation effects.

The research presented in this thesis aims at investigating and supporting
intelligent on-board data processing using COTS heterogeneous computing
platforms in space systems. We investigate platforms with at least one Cen-
tral Processing Unit (CPU) and one Graphics Processing Unit (GPU) on the
same chip. The main goal of the research presented in this thesis is twofold.
First, investigate the heterogeneous computing platforms to propose a solution
to tackle the above-mentioned challenges in space systems. Second, to com-
plement the proposed solution with novel scheduling techniques for real-time
applications that run on COTS heterogeneous platforms in harsh environments
like space.

The proposed solutions are based on the system model that considers the
use of alternative executions of parallel segments of tasks. Although offload-
ing a parallel segment to a parallel computation unit (such as GPU) improves
the best-case execution times of most applications, it can increase the response
times of tasks in some applications due to the overuse of GPU. Hence, us-
ing the proposed task model can be a key to decreasing the response times of
tasks and improving schedulability of the system. The server-based schedul-
ing techniques support the proposed task model by guaranteeing the execution
slot for parallel segments on CPU(s). Our experimental evaluation shows that
the proposed allocation can increase the number of schedulable task sets of the
real-time systems up to 90% compared to the static allocation of applications.

We also present a dynamic allocation method using server-based schedul-
ing with the proposed task model that can improve the schedulability up to
16%. Finally, the thesis presents a simulation tool that supports designers in
choosing heterogeneous processing units using the proposed task model while
considering the different levels of radiation tolerance to the processing units.

iii

3

4

Sammanfattning

Rymddatorn växer på grund av de tekniska framstegen inom högpresterande
kommersiella plattformar (COTS). Rymden erbjuder en komplex och utma-
nande miljö med storlek, vikt, effekt och tidsbegränsningar, kommunikations-
begränsningar och strålningseffekter.

Forskningen som presenteras i denna avhandling syftar till att undersöka
och stödja intelligent omborddatabehandling med hjälp av COTS heterogena
datorplattformar i rymdsystem. Vi undersöker plattformar med minst en Cen-
tral Processing Unit (CPU) och en Graphics Processing Unit (GPU) på samma
chip. Huvudmålet med forskningen som presenteras i denna avhandling är
tvåfaldigt. Undersök först de heterogena dataplattformarna för att föreslå en
lösning för att hantera ovan nämnda utmaningar i rymdsystem. För det andra,
för att komplettera den föreslagna lösningen med nya schemaläggningstekniker
för realtidsapplikationer som körs på COTS heterogena plattformar i tuffa
miljöer som rymden.

De föreslagna lösningarna baseras på systemmodellen som överväger an-
vändningen av alternativa utföranden av parallella segment av uppgifter. Även
om avlastning av ett parallellt segment till en parallell beräkningsenhet (t.ex.
GPU) förbättrar de bästa tillämpningstiderna för de flesta applikationer, kan det
öka svarstiderna för uppgifter i vissa applikationer på grund av överanvändning
av GPU. Därför kan användning av den föreslagna uppgiftsmodellen vara en
nyckel för att minska responstiderna för uppgifter och förbättra systemets sche-
maläggning. De serverbaserade schemaläggningsteknikerna stöder den före-
slagna uppgiftsmodellen genom att garantera exekveringsplatsen för parallella
segment på CPU(er). Vår experimentella utvärdering visar att den föreslagna
fördelningen kan öka antalet schemalagda uppgiftsuppsättningar för realtidssys-
temen upp till 90% jämfört med den statiska fördelningen av applikationer.

Vi presenterar också en dynamisk allokeringsmetod med hjälp av server-
baserad schemaläggning med den föreslagna uppgiftsmodellen som kan för-
bättra schemaläggningen upp till 16%. Slutligen presenterar avhandlingen
ett simuleringsverktyg som stöder konstruktörer i att välja heterogena bear-
betningsenheter med hjälp av den föreslagna uppgiftsmodellen samtidigt som
man beaktar de olika strålningstoleransnivåerna för behandlingsenheterna.

v

Sammanfattning

Rymddatorn växer på grund av de tekniska framstegen inom högpresterande
kommersiella plattformar (COTS). Rymden erbjuder en komplex och utma-
nande miljö med storlek, vikt, effekt och tidsbegränsningar, kommunikations-
begränsningar och strålningseffekter.

Forskningen som presenteras i denna avhandling syftar till att undersöka
och stödja intelligent omborddatabehandling med hjälp av COTS heterogena
datorplattformar i rymdsystem. Vi undersöker plattformar med minst en Cen-
tral Processing Unit (CPU) och en Graphics Processing Unit (GPU) på samma
chip. Huvudmålet med forskningen som presenteras i denna avhandling är
tvåfaldigt. Undersök först de heterogena dataplattformarna för att föreslå en
lösning för att hantera ovan nämnda utmaningar i rymdsystem. För det andra,
för att komplettera den föreslagna lösningen med nya schemaläggningstekniker
för realtidsapplikationer som körs på COTS heterogena plattformar i tuffa
miljöer som rymden.

De föreslagna lösningarna baseras på systemmodellen som överväger an-
vändningen av alternativa utföranden av parallella segment av uppgifter. Även
om avlastning av ett parallellt segment till en parallell beräkningsenhet (t.ex.
GPU) förbättrar de bästa tillämpningstiderna för de flesta applikationer, kan det
öka svarstiderna för uppgifter i vissa applikationer på grund av överanvändning
av GPU. Därför kan användning av den föreslagna uppgiftsmodellen vara en
nyckel för att minska responstiderna för uppgifter och förbättra systemets sche-
maläggning. De serverbaserade schemaläggningsteknikerna stöder den före-
slagna uppgiftsmodellen genom att garantera exekveringsplatsen för parallella
segment på CPU(er). Vår experimentella utvärdering visar att den föreslagna
fördelningen kan öka antalet schemalagda uppgiftsuppsättningar för realtidssys-
temen upp till 90% jämfört med den statiska fördelningen av applikationer.

Vi presenterar också en dynamisk allokeringsmetod med hjälp av server-
baserad schemaläggning med den föreslagna uppgiftsmodellen som kan för-
bättra schemaläggningen upp till 16%. Slutligen presenterar avhandlingen
ett simuleringsverktyg som stöder konstruktörer i att välja heterogena bear-
betningsenheter med hjälp av den föreslagna uppgiftsmodellen samtidigt som
man beaktar de olika strålningstoleransnivåerna för behandlingsenheterna.

v

5

6

To my family.

vii

To my family.

vii

7

8

Where there’s a will there’s a way Where there’s a will there’s a way

9

x x

10

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors, my
principal supervisor Professor Mikael Sjödin, industrial co-supervisor, Adjunct
Professor Fredrik Bruhn, academic co-supervisors Professor Moris Behnam
and Associate Professor Saad Mubeen. I am glad that I could travel this jour-
ney with you under your expert guidance, persistent support, and enormous
encouragement. I am grateful for your valuable ideas, guidance, suggestions,
comments, and feedback.

I appreciate the contributors, Dr. Matthias Becker and Dr. Harris Gas-
parakis, to this thesis. Many thanks to all of my co-authors for collaborating
with me. Thank you Jakob Danielsson, Marcus Larsson, Ashalatha Kunnap-
pilly, Dr. Mobyen Uddin Ahmed, Dr. Shahina Begum, Alexandros Binios, Dr.
Jaan Praks, and Dr. René Laufer.

Special thanks to Jakob, who is my friend, colleague, bro, contributor,
psychologist, room&team-mate, our team-leader, my driver, etc. It is not only
a matter of time. ”Admire, respect, support, sharpening, help” these words
describe you.

I appreciate Dr. Guillermo Rodriguez-Navas, who is my friend and advi-
sor. Thanks for spending many days for discussing, leading, consolidating the
ideas. I hope we will work together more and more.

I deeply appreciate my teachers, Sharaa, Munkhjargal, Erdene Natsagdorj,
Professor Motomu Takeshige, Professor Shimizu, and Professor Yasushi Kato.
Your words supported me to coming back to the academia.

I would like to thank Prof. Sasikumar Punnekkat and Prof. Masoud
Daneshtalab for valuable suggestions and comments on the thesis and disser-
tation.

Special thanks to my friends and advisors, Jakob Danielsson, Marcus Lars-
son, Tobias Andersson, Uyanga Ganbaatar, Batbuyan Batchuluun, Dr. Gui-
llermo Rodriguez-Navas, Dr. Predrag Filipovikj, Filip Markovic, Ashalatha
Kunnappilly, Mirgita Frasheri, Dr. Gabriel Campeanu, Leo Hatvani, Dr. Momo,
Dr. Svetlana Girs, Prof. Kristina Lundqvist, Prof. Cristina Seceleanu, Prof.

xi

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors, my
principal supervisor Professor Mikael Sjödin, industrial co-supervisor, Adjunct
Professor Fredrik Bruhn, academic co-supervisors Professor Moris Behnam
and Associate Professor Saad Mubeen. I am glad that I could travel this jour-
ney with you under your expert guidance, persistent support, and enormous
encouragement. I am grateful for your valuable ideas, guidance, suggestions,
comments, and feedback.

I appreciate the contributors, Dr. Matthias Becker and Dr. Harris Gas-
parakis, to this thesis. Many thanks to all of my co-authors for collaborating
with me. Thank you Jakob Danielsson, Marcus Larsson, Ashalatha Kunnap-
pilly, Dr. Mobyen Uddin Ahmed, Dr. Shahina Begum, Alexandros Binios, Dr.
Jaan Praks, and Dr. René Laufer.

Special thanks to Jakob, who is my friend, colleague, bro, contributor,
psychologist, room&team-mate, our team-leader, my driver, etc. It is not only
a matter of time. ”Admire, respect, support, sharpening, help” these words
describe you.

I appreciate Dr. Guillermo Rodriguez-Navas, who is my friend and advi-
sor. Thanks for spending many days for discussing, leading, consolidating the
ideas. I hope we will work together more and more.

I deeply appreciate my teachers, Sharaa, Munkhjargal, Erdene Natsagdorj,
Professor Motomu Takeshige, Professor Shimizu, and Professor Yasushi Kato.
Your words supported me to coming back to the academia.

I would like to thank Prof. Sasikumar Punnekkat and Prof. Masoud
Daneshtalab for valuable suggestions and comments on the thesis and disser-
tation.

Special thanks to my friends and advisors, Jakob Danielsson, Marcus Lars-
son, Tobias Andersson, Uyanga Ganbaatar, Batbuyan Batchuluun, Dr. Gui-
llermo Rodriguez-Navas, Dr. Predrag Filipovikj, Filip Markovic, Ashalatha
Kunnappilly, Mirgita Frasheri, Dr. Gabriel Campeanu, Leo Hatvani, Dr. Momo,
Dr. Svetlana Girs, Prof. Kristina Lundqvist, Prof. Cristina Seceleanu, Prof.

xi

11

xii

Masoud Daneshtalab, Prof. Micke, Dr. Sara Abbaspour, Prof. Tiberiu Sece-
leanu, Dr. Marcus Jägemar, Stefan Karlsson, Aldin Berisa, Zenepe Satka,
Tugu, Batya, Mitsuteru Kaneoka, Koji Yamaguchi, and Prof. Ryu Funase.
Your words, cheered me up a lot.

1 if ($id =˜ /([a-z][a-z][a-z][0-9][0-9])/) {
2 print <<MDH;
3 To $1,
4 Thank you for spending time with me at MDH.
5 MDH
6 }

I appreciate the DPAC project for funding my doctoral study. I also appre-
ciate Advanced Micro Devices, Inc. (AMD) and Unibap AB (publ.) for donat-
ing and providing the test platforms. In addition, I am thankful to Volvo CE,
Saab, and SaraniaSat Inc. for providing the test data. Furthermore, I would like
to thank TESO Corporation, MOOCHA co-authors, DPAC members, HERO
project team members, and family members.

Finally and foremost, I would like to express my greatest gratitude to my
wife Bolormaa, son Ananda, parents, sister Nandin, and Jouni for your contin-
uous love, support, and encouragement.

Nandinbaatar Tsog
Sala, Oct 12, 2021

xii

Masoud Daneshtalab, Prof. Micke, Dr. Sara Abbaspour, Prof. Tiberiu Sece-
leanu, Dr. Marcus Jägemar, Stefan Karlsson, Aldin Berisa, Zenepe Satka,
Tugu, Batya, Mitsuteru Kaneoka, Koji Yamaguchi, and Prof. Ryu Funase.
Your words, cheered me up a lot.

1 if ($id =˜ /([a-z][a-z][a-z][0-9][0-9])/) {
2 print <<MDH;
3 To $1,
4 Thank you for spending time with me at MDH.
5 MDH
6 }

I appreciate the DPAC project for funding my doctoral study. I also appre-
ciate Advanced Micro Devices, Inc. (AMD) and Unibap AB (publ.) for donat-
ing and providing the test platforms. In addition, I am thankful to Volvo CE,
Saab, and SaraniaSat Inc. for providing the test data. Furthermore, I would like
to thank TESO Corporation, MOOCHA co-authors, DPAC members, HERO
project team members, and family members.

Finally and foremost, I would like to express my greatest gratitude to my
wife Bolormaa, son Ananda, parents, sister Nandin, and Jouni for your contin-
uous love, support, and encouragement.

Nandinbaatar Tsog
Sala, Oct 12, 2021

12

List of Publications

Papers Included in the Doctoral Thesis1

Paper A: Intelligent Data Processing using In-Orbit Advanced Algorithms on
Heterogeneous System Architecture – Nandinbaatar Tsog, Moris Behnam,
Mikael Sjödin, Fredrik Bruhn. In the Proceedings of the 39th Interna-
tional IEEE Aerospace Conference, AeroConf 2018.

Paper B: A Trade-Off between Computing Power and Energy Consumption of
On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
– Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn. In
the Transactions of the Japan Society for Aeronautical and Space Sci-
ences, Aerospace Technology Japan, ATJ 2020.

Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based Onboard
Data Processing in Space – Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian
Kunkel, Oskar Flordal, Ian Troxel. In the CEAS Space Journal, CEAS
2020.

Paper D: Simulation and Analysis of In-Orbit Applications under Radiation
Effects on COTS Platforms – Nandinbaatar Tsog, Saad Mubeen, Mikael
Sjödin, Fredrik Bruhn. In the Proceedings of the 42nd International
IEEE Aerospace Conference, AeroConf 2021.

Paper E: Static Allocation of Parallel Tasks to Improve Schedulability in CPU-
GPU Heterogeneous Real-Time Systems – Nandinbaatar Tsog, Matthias
Becker, Fredrik Bruhn, Moris Behnam, Mikael Sjödin. In the Proceed-
ings of the 45th Annual Conference of the IEEE Industrial Electronics
Society, IECON 2019.

Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU Hetero-
geneous Processors – Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn,

1The included papers have been reformatted to comply with the doctoral thesis settings.

xiii

List of Publications

Papers Included in the Doctoral Thesis1

Paper A: Intelligent Data Processing using In-Orbit Advanced Algorithms on
Heterogeneous System Architecture – Nandinbaatar Tsog, Moris Behnam,
Mikael Sjödin, Fredrik Bruhn. In the Proceedings of the 39th Interna-
tional IEEE Aerospace Conference, AeroConf 2018.

Paper B: A Trade-Off between Computing Power and Energy Consumption of
On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
– Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn. In
the Transactions of the Japan Society for Aeronautical and Space Sci-
ences, Aerospace Technology Japan, ATJ 2020.

Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based Onboard
Data Processing in Space – Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian
Kunkel, Oskar Flordal, Ian Troxel. In the CEAS Space Journal, CEAS
2020.

Paper D: Simulation and Analysis of In-Orbit Applications under Radiation
Effects on COTS Platforms – Nandinbaatar Tsog, Saad Mubeen, Mikael
Sjödin, Fredrik Bruhn. In the Proceedings of the 42nd International
IEEE Aerospace Conference, AeroConf 2021.

Paper E: Static Allocation of Parallel Tasks to Improve Schedulability in CPU-
GPU Heterogeneous Real-Time Systems – Nandinbaatar Tsog, Matthias
Becker, Fredrik Bruhn, Moris Behnam, Mikael Sjödin. In the Proceed-
ings of the 45th Annual Conference of the IEEE Industrial Electronics
Society, IECON 2019.

Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU Hetero-
geneous Processors – Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn,

1The included papers have been reformatted to comply with the doctoral thesis settings.

xiii

13

xiv

Moris Behnam, Mikael Sjödin. In the Proceedings of the 26th Interna-
tional Conference on Emerging Technologies and Factory Automation,
ETFA 2021.

xiv

Moris Behnam, Mikael Sjödin. In the Proceedings of the 26th Interna-
tional Conference on Emerging Technologies and Factory Automation,
ETFA 2021.

14

xv

Additional Peer-Reviewed Publications, not Included in
the Doctoral Thesis

1. A Trade-Off between Computing Power and Energy Consumption of On-
Board Data Processing in GPU Accelerated Real-Time Systems – Nand-
inbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the Proceedings of the
32nd International Symposium on Space Technology and Science, ISTS
2019.

2. Using Docker in Process Level Isolation for Heterogeneous Comput-
ing on GPU Accelerated On-Board Data Processing Systems – Nand-
inbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the Proceedings of
the 12th IAA Symposium on Small Satellites for Earth Observation,
IAASmallSat 2019.

3. Moon Cubesat Hazard Assessment (MOOCHA) - An International Earth-
Moon Small Satellite Constellation - Alexandros Binios, Janis Dalbins,
Sean Haslam, Rusnė Ivaškevičiūtė, Ayush Jain, Maarit Kinnari, Joosep
Kivastik, Fiona Leverone, Juuso Mikkola, Ervin Oro, Laura Ruusmann,
Janis Sate, Hector-Andreas Stavrakakis, Nandinbaatar Tsog, Karin Pai,
Jaan Praks, René Laufer. In the Proceedings of the 12th IAA Sympo-
sium on Small Satellites for Earth Observation, IAASmallSat 2019.

4. Using Heterogeneous Computing on GPU Accelerated Systems to Ad-
vance On-Board Data Processing - Nandinbaatar Tsog, Mikael Sjödin,
Fredrik Bruhn. In the European Workshop on On-Board Data Process-
ing, OBDP 2019.

5. A Systematic Mapping Study on Real-time Cloud Services - Jakob Daniels-
son, Nandinbaatar Tsog, Ashalatha Kunnappilly. In the Proceedings of
the 1st Workshop on Quality Assurance in the Context of Cloud Com-
puting, QA3C 2018.

6. Advancing On-Board Big Data Processing Using Heterogeneous System
Architecture - Nandinbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the
Proceedings of the ESA/CNES 4S Symposium 2018, 4S 2018.

7. Real-Time Capabilities of HSA Compliant COTS Platforms - Nandin-
baatar Tsog, Matthias Becker, Marcus Larsson, Fredrik Bruhn, Moris
Behnam, Mikael Sjödin. In the Proceedings of the 37th IEEE Real-Time
Systems Symposium (WiP) , WiP RTSS 2016.

xv

Additional Peer-Reviewed Publications, not Included in
the Doctoral Thesis

1. A Trade-Off between Computing Power and Energy Consumption of On-
Board Data Processing in GPU Accelerated Real-Time Systems – Nand-
inbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the Proceedings of the
32nd International Symposium on Space Technology and Science, ISTS
2019.

2. Using Docker in Process Level Isolation for Heterogeneous Comput-
ing on GPU Accelerated On-Board Data Processing Systems – Nand-
inbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the Proceedings of
the 12th IAA Symposium on Small Satellites for Earth Observation,
IAASmallSat 2019.

3. Moon Cubesat Hazard Assessment (MOOCHA) - An International Earth-
Moon Small Satellite Constellation - Alexandros Binios, Janis Dalbins,
Sean Haslam, Rusnė Ivaškevičiūtė, Ayush Jain, Maarit Kinnari, Joosep
Kivastik, Fiona Leverone, Juuso Mikkola, Ervin Oro, Laura Ruusmann,
Janis Sate, Hector-Andreas Stavrakakis, Nandinbaatar Tsog, Karin Pai,
Jaan Praks, René Laufer. In the Proceedings of the 12th IAA Sympo-
sium on Small Satellites for Earth Observation, IAASmallSat 2019.

4. Using Heterogeneous Computing on GPU Accelerated Systems to Ad-
vance On-Board Data Processing - Nandinbaatar Tsog, Mikael Sjödin,
Fredrik Bruhn. In the European Workshop on On-Board Data Process-
ing, OBDP 2019.

5. A Systematic Mapping Study on Real-time Cloud Services - Jakob Daniels-
son, Nandinbaatar Tsog, Ashalatha Kunnappilly. In the Proceedings of
the 1st Workshop on Quality Assurance in the Context of Cloud Com-
puting, QA3C 2018.

6. Advancing On-Board Big Data Processing Using Heterogeneous System
Architecture - Nandinbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the
Proceedings of the ESA/CNES 4S Symposium 2018, 4S 2018.

7. Real-Time Capabilities of HSA Compliant COTS Platforms - Nandin-
baatar Tsog, Matthias Becker, Marcus Larsson, Fredrik Bruhn, Moris
Behnam, Mikael Sjödin. In the Proceedings of the 37th IEEE Real-Time
Systems Symposium (WiP) , WiP RTSS 2016.

15

xvi xvi

16

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Goal and Research Challenges 4
1.2 Outline of the Thesis . 5

2 Background 7
2.1 Space Computing . 7

2.1.1 On-Board Data Processing 7
2.1.2 Radiation Effects . 9

2.2 Heterogeneous Computing 9
2.2.1 Heterogeneous Architectures 10
2.2.2 Memory Model & Interconnection 12
2.2.3 Heterogeneous System Architecture (HSA) 14

2.3 Real-Time Embedded Systems 15
2.3.1 Embedded Systems 15
2.3.2 Real-Time Systems 16

2.4 System Model and Architecture 16
2.5 Metrics . 18

3 Research Description 21
3.1 Scientific Contributions . 21
3.2 Summary of Included Papers 24
3.3 Research Process and Methodology 28

4 Related Work 31

5 Conclusions 35
5.1 Summary and Conclusions 35
5.2 Future Work . 36

xvii

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Goal and Research Challenges 4
1.2 Outline of the Thesis . 5

2 Background 7
2.1 Space Computing . 7

2.1.1 On-Board Data Processing 7
2.1.2 Radiation Effects . 9

2.2 Heterogeneous Computing 9
2.2.1 Heterogeneous Architectures 10
2.2.2 Memory Model & Interconnection 12
2.2.3 Heterogeneous System Architecture (HSA) 14

2.3 Real-Time Embedded Systems 15
2.3.1 Embedded Systems 15
2.3.2 Real-Time Systems 16

2.4 System Model and Architecture 16
2.5 Metrics . 18

3 Research Description 21
3.1 Scientific Contributions . 21
3.2 Summary of Included Papers 24
3.3 Research Process and Methodology 28

4 Related Work 31

5 Conclusions 35
5.1 Summary and Conclusions 35
5.2 Future Work . 36

xvii

17

xviii Contents

Bibliography 38

xviii Contents

Bibliography 38

18

Contents xix

II Included Papers 43

6 Paper A: Intelligent Data Processing using In-Orbit Advanced Al-
gorithms on Heterogeneous System Architecture 45
6.1 Introduction . 47

6.1.1 Contributions . 48
6.1.2 Organization . 48

6.2 Related Work . 48
6.3 Background . 50

6.3.1 AMD A-Series A10-8700P APU 50
6.3.2 GIMME3 and GIMME4 51
6.3.3 Heterogeneous System Architecture 52

6.4 Experiment Setup . 54
6.4.1 Benchmark Suites 55
6.4.2 Configuration of Test Scenarios 55
6.4.3 Test Data . 56
6.4.4 Evaluation Environment 56

6.5 Experiment Results . 57
6.6 Conclusion / Future Work . 59
6.7 Test Data . 59

6.7.1 Source of the Test Data 59
6.7.2 Tracking Results . 60

6.8 Pseudo Code for the Measurements of the Computation Time . 61
Bibliography . 62

7 Paper B: A Trade-Off between Computing Power and Energy Con-
sumption of On-Board Data Processing in GPU Accelerated In-
Orbit Space Systems 65
7.1 Introduction . 67

7.1.1 Contributions . 68
7.1.2 Organization . 68

7.2 Related work . 69
7.3 Background . 70

7.3.1 Real-time system . 70
7.3.2 Heterogeneous computing 71
7.3.3 Advanced applications in satellite 72

7.4 System Model . 74
7.5 Experimental design . 75

7.5.1 Algorithms . 76
7.5.2 Testbeds . 77

Contents xix

II Included Papers 43

6 Paper A: Intelligent Data Processing using In-Orbit Advanced Al-
gorithms on Heterogeneous System Architecture 45
6.1 Introduction . 47

6.1.1 Contributions . 48
6.1.2 Organization . 48

6.2 Related Work . 48
6.3 Background . 50

6.3.1 AMD A-Series A10-8700P APU 50
6.3.2 GIMME3 and GIMME4 51
6.3.3 Heterogeneous System Architecture 52

6.4 Experiment Setup . 54
6.4.1 Benchmark Suites 55
6.4.2 Configuration of Test Scenarios 55
6.4.3 Test Data . 56
6.4.4 Evaluation Environment 56

6.5 Experiment Results . 57
6.6 Conclusion / Future Work . 59
6.7 Test Data . 59

6.7.1 Source of the Test Data 59
6.7.2 Tracking Results . 60

6.8 Pseudo Code for the Measurements of the Computation Time . 61
Bibliography . 62

7 Paper B: A Trade-Off between Computing Power and Energy Con-
sumption of On-Board Data Processing in GPU Accelerated In-
Orbit Space Systems 65
7.1 Introduction . 67

7.1.1 Contributions . 68
7.1.2 Organization . 68

7.2 Related work . 69
7.3 Background . 70

7.3.1 Real-time system . 70
7.3.2 Heterogeneous computing 71
7.3.3 Advanced applications in satellite 72

7.4 System Model . 74
7.5 Experimental design . 75

7.5.1 Algorithms . 76
7.5.2 Testbeds . 77

19

xx Contents

7.5.3 Experimental observations 77
7.5.4 Evaluation and Results 80

7.6 Conclusion . 85
Bibliography . 87

8 Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based
Onboard Data Processing in Space 93
8.1 Introduction . 95
8.2 Related work . 96

8.2.1 Heterogeneous computing architecture overview . . . 97
8.2.2 High performance computing tools in space 99

8.3 Stacking interface for modularity and form factor 101
8.4 Single-event effect mitigation middleware (SMM) 102
8.5 Mission scenarios and application 106

8.5.1 Applications . 108
8.6 Software overview . 108
8.7 Intelligent data processing performance evaluation 109

8.7.1 Evaluation environment 110
8.7.2 Experimental design 110
8.7.3 Results . 112

8.8 Conclusions . 116
Bibliography . 117

9 Paper D: Simulation and Analysis of In-Orbit Applications under
Radiation Effects on COTS Platforms 121
9.1 Introduction . 123

9.1.1 A. Contributions . 123
9.1.2 B. Organization . 124

9.2 MUST: System architecture 124
9.2.1 A. System Model . 124
9.2.2 B. Task Model . 125
9.2.3 C. Radiation Effect Model 126

9.3 MUST: Design and implementation 129
9.3.1 A. Input & Output 129
9.3.2 B. Design . 132
9.3.3 C. Simulation Mechanism 132
9.3.4 D. Implementation 133

9.4 MUST: Use case . 134
9.4.1 A. Use Case Description 134
9.4.2 B. Evaluation and Discussion 134

xx Contents

7.5.3 Experimental observations 77
7.5.4 Evaluation and Results 80

7.6 Conclusion . 85
Bibliography . 87

8 Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based
Onboard Data Processing in Space 93
8.1 Introduction . 95
8.2 Related work . 96

8.2.1 Heterogeneous computing architecture overview . . . 97
8.2.2 High performance computing tools in space 99

8.3 Stacking interface for modularity and form factor 101
8.4 Single-event effect mitigation middleware (SMM) 102
8.5 Mission scenarios and application 106

8.5.1 Applications . 108
8.6 Software overview . 108
8.7 Intelligent data processing performance evaluation 109

8.7.1 Evaluation environment 110
8.7.2 Experimental design 110
8.7.3 Results . 112

8.8 Conclusions . 116
Bibliography . 117

9 Paper D: Simulation and Analysis of In-Orbit Applications under
Radiation Effects on COTS Platforms 121
9.1 Introduction . 123

9.1.1 A. Contributions . 123
9.1.2 B. Organization . 124

9.2 MUST: System architecture 124
9.2.1 A. System Model . 124
9.2.2 B. Task Model . 125
9.2.3 C. Radiation Effect Model 126

9.3 MUST: Design and implementation 129
9.3.1 A. Input & Output 129
9.3.2 B. Design . 132
9.3.3 C. Simulation Mechanism 132
9.3.4 D. Implementation 133

9.4 MUST: Use case . 134
9.4.1 A. Use Case Description 134
9.4.2 B. Evaluation and Discussion 134

20

Contents xxi

9.5 Related work and tools . 136
9.6 Conclusions . 137
Bibliography . 139

10 Paper E: Static Allocation of Parallel Tasks to Improve Schedula-
bility in CPU-GPU Heterogeneous Real-Time System 141
10.1 Introduction . 143

10.1.1 Contributions . 144
10.1.2 Organization . 144

10.2 Motivation . 145
10.3 System and task model . 146

10.3.1 System model . 146
10.3.2 Task Model . 147

10.4 Heuristic Task Allocation Approaches 149
10.4.1 Non-Greedy Resource Allocation Heuristic Approach

(NHA) . 149
10.4.2 Speedup Classifier based Heuristic Approach (SHA) . 149
10.4.3 Min-Min Approach (MMA) 150

10.5 Synthetic Experiments . 151
10.5.1 Task set generation 151
10.5.2 Comparative algorithms 152
10.5.3 Experiment setup . 152
10.5.4 Result . 152

10.6 Related work . 155
10.7 Conclusions . 156
Bibliography . 157

11 Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU
Heterogeneous Processors 161
11.1 Introduction . 163
11.2 Related Work . 164
11.3 System Model . 165
11.4 Proposed Workload Allocation Framework 168
11.5 Offloading Techniques . 169

11.5.1 Baseline: Default Allocation Technique (DAT) 170
11.5.2 Naive Offloading Technique (NOT) 170
11.5.3 Min-min Fashioned Offloading Technique (MOT) . . . 171
11.5.4 Speedup Classifier Based Technique (SCT) 171
11.5.5 Synchronized Servers Technique (SST) 172
11.5.6 Efficient Offloading Technique (EOT) 173

Contents xxi

9.5 Related work and tools . 136
9.6 Conclusions . 137
Bibliography . 139

10 Paper E: Static Allocation of Parallel Tasks to Improve Schedula-
bility in CPU-GPU Heterogeneous Real-Time System 141
10.1 Introduction . 143

10.1.1 Contributions . 144
10.1.2 Organization . 144

10.2 Motivation . 145
10.3 System and task model . 146

10.3.1 System model . 146
10.3.2 Task Model . 147

10.4 Heuristic Task Allocation Approaches 149
10.4.1 Non-Greedy Resource Allocation Heuristic Approach

(NHA) . 149
10.4.2 Speedup Classifier based Heuristic Approach (SHA) . 149
10.4.3 Min-Min Approach (MMA) 150

10.5 Synthetic Experiments . 151
10.5.1 Task set generation 151
10.5.2 Comparative algorithms 152
10.5.3 Experiment setup . 152
10.5.4 Result . 152

10.6 Related work . 155
10.7 Conclusions . 156
Bibliography . 157

11 Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU
Heterogeneous Processors 161
11.1 Introduction . 163
11.2 Related Work . 164
11.3 System Model . 165
11.4 Proposed Workload Allocation Framework 168
11.5 Offloading Techniques . 169

11.5.1 Baseline: Default Allocation Technique (DAT) 170
11.5.2 Naive Offloading Technique (NOT) 170
11.5.3 Min-min Fashioned Offloading Technique (MOT) . . . 171
11.5.4 Speedup Classifier Based Technique (SCT) 171
11.5.5 Synchronized Servers Technique (SST) 172
11.5.6 Efficient Offloading Technique (EOT) 173

21

xxii Contents

11.6 Experimental Evaluation . 174
11.6.1 Task Set Generation and Experimental Setup 174
11.6.2 Offloading Techniques 175
11.6.3 Evaluation Results 175

11.7 Conclusion . 180
Bibliography . 181

xxii Contents

11.6 Experimental Evaluation . 174
11.6.1 Task Set Generation and Experimental Setup 174
11.6.2 Offloading Techniques 175
11.6.3 Evaluation Results 175

11.7 Conclusion . 180
Bibliography . 181

22

Part I

Thesis

1

Part I

Thesis

1

23

24

Chapter 1

Introduction

In the last two decades, the exploitation of small satellites and CubeSats1 has
rapidly increased for academic, commercial, and government intelligence ap-
plications [1, 2]. Space applications like for earth observation, deep space
explorations, and communications, exploit on-board processing and reconsti-
tute the role and use of small satellites from being a simple node of sensing
data to a generator of big data and provider of efficient storage, and intelligent
on-board decision making using the data, i.e., space computing. Numerous
studies show that the intelligent on-board processing improves the use of the
limited communication link bandwidth on small satellites [3, 4, 5], while it
requires high-performance computing capability under the size, weight, and
power (SWaP), radiation and real-time constraints.

As high-performance space computing technology is a key for the fu-
ture of space missions, the interest in commercial-off-the shelf (COTS) het-
erogeneous platforms for space computing is growing vastly. Heterogeneous
platforms employ different types of processing units on the same chip such
as Central Processing Unit (CPU), Graphics Processing Unit (GPU), Field-
Programmable Gate Array (FPGA), Digital Signal Processor (DSP), to men-
tion a few. These platforms provide massive computation capabilities. How-
ever, these platforms make the systems more complex. For instance, the sys-
tems that utilize heterogeneous computing platforms are more prone to unpre-
dictable timing behaviours compared to the systems that use single-core com-
puting platforms [6]. The work presented in this thesis tackles the challenges
to make efficient use of the different compute resources considering various
bottlenecks and difficulties in heterogeneous computing platforms.

Furthermore, COTS platforms are usually wobbly against radiation effects

1https://www.nasa.gov/content/what-are-smallsats-and-cubesats

3

Chapter 1

Introduction

In the last two decades, the exploitation of small satellites and CubeSats1 has
rapidly increased for academic, commercial, and government intelligence ap-
plications [1, 2]. Space applications like for earth observation, deep space
explorations, and communications, exploit on-board processing and reconsti-
tute the role and use of small satellites from being a simple node of sensing
data to a generator of big data and provider of efficient storage, and intelligent
on-board decision making using the data, i.e., space computing. Numerous
studies show that the intelligent on-board processing improves the use of the
limited communication link bandwidth on small satellites [3, 4, 5], while it
requires high-performance computing capability under the size, weight, and
power (SWaP), radiation and real-time constraints.

As high-performance space computing technology is a key for the fu-
ture of space missions, the interest in commercial-off-the shelf (COTS) het-
erogeneous platforms for space computing is growing vastly. Heterogeneous
platforms employ different types of processing units on the same chip such
as Central Processing Unit (CPU), Graphics Processing Unit (GPU), Field-
Programmable Gate Array (FPGA), Digital Signal Processor (DSP), to men-
tion a few. These platforms provide massive computation capabilities. How-
ever, these platforms make the systems more complex. For instance, the sys-
tems that utilize heterogeneous computing platforms are more prone to unpre-
dictable timing behaviours compared to the systems that use single-core com-
puting platforms [6]. The work presented in this thesis tackles the challenges
to make efficient use of the different compute resources considering various
bottlenecks and difficulties in heterogeneous computing platforms.

Furthermore, COTS platforms are usually wobbly against radiation effects

1https://www.nasa.gov/content/what-are-smallsats-and-cubesats

3

25

4 1.1. Thesis Goal and Research Challenges

without handling any radiation hardening. Besides, understanding of how
COTS platforms react under radiation effects is less studied on the level of
software and applications. Therefore, this thesis deals with synthetic simula-
tions of radiation effects in order to assess timing predictability of real-time
systems using COTS heterogeneous platforms.

As discussed earlier, heterogeneous platforms include multiple processing
units and each of them can consist of multiple cores. Thus, this thesis provides
a technique to support balanced use of heterogeneous processing units, while
improving timing predictability of these platforms. Furthermore, we focused
on an investigation of the trade-off between computing performance and power
consumption while supporting schedulability of task sets. This investigation
shows that our proposed techniques fit well with the embedded systems that
are constrained by real-time and energy constraints.

1.1 Thesis Goal and Research Challenges

The overall goal of the work in this thesis is

“to improve the timing predictability of real-time applications on
heterogeneous computing platforms under harsh environments for
on-board data processing (e.g., space computing) without degrad-
ing their computing performance and energy efficiency.”

To achieve the goal, we target three core research challenges as follows:

Research Challenge 1: To identify the key factors that affect
timing predictability and power consumption in real-time appli-
cations on heterogeneous CPU-GPU platforms without degrading
their computing performance.

Research Challenge 2: To improve schedulability of real-time
applications running on heterogeneous computing platforms by
manipulating the identified factors.

Research Challenge 3: To provide techniques and tools to sched-
ule, analyze and simulate real-time applications running on het-
erogeneous computing platforms, in particular, under harsh envi-
ronments.

4 1.1. Thesis Goal and Research Challenges

without handling any radiation hardening. Besides, understanding of how
COTS platforms react under radiation effects is less studied on the level of
software and applications. Therefore, this thesis deals with synthetic simula-
tions of radiation effects in order to assess timing predictability of real-time
systems using COTS heterogeneous platforms.

As discussed earlier, heterogeneous platforms include multiple processing
units and each of them can consist of multiple cores. Thus, this thesis provides
a technique to support balanced use of heterogeneous processing units, while
improving timing predictability of these platforms. Furthermore, we focused
on an investigation of the trade-off between computing performance and power
consumption while supporting schedulability of task sets. This investigation
shows that our proposed techniques fit well with the embedded systems that
are constrained by real-time and energy constraints.

1.1 Thesis Goal and Research Challenges

The overall goal of the work in this thesis is

“to improve the timing predictability of real-time applications on
heterogeneous computing platforms under harsh environments for
on-board data processing (e.g., space computing) without degrad-
ing their computing performance and energy efficiency.”

To achieve the goal, we target three core research challenges as follows:

Research Challenge 1: To identify the key factors that affect
timing predictability and power consumption in real-time appli-
cations on heterogeneous CPU-GPU platforms without degrading
their computing performance.

Research Challenge 2: To improve schedulability of real-time
applications running on heterogeneous computing platforms by
manipulating the identified factors.

Research Challenge 3: To provide techniques and tools to sched-
ule, analyze and simulate real-time applications running on het-
erogeneous computing platforms, in particular, under harsh envi-
ronments.

26

Chapter 1. Introduction 5

1.2 Outline of the Thesis

The thesis is based on a collection of six peer-reviewed publications. The
thesis consists of two parts:
Part I includes the first five chapters. In Chapter 1, an introduction to the thesis
has been provided. The thesis goal and research challenges are introduced in
this chapter. Chapter 2 presents the preliminary concepts that are considered
throughout the thesis. In Chapter 3, we discuss the contributions and research
methodology in the thesis. We present the related work in Chapter 4, and the
conclusion and the future work are presented in Chapter 5.
Part II provides the collection of six peer-reviewed publications considered as
the scientific contributions of the thesis. This part constitutes Chapters 6-11.

Chapter 1. Introduction 5

1.2 Outline of the Thesis

The thesis is based on a collection of six peer-reviewed publications. The
thesis consists of two parts:
Part I includes the first five chapters. In Chapter 1, an introduction to the thesis
has been provided. The thesis goal and research challenges are introduced in
this chapter. Chapter 2 presents the preliminary concepts that are considered
throughout the thesis. In Chapter 3, we discuss the contributions and research
methodology in the thesis. We present the related work in Chapter 4, and the
conclusion and the future work are presented in Chapter 5.
Part II provides the collection of six peer-reviewed publications considered as
the scientific contributions of the thesis. This part constitutes Chapters 6-11.

27

6 1.2. Outline of the Thesis 6 1.2. Outline of the Thesis

28

Chapter 2

Background

This chapter provides the required background information following the mo-
tivation of the thesis that starts with space computing, and continues with nec-
essary hardware/software solution (heterogeneous computing) with required
real-time constraint.

2.1 Space Computing

Space computing started to gain considerable attention of the research comput-
ing with the advent of the IEEE Space Computing Conference (SCC) 1 since
2006. Previously, this event was know as Fault Tolerant Space Computing con-
ference/workshop. As space computing performs under harsh environments
with radiation, it is closely related to the research introduced in IEEE Nuclear
& Space Radiation Effects Conference (NSREC) 2. Based on active topics
covered by the SCC and NSREC conferences, we illustrate space computing
in Figure 2.1. Among these topics, this thesis concerns more about COTS com-
ponents, on-board data processing, radiation, heterogeneous space processors
using machine learning benchmarks for intelligent decision making. In this
section, we provide more information about on-board data processing and ra-
diation.

2.1.1 On-Board Data Processing

Space is a perfect example for considering real-time system applications as
many on-board functions in spacecraft and satellites are constrained by soft

1https://spacecomputing.ecs.baylor.edu/
2http://www.nsrec.com/

7

Chapter 2

Background

This chapter provides the required background information following the mo-
tivation of the thesis that starts with space computing, and continues with nec-
essary hardware/software solution (heterogeneous computing) with required
real-time constraint.

2.1 Space Computing

Space computing started to gain considerable attention of the research comput-
ing with the advent of the IEEE Space Computing Conference (SCC) 1 since
2006. Previously, this event was know as Fault Tolerant Space Computing con-
ference/workshop. As space computing performs under harsh environments
with radiation, it is closely related to the research introduced in IEEE Nuclear
& Space Radiation Effects Conference (NSREC) 2. Based on active topics
covered by the SCC and NSREC conferences, we illustrate space computing
in Figure 2.1. Among these topics, this thesis concerns more about COTS com-
ponents, on-board data processing, radiation, heterogeneous space processors
using machine learning benchmarks for intelligent decision making. In this
section, we provide more information about on-board data processing and ra-
diation.

2.1.1 On-Board Data Processing

Space is a perfect example for considering real-time system applications as
many on-board functions in spacecraft and satellites are constrained by soft

1https://spacecomputing.ecs.baylor.edu/
2http://www.nsrec.com/

7

29

8 2.1. Space Computing

Figure 2.1: Space computing

and hard real-time requirements (see Section 2.3.2 for more details about soft
and hard real-time systems). Any failure such as losing control of a system
or unable to transfer data may end up in a catastrophic result as it is not pos-
sible to fix the devices in orbit or deep space. In order to reduce delays and
have more predictable activities, the role of on-board data processing becomes
significant. However, due to SWaP (size, weight and power) constraints along
with radiation hardiness problem in space, the development of space systems
usually encounter limitations which are not always experienced on the earth.
The design and development of the on-board computer need to overcome these
limitations.

As a heterogeneous architecture, the combination of CPU + FPGA and/or
CPU + DSP is broadly employed for on-board computers in space [7]. How-
ever, these combinations could not support massive amount of computations
required by the intelligent on-board data processing systems. These hetero-
geneous architecture combinations complemented by GPUs can overcome the
above mentioned limitation by running multiple parallel executions and faster
memory accesses. Thus, heterogeneous architectures that include CPU, GPU
and FPGA can offer an efficient computation solution for on-board data pro-
cessing systems. In such an architecture, an FPGA can be used for receiving
sensors’ data with shorter delays, a CPU can act as a controller between the

8 2.1. Space Computing

Figure 2.1: Space computing

and hard real-time requirements (see Section 2.3.2 for more details about soft
and hard real-time systems). Any failure such as losing control of a system
or unable to transfer data may end up in a catastrophic result as it is not pos-
sible to fix the devices in orbit or deep space. In order to reduce delays and
have more predictable activities, the role of on-board data processing becomes
significant. However, due to SWaP (size, weight and power) constraints along
with radiation hardiness problem in space, the development of space systems
usually encounter limitations which are not always experienced on the earth.
The design and development of the on-board computer need to overcome these
limitations.

As a heterogeneous architecture, the combination of CPU + FPGA and/or
CPU + DSP is broadly employed for on-board computers in space [7]. How-
ever, these combinations could not support massive amount of computations
required by the intelligent on-board data processing systems. These hetero-
geneous architecture combinations complemented by GPUs can overcome the
above mentioned limitation by running multiple parallel executions and faster
memory accesses. Thus, heterogeneous architectures that include CPU, GPU
and FPGA can offer an efficient computation solution for on-board data pro-
cessing systems. In such an architecture, an FPGA can be used for receiving
sensors’ data with shorter delays, a CPU can act as a controller between the

30

Chapter 2. Background 9

FPGA and GPU, and the GPU can process heavy computations.

2.1.2 Radiation Effects

Radiation effects increase the complexity of space systems. As radiation ef-
fects are cumulative on the one hand, although the dose of space radiation is
mostly low, its risk increases by the total time traveled in space [8, 9]. This
characteristic is described by total dose of radiation, i.e., total ionizing dose
(TID). Developing shielding materials or radiation-hardened products in or-
der to mitigate radiation effects in orbit components could worsen the other
limitations such as size, weight, and power, cost, and development time. On
the other hand, particles with high energy such as electrons cause electrostatic
discharge, single-event effects (SEEs). Thus, radiation effects can hinder the
usage of commercial off-the-shelf (COTS) technologies that have been suc-
cessful in the systems used the earth, such as COTS system on chip (SoC),
including the use of integrated graphics processing units (GPUs), which im-
prove the quality of onboard data processing [10]. We introduce safety allow-
able range of both particle energy and TID as radiation tolerance in this thesis
and consider that an idea of radiation tolerance improves space computing.

2.2 Heterogeneous Computing

The role of heterogeneous computing has been growing dramatically in indus-
trial applications [11]. Employing multiple types of processing units makes the
embedded systems robust. Freund and Conwell define heterogeneous comput-
ing as follows:

Definition 2.1: ”Heterogeneous computing is the well-orchestrated and coor-
dinated effective use of a suite of diverse high-performance machines (includ-
ing parallel machines) to provide super speed processing for computationally
demanding tasks with diverse computing needs.”
R. F. Freund and D. S. Conwell [12]

We re-define the above definition using a new term ”heterogeneous processor”
instead of machines and consider it in this thesis. ”Heterogeneous computing
is the well-orchestrated and coordinated effective use of a suite of on- and/or
off-chip heterogeneous processing units to provide high-performance process-
ing for computationally demanding tasks with diverse computing needs.” With
this definition, the focus of computation shifts from a machine to a process-
ing unit (PU), and the location of them distinguished by either on- or off-chip.

Chapter 2. Background 9

FPGA and GPU, and the GPU can process heavy computations.

2.1.2 Radiation Effects

Radiation effects increase the complexity of space systems. As radiation ef-
fects are cumulative on the one hand, although the dose of space radiation is
mostly low, its risk increases by the total time traveled in space [8, 9]. This
characteristic is described by total dose of radiation, i.e., total ionizing dose
(TID). Developing shielding materials or radiation-hardened products in or-
der to mitigate radiation effects in orbit components could worsen the other
limitations such as size, weight, and power, cost, and development time. On
the other hand, particles with high energy such as electrons cause electrostatic
discharge, single-event effects (SEEs). Thus, radiation effects can hinder the
usage of commercial off-the-shelf (COTS) technologies that have been suc-
cessful in the systems used the earth, such as COTS system on chip (SoC),
including the use of integrated graphics processing units (GPUs), which im-
prove the quality of onboard data processing [10]. We introduce safety allow-
able range of both particle energy and TID as radiation tolerance in this thesis
and consider that an idea of radiation tolerance improves space computing.

2.2 Heterogeneous Computing

The role of heterogeneous computing has been growing dramatically in indus-
trial applications [11]. Employing multiple types of processing units makes the
embedded systems robust. Freund and Conwell define heterogeneous comput-
ing as follows:

Definition 2.1: ”Heterogeneous computing is the well-orchestrated and coor-
dinated effective use of a suite of diverse high-performance machines (includ-
ing parallel machines) to provide super speed processing for computationally
demanding tasks with diverse computing needs.”
R. F. Freund and D. S. Conwell [12]

We re-define the above definition using a new term ”heterogeneous processor”
instead of machines and consider it in this thesis. ”Heterogeneous computing
is the well-orchestrated and coordinated effective use of a suite of on- and/or
off-chip heterogeneous processing units to provide high-performance process-
ing for computationally demanding tasks with diverse computing needs.” With
this definition, the focus of computation shifts from a machine to a process-
ing unit (PU), and the location of them distinguished by either on- or off-chip.

31

10 2.2. Heterogeneous Computing

In case of off-chip, processing units communicate with each other via diverse
types of interconnection and network, while processing units employed in the
same die for on-chip. The thesis mostly touches on-chip heterogeneous pro-
cessing units as heterogeneous processing units.

Heterogeneous processing units can employ the same type of naming with
different instruction set architecture and/or even different clock speed (e.g.,
ARM Cortex CPU + Nvidia Denver CPU), while commonly considered to
employ the combinations of different types of naming processors such as CPU
+ GPU, CPU + FPGA and etc. In order to study heterogeneous computing, not
only processor types, but also heterogeneous architectures, memory manage-
ment and interconnection are crucial.

2.2.1 Heterogeneous Architectures

As defined in Section 2.2, heterogeneous computing appears with different
architectures, as described heterogeneous architectures. Figures 2.2, 2.3, 2.4,
and 2.5 illustrate the well-known heterogeneous architectures as some of them
appear in satellites and autonomous vehicles.

Figure 2.2: GIMME3 and GIMME4 platforms by Unibap AB and Mälardalen
University based on AMD APU (CPU and integrated GPU).

The heterogeneous architecture described in Figure 2.2 consists of three
different processing units, CPU, GPU, and FPGA. CPU and GPU are in a sys-
tem on a chip (SoC) and connect to shared memory. The purpose of external
processing unit, FPGA, is to monitor the health of SoC. FPGA interconnects
with CPU via PCIexpress and has its own memory. The SoC illustrated in
Figure 2.2 is called Accelerated Processing Units (APU), that is commonly
known as integrated GPU. In this platform, APU considers a computer archi-
tecture specialized for heterogeneous computing, i.e., Heterogeneous System
Architecture (HSA).

10 2.2. Heterogeneous Computing

In case of off-chip, processing units communicate with each other via diverse
types of interconnection and network, while processing units employed in the
same die for on-chip. The thesis mostly touches on-chip heterogeneous pro-
cessing units as heterogeneous processing units.

Heterogeneous processing units can employ the same type of naming with
different instruction set architecture and/or even different clock speed (e.g.,
ARM Cortex CPU + Nvidia Denver CPU), while commonly considered to
employ the combinations of different types of naming processors such as CPU
+ GPU, CPU + FPGA and etc. In order to study heterogeneous computing, not
only processor types, but also heterogeneous architectures, memory manage-
ment and interconnection are crucial.

2.2.1 Heterogeneous Architectures

As defined in Section 2.2, heterogeneous computing appears with different
architectures, as described heterogeneous architectures. Figures 2.2, 2.3, 2.4,
and 2.5 illustrate the well-known heterogeneous architectures as some of them
appear in satellites and autonomous vehicles.

Figure 2.2: GIMME3 and GIMME4 platforms by Unibap AB and Mälardalen
University based on AMD APU (CPU and integrated GPU).

The heterogeneous architecture described in Figure 2.2 consists of three
different processing units, CPU, GPU, and FPGA. CPU and GPU are in a sys-
tem on a chip (SoC) and connect to shared memory. The purpose of external
processing unit, FPGA, is to monitor the health of SoC. FPGA interconnects
with CPU via PCIexpress and has its own memory. The SoC illustrated in
Figure 2.2 is called Accelerated Processing Units (APU), that is commonly
known as integrated GPU. In this platform, APU considers a computer archi-
tecture specialized for heterogeneous computing, i.e., Heterogeneous System
Architecture (HSA).

32

Chapter 2. Background 11

Figure 2.3: Jetson TX platform employs ARM big.LITTLE CPUs (ARM Cor-
tex CPUs and Nvidia Denver CPUs) with Nvidia GPU.

Figure 2.4: GPU4S by Barcelona Supercomputing Center based on Jetson
Xavier platform (ARM CPU and Nvidia GPU).

Both heterogeneous architectures illustrated in Figures 2.3 and 2.4 con-
tain only SoCs. Figure 2.4 describes that homogeneous CPU cores and GPU
are employed in the same SoC and connect to independent memories. On the
other hand, the SoC illustrated in Figure 2.3 consists of heterogeneous CPU
cores and GPU. In other words, two CPUs from different vendors and differ-
ent frequencies are employed in the SoC. This architecture is known as the
big.LITTLE CPUs architecture. In order to improve heterogeneous comput-
ing, the Big.LITTLE CPUs can be used with clustered switching, in-kernel
switching, and heterogeneous multi-processing task migration and scheduling
mechanisms [13].

The heterogeneous architecture illustrated in Figure 2.5 consists of two
SoCs, which are connected through Ethernet. One of them includes two CPUs
with different computing capacities and GPU. Another SoC comprises CPU
and FPGA.

Chapter 2. Background 11

Figure 2.3: Jetson TX platform employs ARM big.LITTLE CPUs (ARM Cor-
tex CPUs and Nvidia Denver CPUs) with Nvidia GPU.

Figure 2.4: GPU4S by Barcelona Supercomputing Center based on Jetson
Xavier platform (ARM CPU and Nvidia GPU).

Both heterogeneous architectures illustrated in Figures 2.3 and 2.4 con-
tain only SoCs. Figure 2.4 describes that homogeneous CPU cores and GPU
are employed in the same SoC and connect to independent memories. On the
other hand, the SoC illustrated in Figure 2.3 consists of heterogeneous CPU
cores and GPU. In other words, two CPUs from different vendors and differ-
ent frequencies are employed in the SoC. This architecture is known as the
big.LITTLE CPUs architecture. In order to improve heterogeneous comput-
ing, the Big.LITTLE CPUs can be used with clustered switching, in-kernel
switching, and heterogeneous multi-processing task migration and scheduling
mechanisms [13].

The heterogeneous architecture illustrated in Figure 2.5 consists of two
SoCs, which are connected through Ethernet. One of them includes two CPUs
with different computing capacities and GPU. Another SoC comprises CPU
and FPGA.

33

12 2.2. Heterogeneous Computing

Figure 2.5: On-board platform for the University of Georgia’s satellite (Jetson
TX2i + Smart Fusion).

2.2.2 Memory Model & Interconnection

Memory Model

In Figures 2.6, 2.7, and 2.8, most common memory models for heterogeneous
architectures are described. In these models, we do not focus on the inter-
connection between PUs and between PUs and memories, while the relation
between memories of different PUs are crucial. As illustrated in Figure 2.6,
each PU has own allocated memory and independent memory address, i.e., it
is called Multi Memory Model (MMM). In this case, data should be transferred
between different memories and addresses should be handled as well. Hetero-
geneous architectures with external PUs tend to have this memory model such
as the platform depicted in Figure 2.5. In unified (virtual) memory model
(UVM) as illustrated in Figure 2.7, PUs connect to a physical memory. How-
ever, each PU should be connected to allocated area only. This means, data
should still be transferred/copied between memory areas when different PUs
need to access the same data. UVM uses a memory address system for all the
PUs and data will be copied in the same physical memory. Hence, data transfer
time is less compared to UVM.

As depicted in Figure 2.8, Unified Shared Memory (USM) allows to access
to the same data from different PUs. This eliminates unnecessary data transfer
and copy. However, it requires advanced interconnection techniques.

Interconnection

Interconnection is the main key to the challenges of heterogeneous memory
management, although both software and hardware solutions are required.
There exist the following four specifications focused on the interconnection

12 2.2. Heterogeneous Computing

Figure 2.5: On-board platform for the University of Georgia’s satellite (Jetson
TX2i + Smart Fusion).

2.2.2 Memory Model & Interconnection

Memory Model

In Figures 2.6, 2.7, and 2.8, most common memory models for heterogeneous
architectures are described. In these models, we do not focus on the inter-
connection between PUs and between PUs and memories, while the relation
between memories of different PUs are crucial. As illustrated in Figure 2.6,
each PU has own allocated memory and independent memory address, i.e., it
is called Multi Memory Model (MMM). In this case, data should be transferred
between different memories and addresses should be handled as well. Hetero-
geneous architectures with external PUs tend to have this memory model such
as the platform depicted in Figure 2.5. In unified (virtual) memory model
(UVM) as illustrated in Figure 2.7, PUs connect to a physical memory. How-
ever, each PU should be connected to allocated area only. This means, data
should still be transferred/copied between memory areas when different PUs
need to access the same data. UVM uses a memory address system for all the
PUs and data will be copied in the same physical memory. Hence, data transfer
time is less compared to UVM.

As depicted in Figure 2.8, Unified Shared Memory (USM) allows to access
to the same data from different PUs. This eliminates unnecessary data transfer
and copy. However, it requires advanced interconnection techniques.

Interconnection

Interconnection is the main key to the challenges of heterogeneous memory
management, although both software and hardware solutions are required.
There exist the following four specifications focused on the interconnection

34

Chapter 2. Background 13

Figure 2.6: Multi Memory Model.

Figure 2.7: Unified (Virtual) Memory.

and buses. CCIX3 (Cache Coherent Interconnect for Accelerators), Open-
CAPI4 (Open Coherent Accelerator Processor Interface), Gen-Z5 and CXL6

(Computer Express Link). Only CXL is proposed by an Intel-driving consor-
tium, and both AMD and ARM are announced to join this consortium. In this
sense, CXL has a vast potential that could be upgraded to the industry de-facto
standard for the interconnection between host and devices.

3CCIX https://www.ccixconsortium.com/
4OpenCAPI https://opencapi.org/
5Gen-Z https://genzconsortium.org/
6CXL https://www.computeexpresslink.org/

Chapter 2. Background 13

Figure 2.6: Multi Memory Model.

Figure 2.7: Unified (Virtual) Memory.

and buses. CCIX3 (Cache Coherent Interconnect for Accelerators), Open-
CAPI4 (Open Coherent Accelerator Processor Interface), Gen-Z5 and CXL6

(Computer Express Link). Only CXL is proposed by an Intel-driving consor-
tium, and both AMD and ARM are announced to join this consortium. In this
sense, CXL has a vast potential that could be upgraded to the industry de-facto
standard for the interconnection between host and devices.

3CCIX https://www.ccixconsortium.com/
4OpenCAPI https://opencapi.org/
5Gen-Z https://genzconsortium.org/
6CXL https://www.computeexpresslink.org/

35

14 2.2. Heterogeneous Computing

Figure 2.8: Unified Shared Memory.

2.2.3 Heterogeneous System Architecture (HSA)

Different types of specifications and designs of the processing units bring com-
plexities for the development process from cost and timing perspective. To
tackle these problems, HSA Foundation [14] has been established by multiple
leading hardware vendors to develop the Heterogeneous System Architecture
(HSA) specification for reducing the complexity of heterogeneous computa-
tions and providing the developer-friendly environments. The main properties
of HSA are described with memory handling, software stack, and interconnec-
tion.

Figure 2.9: Memory structure between a non-HSA system and an HSA system.

Memory handling: The HSA aims to ease the development process on
the heterogeneous platform by providing a development environment to the
programmers that is similar to the environment for traditional systems, i.e.,
homogeneous systems. The HSA provides unified coherent memory for host

14 2.2. Heterogeneous Computing

Figure 2.8: Unified Shared Memory.

2.2.3 Heterogeneous System Architecture (HSA)

Different types of specifications and designs of the processing units bring com-
plexities for the development process from cost and timing perspective. To
tackle these problems, HSA Foundation [14] has been established by multiple
leading hardware vendors to develop the Heterogeneous System Architecture
(HSA) specification for reducing the complexity of heterogeneous computa-
tions and providing the developer-friendly environments. The main properties
of HSA are described with memory handling, software stack, and interconnec-
tion.

Figure 2.9: Memory structure between a non-HSA system and an HSA system.

Memory handling: The HSA aims to ease the development process on
the heterogeneous platform by providing a development environment to the
programmers that is similar to the environment for traditional systems, i.e.,
homogeneous systems. The HSA provides unified coherent memory for host

36

Chapter 2. Background 15

and devices that saves time for transferring data between different physical
memories, i.e., there is no memory copy between different physical memories,
e.g., primary and graphics memories (see Figure 2.9).

Software stack: As a part of the HSA, AMD introduces an initiative
GPUOpen, an open source software stack, including, but not limited to, ker-
nel level driver, runtime environment, profiling tools, computer vision and ma-
chine learning libraries such as ROCm7, CodeXL8, AMD OpenVX9, MIOpen10

as well as Tensorflow11 on AMD GPUs. From TensorFlow 2.0, AMD has fully
upstreamed their support.

Interconnection: While HSA covers interconnection between different
devices, it needs to be collaborated with the interconnection specifications. As
CXL is an open standard interconnection and only accepted by all the main
vendors such as Intel, AMD, and ARM, the relation between HSA and CXL is
crucial and it could co-exist as follows. While HSA is located at a high level,
which is close to the developers for reducing the complexity of the develop-
ment of heterogeneous systems, CXL is directly focused on hardware devices,
which is at a low level. This indicates the possibility of the co-existence of
HSA and CXL.

2.3 Real-Time Embedded Systems

2.3.1 Embedded Systems

Embedded systems are found in almost all electronic products covering diverse
domains such as consumer products, business, military, aerospace and so on.
As they are embedded, embedded systems are mostly remain hidden from the
end users. A definition of an embedded system is described as follows:

Definition 2.2: ”An embedded system is a combination of computer hardware
and software – and perhaps additional parts, either mechanical or electronic
– designed to perform a dedicated function.”
M. Barr and A. Massa [15]

7ROCm https://github.com/RadeonOpenCompute/ROCm
8CodeXL https://gpuopen.com/compute-product/codexl/
9OpenVX https://gpuopen.com/compute-product/amd-openvx/

10MIOpen https://gpuopen.com/compute-product/miopen/
11Tensorflow https://rocm.github.io/tensorflow.html

Chapter 2. Background 15

and devices that saves time for transferring data between different physical
memories, i.e., there is no memory copy between different physical memories,
e.g., primary and graphics memories (see Figure 2.9).

Software stack: As a part of the HSA, AMD introduces an initiative
GPUOpen, an open source software stack, including, but not limited to, ker-
nel level driver, runtime environment, profiling tools, computer vision and ma-
chine learning libraries such as ROCm7, CodeXL8, AMD OpenVX9, MIOpen10

as well as Tensorflow11 on AMD GPUs. From TensorFlow 2.0, AMD has fully
upstreamed their support.

Interconnection: While HSA covers interconnection between different
devices, it needs to be collaborated with the interconnection specifications. As
CXL is an open standard interconnection and only accepted by all the main
vendors such as Intel, AMD, and ARM, the relation between HSA and CXL is
crucial and it could co-exist as follows. While HSA is located at a high level,
which is close to the developers for reducing the complexity of the develop-
ment of heterogeneous systems, CXL is directly focused on hardware devices,
which is at a low level. This indicates the possibility of the co-existence of
HSA and CXL.

2.3 Real-Time Embedded Systems

2.3.1 Embedded Systems

Embedded systems are found in almost all electronic products covering diverse
domains such as consumer products, business, military, aerospace and so on.
As they are embedded, embedded systems are mostly remain hidden from the
end users. A definition of an embedded system is described as follows:

Definition 2.2: ”An embedded system is a combination of computer hardware
and software – and perhaps additional parts, either mechanical or electronic
– designed to perform a dedicated function.”
M. Barr and A. Massa [15]

7ROCm https://github.com/RadeonOpenCompute/ROCm
8CodeXL https://gpuopen.com/compute-product/codexl/
9OpenVX https://gpuopen.com/compute-product/amd-openvx/

10MIOpen https://gpuopen.com/compute-product/miopen/
11Tensorflow https://rocm.github.io/tensorflow.html

37

16 2.4. System Model and Architecture

2.3.2 Real-Time Systems

A real-time system is a system that reacts to external events in a timely manner.
This means that not only the accuracy of the result, but also the timeliness is
a crucial factor for the accuracy of the system. Hence, a real-time embedded
system is an embedded system, which reacts to its environment in a timely
manner.

Figure 2.10: A real-time system requirements.12

As illustrated in Figure 2.10, real-time systems can be divided into a hard,
firm and soft [16] real-time system from perspective of the timing constraints.
The hard real-time system must pass all specified timing constraints. If the
system misses a constraint (e.g., a deadline) once, it results in failure leading
to a fatality and/or big financial or environmental damage. Therefore, many
hard real-time systems are considered to be safety critical. In a soft real-time
system, one or more deadline misses may be tolerated at the cost of lower
quality of service. A firm real-time system is between hard and soft real-time
systems.

2.4 System Model and Architecture

We consider a system, which consists of applications comprising of a task
set (i.e., a set of applications, software stack), an operating system (kernel
including drivers), and a hardware platform as illustrated in Figure 2.11. In

12http://www.artist-embedded.org/docs/Events/2008/RT-Kernels/SLIDES/s1-Intro.pdf

16 2.4. System Model and Architecture

2.3.2 Real-Time Systems

A real-time system is a system that reacts to external events in a timely manner.
This means that not only the accuracy of the result, but also the timeliness is
a crucial factor for the accuracy of the system. Hence, a real-time embedded
system is an embedded system, which reacts to its environment in a timely
manner.

Figure 2.10: A real-time system requirements.12

As illustrated in Figure 2.10, real-time systems can be divided into a hard,
firm and soft [16] real-time system from perspective of the timing constraints.
The hard real-time system must pass all specified timing constraints. If the
system misses a constraint (e.g., a deadline) once, it results in failure leading
to a fatality and/or big financial or environmental damage. Therefore, many
hard real-time systems are considered to be safety critical. In a soft real-time
system, one or more deadline misses may be tolerated at the cost of lower
quality of service. A firm real-time system is between hard and soft real-time
systems.

2.4 System Model and Architecture

We consider a system, which consists of applications comprising of a task
set (i.e., a set of applications, software stack), an operating system (kernel
including drivers), and a hardware platform as illustrated in Figure 2.11. In

12http://www.artist-embedded.org/docs/Events/2008/RT-Kernels/SLIDES/s1-Intro.pdf

38

Chapter 2. Background 17

addition, in the system architecture, we consider an error to hardware platform,
which appears as an interference task to the task set. In this thesis, an error is a
radiation effect that is generated from the surrounding harsh environment and
interferes with the hardware platform including its devices such as processing
units, memory and so on.

Figure 2.11: System Architecture.

A task in the task set consists of parallel and sequential segments and is
represented by the fork/join task model [17]. We assume that sequential seg-
ments should be executed only on CPU while parallel segments can be exe-
cuted in parallel on GPU or on CPU sequentially. Moreover, in this thesis, we
consider an extension of the fork-join task model by adopting the notion of
heterogeneous segments. A heterogeneous segment can either be mapped to a
GPU for parallel execution (alternative B) or to a CPU for sequential execution
of the same code segment (alternative A), see Figure 2.12.

The thesis considers that the hardware platform employs a heterogeneous
architecture, which may include three types of processing units; host device
as CPU, integrated accelerators such as integrated GPU (iGPU), and discrete
accelerators such as discrete GPU (dGPU) and/or FPGA (see Figure 2.11). We
assume that the hardware platform is HSA-compliant. In some cases, to narrow
the setting, at least processing units in system-on-chip (SoC) side should be
compliant with the HSA. From the power utilization perspective, on one hand,
host device and integrated accelerators share the same power controller, i.e.,
both turn on and off at the same. On the other hand, discrete accelerators have
a dedicated power controller for each, which means that the combinations,
”Host-and-Integrated-Accelerators” and ”Host-and-Discrete-Accelerators”, have

Chapter 2. Background 17

addition, in the system architecture, we consider an error to hardware platform,
which appears as an interference task to the task set. In this thesis, an error is a
radiation effect that is generated from the surrounding harsh environment and
interferes with the hardware platform including its devices such as processing
units, memory and so on.

Figure 2.11: System Architecture.

A task in the task set consists of parallel and sequential segments and is
represented by the fork/join task model [17]. We assume that sequential seg-
ments should be executed only on CPU while parallel segments can be exe-
cuted in parallel on GPU or on CPU sequentially. Moreover, in this thesis, we
consider an extension of the fork-join task model by adopting the notion of
heterogeneous segments. A heterogeneous segment can either be mapped to a
GPU for parallel execution (alternative B) or to a CPU for sequential execution
of the same code segment (alternative A), see Figure 2.12.

The thesis considers that the hardware platform employs a heterogeneous
architecture, which may include three types of processing units; host device
as CPU, integrated accelerators such as integrated GPU (iGPU), and discrete
accelerators such as discrete GPU (dGPU) and/or FPGA (see Figure 2.11). We
assume that the hardware platform is HSA-compliant. In some cases, to narrow
the setting, at least processing units in system-on-chip (SoC) side should be
compliant with the HSA. From the power utilization perspective, on one hand,
host device and integrated accelerators share the same power controller, i.e.,
both turn on and off at the same. On the other hand, discrete accelerators have
a dedicated power controller for each, which means that the combinations,
”Host-and-Integrated-Accelerators” and ”Host-and-Discrete-Accelerators”, have

39

18 2.5. Metrics

Figure 2.12: Sequential, parallel and alternative executions of parallel seg-
ments of tasks.

different amount of power consumption. Furthermore, from the memory struc-
ture perspective, ”Host-and-Integrated-Accelerators” connects to the shared
memory while ”Host-and-Discrete-Accelerators” accesses to the virtual shared
memory.

In this thesis, the following three reference platforms are considered: CPU
+ iGPU, CPU + iGPU + FPGA, and CPU + dGPU. Although it is available to
use FPGA, our focus on the thesis is only CPU and GPU. CPU scheduling is
realized by a partitioned fixed-priority scheduler and we further assume that
the execution on CPUs is preemptable. In contrast, the execution on GPU
is not preemptable. GPU allows to execute tasks with non-preemptive fixed
priority scheduling.

2.5 Metrics

In this thesis, the following metrics are considered in the investigation and
experimental evaluation of heterogeneous computing architectures: computing
performance, energy efficiency, timing predictability, and radiation tolerance.
Use of these metrics in different research methods is explained in Section 3.3.

Computing performance describes how fast tasks are calculated on the
given processing units. Hence, this metric presents computing potential of
platforms/processing units. A unit of time, second (s), is used for this met-
ric and less computation time shows faster computing performance. There are
other ways to express this metric such as FLOPS (floating-point operations per
second). In the contributed papers, these expressions are used to give informa-
tion about the reference platforms at a glance.

Energy efficiency introduces how less power is consumed by the given

18 2.5. Metrics

Figure 2.12: Sequential, parallel and alternative executions of parallel seg-
ments of tasks.

different amount of power consumption. Furthermore, from the memory struc-
ture perspective, ”Host-and-Integrated-Accelerators” connects to the shared
memory while ”Host-and-Discrete-Accelerators” accesses to the virtual shared
memory.

In this thesis, the following three reference platforms are considered: CPU
+ iGPU, CPU + iGPU + FPGA, and CPU + dGPU. Although it is available to
use FPGA, our focus on the thesis is only CPU and GPU. CPU scheduling is
realized by a partitioned fixed-priority scheduler and we further assume that
the execution on CPUs is preemptable. In contrast, the execution on GPU
is not preemptable. GPU allows to execute tasks with non-preemptive fixed
priority scheduling.

2.5 Metrics

In this thesis, the following metrics are considered in the investigation and
experimental evaluation of heterogeneous computing architectures: computing
performance, energy efficiency, timing predictability, and radiation tolerance.
Use of these metrics in different research methods is explained in Section 3.3.

Computing performance describes how fast tasks are calculated on the
given processing units. Hence, this metric presents computing potential of
platforms/processing units. A unit of time, second (s), is used for this met-
ric and less computation time shows faster computing performance. There are
other ways to express this metric such as FLOPS (floating-point operations per
second). In the contributed papers, these expressions are used to give informa-
tion about the reference platforms at a glance.

Energy efficiency introduces how less power is consumed by the given

40

Chapter 2. Background 19

processing units to compute tasks. A unit of energy, joule (J), is chosen to de-
scribe this metric. A smaller value of power consumption corresponds to more
energy efficiency. Energy efficiency is a metric to consider power consumption
on the systems/platforms.

Timing predictability presents how systems fulfill the given timing con-
straints. We consider a system is predictable if all tasks in this system meet
their timing requirements [18]. Timing predictability of a system is related to
proving, demonstrating or verifying the fulfillment of the timing requirements
(e.g., deadline miss) that are specified on the system [19]. In order to con-
sider the timing requirements of tasks in task sets, we conduct schedulability
analysis of task sets.

Radiation effect and tolerance express how much high energy particles
are present in the environment and what is tolerance of the given components
in the systems against the radiation effects. A unit of both radiation effect and
tolerance can be either [eV] or [rad] in the cases based on particle energy or
total ionizing dose, respectively.

Chapter 2. Background 19

processing units to compute tasks. A unit of energy, joule (J), is chosen to de-
scribe this metric. A smaller value of power consumption corresponds to more
energy efficiency. Energy efficiency is a metric to consider power consumption
on the systems/platforms.

Timing predictability presents how systems fulfill the given timing con-
straints. We consider a system is predictable if all tasks in this system meet
their timing requirements [18]. Timing predictability of a system is related to
proving, demonstrating or verifying the fulfillment of the timing requirements
(e.g., deadline miss) that are specified on the system [19]. In order to con-
sider the timing requirements of tasks in task sets, we conduct schedulability
analysis of task sets.

Radiation effect and tolerance express how much high energy particles
are present in the environment and what is tolerance of the given components
in the systems against the radiation effects. A unit of both radiation effect and
tolerance can be either [eV] or [rad] in the cases based on particle energy or
total ionizing dose, respectively.

41

20 2.5. Metrics 20 2.5. Metrics

42

Chapter 3

Research Description

3.1 Scientific Contributions

To achieve the thesis goal, the thesis provides five scientific contributions
(SCs), which address the research challenges presented in Section 1.1. These
contributions are encapsulated in six peer-reviewed research publications (Pa-
pers A-F). Mapping of the research challenges, contributions and publications
is shown in Figure 3.1.

Scientific Contribution 1: Investigation of the fundamental characteristics of
different types of heterogeneous architectures focusing on computation-time
and power-consumption efficiency.
Motivation and summary of the contribution: This contribution helps to un-
derstand the current characteristics of heterogeneous platforms. By using the
computing performance and energy efficiency metrics, we characterize vari-
ous computing units in heterogeneous computing platforms. According to our
prior knowledge, some tasks are suitable for parallel computing while some
tasks are executable only in a sequential manner. Computer vision and ma-
chine learning applications are representations of parallelizable applications,
and we consider these type of applications in Papers A and C. Our investi-
gations aim to understand what kind of applications (i.e., under what kind of
conditions, applications) are suitable to run on GPU compared to CPU or vice
versa. As a result, we experienced that the execution of parallel applications
on GPU boosts up to 238 times computing performance and consumes 13.5
times less energy, compared to CPU. Although applications that include the
smaller numbers of parallel executions are suitable to run on CPU from the
computing performance aspect, all parallel applications consumed less energy
on GPU compared to CPU in our reference platforms. This contribution ad-

21

Chapter 3

Research Description

3.1 Scientific Contributions

To achieve the thesis goal, the thesis provides five scientific contributions
(SCs), which address the research challenges presented in Section 1.1. These
contributions are encapsulated in six peer-reviewed research publications (Pa-
pers A-F). Mapping of the research challenges, contributions and publications
is shown in Figure 3.1.

Scientific Contribution 1: Investigation of the fundamental characteristics of
different types of heterogeneous architectures focusing on computation-time
and power-consumption efficiency.
Motivation and summary of the contribution: This contribution helps to un-
derstand the current characteristics of heterogeneous platforms. By using the
computing performance and energy efficiency metrics, we characterize vari-
ous computing units in heterogeneous computing platforms. According to our
prior knowledge, some tasks are suitable for parallel computing while some
tasks are executable only in a sequential manner. Computer vision and ma-
chine learning applications are representations of parallelizable applications,
and we consider these type of applications in Papers A and C. Our investi-
gations aim to understand what kind of applications (i.e., under what kind of
conditions, applications) are suitable to run on GPU compared to CPU or vice
versa. As a result, we experienced that the execution of parallel applications
on GPU boosts up to 238 times computing performance and consumes 13.5
times less energy, compared to CPU. Although applications that include the
smaller numbers of parallel executions are suitable to run on CPU from the
computing performance aspect, all parallel applications consumed less energy
on GPU compared to CPU in our reference platforms. This contribution ad-

21

43

22 3.1. Scientific Contributions

dresses Research Challenge 1.

Scientific Contribution 2: Proposing and evaluating a task model and allo-
cation algorithms based on the model for real-time applications that run on
CPU-GPU heterogeneous computing platforms.
Motivation and summary of the contribution: Based on the results acquired
by addressing SC 1 and literature review, we extract and propose a novel task
model for applications that run on heterogeneous processors, which allows al-
ternative executions of parallel segments of tasks on heterogeneous processing
units. By allowing alternative executions, parallel segments can be allocated to
an appropriate processing unit with higher computation performance and less
power consumption. Alternative executions of parallel segments are investi-
gated in Papers B and E. While Paper B presents the idea of alternative execu-
tions of parallel segments of tasks, Paper E considers effects of the alternative
executions on the timing behaviours of the applications. As an achievement,
the appropriate use of heterogeneous processing units for parallel segments
can decrease the total energy consumption of systems up to 64.3%. This con-
tribution addresses Research Challenges 1 and 2.

Scientific Contribution 3: Proposing and evaluating a new technique that
utilizes the task model to improve schedulability of real-time applications run-
ning on COTS heterogeneous computing platforms.
Motivation and summary of the contribution: Based on the achievements
of SC 2 and a literature review, we propose solutions which aim at improv-
ing schedulability of the task sets on heterogeneous computing platforms. We
integrate these solutions to the timing analysis proposed for CPU-GPU het-
erogeneous platforms. The solutions increase the number of schedulable task
sets up to 90% compared to the existing solutions, while mitigating accelerator
intensive loads. The contribution covers both static and dynamic scheduling
of task sets. This contribution is discussed in Papers E and F in detail and ad-
dresses Research Challenge 2.

Scientific Contribution 4: Proposing a server-based scheduling technique that
utilizes the proposed task model to improve the schedulability of real-time ap-
plications on CPU-GPU heterogeneous platforms.
Motivation and summary of the contribution: This contribution utilizes the
task model and proposes a server-based scheduling technique for real-time sys-
tems that run on CPU-GPU heterogeneous computing platforms. Papers E and
F cover this contribution. Paper E focuses on static allocation of tasks, and
Paper F considers dynamic allocation of tasks. The evaluation results indicate

22 3.1. Scientific Contributions

dresses Research Challenge 1.

Scientific Contribution 2: Proposing and evaluating a task model and allo-
cation algorithms based on the model for real-time applications that run on
CPU-GPU heterogeneous computing platforms.
Motivation and summary of the contribution: Based on the results acquired
by addressing SC 1 and literature review, we extract and propose a novel task
model for applications that run on heterogeneous processors, which allows al-
ternative executions of parallel segments of tasks on heterogeneous processing
units. By allowing alternative executions, parallel segments can be allocated to
an appropriate processing unit with higher computation performance and less
power consumption. Alternative executions of parallel segments are investi-
gated in Papers B and E. While Paper B presents the idea of alternative execu-
tions of parallel segments of tasks, Paper E considers effects of the alternative
executions on the timing behaviours of the applications. As an achievement,
the appropriate use of heterogeneous processing units for parallel segments
can decrease the total energy consumption of systems up to 64.3%. This con-
tribution addresses Research Challenges 1 and 2.

Scientific Contribution 3: Proposing and evaluating a new technique that
utilizes the task model to improve schedulability of real-time applications run-
ning on COTS heterogeneous computing platforms.
Motivation and summary of the contribution: Based on the achievements
of SC 2 and a literature review, we propose solutions which aim at improv-
ing schedulability of the task sets on heterogeneous computing platforms. We
integrate these solutions to the timing analysis proposed for CPU-GPU het-
erogeneous platforms. The solutions increase the number of schedulable task
sets up to 90% compared to the existing solutions, while mitigating accelerator
intensive loads. The contribution covers both static and dynamic scheduling
of task sets. This contribution is discussed in Papers E and F in detail and ad-
dresses Research Challenge 2.

Scientific Contribution 4: Proposing a server-based scheduling technique that
utilizes the proposed task model to improve the schedulability of real-time ap-
plications on CPU-GPU heterogeneous platforms.
Motivation and summary of the contribution: This contribution utilizes the
task model and proposes a server-based scheduling technique for real-time sys-
tems that run on CPU-GPU heterogeneous computing platforms. Papers E and
F cover this contribution. Paper E focuses on static allocation of tasks, and
Paper F considers dynamic allocation of tasks. The evaluation results indicate

44

Chapter 3. Research Description 23

that one of the proposed techniques based on dynamic scheduling can schedule
up to 16% more task sets compared to the traditional non-offloading technique.
This contribution addresses Research Challenges 2 and 3.

Scientific Contribution 5: Developing a simulation framework and a tool
considering the effects of different radiation tolerance of heterogeneous pro-
cessing units on the schedulability of real-time applications under harsh envi-
ronments.
Motivation and summary of the contribution: As radiation effects limits the
usability of most of the state-of-the-art COTS technologies from use in space,
this contribution presents a simulation framework and a tool to simulate real-
time applications under harsh environments using heterogeneous processing
units with different radiation tolerances. The simulation tool supports pro-
cessing units with different characteristics of computing potential, radiation
tolerance, as well as different type of processing units such as CPU and GPU.
Artificial patterns of single-event effects can be introduced, for example, the
patterns generated by using Poisson distribution, and other well-known math-
ematical distributions. In addition, the simulation tool employs the task model
proposed in SC2 and helps to extend the study of heterogeneous processing
units under the environments with radiation effects. This contribution is dis-
cussed in Paper D and addresses Research Challenge 3 together with SC 4.

As illustrated in Figure 3.1, Paper E proposes a solution based on Papers
A and B. Papers A, B, and C focus on practical experiments on real physical
platforms, while Papers E and F propose solutions for heterogeneous com-
puting. Paper F is extended work to Paper E. Paper D is based on Papers E
and C. It is about a simulation tool to support designers in choosing necessary
heterogeneous processing units.

Figure 3.1: Mapping of the research challenges, contributions and publications

Chapter 3. Research Description 23

that one of the proposed techniques based on dynamic scheduling can schedule
up to 16% more task sets compared to the traditional non-offloading technique.
This contribution addresses Research Challenges 2 and 3.

Scientific Contribution 5: Developing a simulation framework and a tool
considering the effects of different radiation tolerance of heterogeneous pro-
cessing units on the schedulability of real-time applications under harsh envi-
ronments.
Motivation and summary of the contribution: As radiation effects limits the
usability of most of the state-of-the-art COTS technologies from use in space,
this contribution presents a simulation framework and a tool to simulate real-
time applications under harsh environments using heterogeneous processing
units with different radiation tolerances. The simulation tool supports pro-
cessing units with different characteristics of computing potential, radiation
tolerance, as well as different type of processing units such as CPU and GPU.
Artificial patterns of single-event effects can be introduced, for example, the
patterns generated by using Poisson distribution, and other well-known math-
ematical distributions. In addition, the simulation tool employs the task model
proposed in SC2 and helps to extend the study of heterogeneous processing
units under the environments with radiation effects. This contribution is dis-
cussed in Paper D and addresses Research Challenge 3 together with SC 4.

As illustrated in Figure 3.1, Paper E proposes a solution based on Papers
A and B. Papers A, B, and C focus on practical experiments on real physical
platforms, while Papers E and F propose solutions for heterogeneous com-
puting. Paper F is extended work to Paper E. Paper D is based on Papers E
and C. It is about a simulation tool to support designers in choosing necessary
heterogeneous processing units.

Figure 3.1: Mapping of the research challenges, contributions and publications

45

24 3.2. Summary of Included Papers

3.2 Summary of Included Papers

Paper A: Intelligent Data Processing using In-Orbit Advanced Algorithms on
Heterogeneous System Architecture
Nandinbaatar Tsog, Moris Behnam, Mikael Sjödin, Fredrik Bruhn.
Published in the Proceedings of the 39th International IEEE Aerospace Con-
ference, March 2018.

Abstract: In recent years, commercial exploitation of small satellites and
CubeSats has rapidly increased. Time to market of processed customer data
products is becoming an important differentiator between solution providers
and satellite constellation operators. Timely and accurate data dissemination
is the key to success in the commercial usage of small satellite constellations
which is ultimately dependent on a high degree of autonomous fleet manage-
ment and automated decision support. The traditional way for disseminating
data is limited by on the communication capability of the satellite and the
ground terminal availability. Even though cloud computing solutions on the
ground offer high analytical performance, getting the data from the space in-
frastructure to the ground servers poses a bottleneck of data analysis and dis-
tribution. On the other hand, adopting advanced and intelligent algorithms
onboard offers the ability of autonomy, tasking of operations, and fast cus-
tomer generation of low latency conclusions, or even real-time communication
with assets on the ground or other sensors in a multi-sensor configuration. In
this paper, the advantages of intelligent onboard processing using advanced
algorithms for Heterogeneous System Architecture (HSA) compliant onboard
data processing systems are explored. The onboard data processing architec-
ture is designed to handle a large amount of high-speed streaming data and
provides hardware redundancy to be qualified for the space mission applica-
tion domain. We conduct an experimental study to evaluate the performance
analysis by using image recognition algorithms based on an open source intel-
ligent machine library ’MIOpen’ and an open standard ’OpenVX’. OpenVX is
a cross-platform computer vision library.

Paper B: A Trade-Off between Computing Power and Energy Consumption
of On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn.
Published in the Transactions of JSASS, Aerospace Technology Japan, Septem-
ber 2021.

Abstract: On-board data processing is one of the prior on-orbit activities that

24 3.2. Summary of Included Papers

3.2 Summary of Included Papers

Paper A: Intelligent Data Processing using In-Orbit Advanced Algorithms on
Heterogeneous System Architecture
Nandinbaatar Tsog, Moris Behnam, Mikael Sjödin, Fredrik Bruhn.
Published in the Proceedings of the 39th International IEEE Aerospace Con-
ference, March 2018.

Abstract: In recent years, commercial exploitation of small satellites and
CubeSats has rapidly increased. Time to market of processed customer data
products is becoming an important differentiator between solution providers
and satellite constellation operators. Timely and accurate data dissemination
is the key to success in the commercial usage of small satellite constellations
which is ultimately dependent on a high degree of autonomous fleet manage-
ment and automated decision support. The traditional way for disseminating
data is limited by on the communication capability of the satellite and the
ground terminal availability. Even though cloud computing solutions on the
ground offer high analytical performance, getting the data from the space in-
frastructure to the ground servers poses a bottleneck of data analysis and dis-
tribution. On the other hand, adopting advanced and intelligent algorithms
onboard offers the ability of autonomy, tasking of operations, and fast cus-
tomer generation of low latency conclusions, or even real-time communication
with assets on the ground or other sensors in a multi-sensor configuration. In
this paper, the advantages of intelligent onboard processing using advanced
algorithms for Heterogeneous System Architecture (HSA) compliant onboard
data processing systems are explored. The onboard data processing architec-
ture is designed to handle a large amount of high-speed streaming data and
provides hardware redundancy to be qualified for the space mission applica-
tion domain. We conduct an experimental study to evaluate the performance
analysis by using image recognition algorithms based on an open source intel-
ligent machine library ’MIOpen’ and an open standard ’OpenVX’. OpenVX is
a cross-platform computer vision library.

Paper B: A Trade-Off between Computing Power and Energy Consumption
of On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn.
Published in the Transactions of JSASS, Aerospace Technology Japan, Septem-
ber 2021.

Abstract: On-board data processing is one of the prior on-orbit activities that

46

Chapter 3. Research Description 25

improves the performance capability of in-orbit space systems such as deep-
space exploration, earth and atmospheric observation satellites, and CubeSat
constellations. However, on-board data processing encounters higher energy
consumption compared to traditional on-board space systems. This is be-
cause the traditional space systems employ simple processing units such as
single-core microprocessors as the systems do not require heavy data process-
ing. Moreover, solving the radiation hardness problem is crucial in space, and
adopting a new processing unit is challenging.

In this paper, we consider a Graphics Processing Unit (GPU) accelerated
in-orbit space system for on-board data processing. According to prior works,
there exist radiation-tolerant GPU, and the computing capability of systems
is improved by using heterogeneous computing method. We conduct exper-
imental observations of energy consumption and computing potential using
this heterogeneous computing method in our GPU accelerated in-orbit space
systems. The results show that the proper use of GPU increases computing
potential with 10-140 times and consumes between 8-130 times less energy.
Furthermore, the entire task system consumes 10-65% of less energy com-
pared to the traditional use of processing units.

Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based Onboard
Data Processing in Space
Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian Kunkel, Oskar Flordal, Ian Troxel.
Published in the CEAS Space Journal, June 2020.

Abstract: The last decade has seen a dramatic increase in small satellite mis-
sions for commercial, public, and government intelligence applications. Given
the rapid commercialization of constellation-driven services in Earth Obser-
vation, situational domain awareness, communications including machine-to-
machine interface, exploration etc., small satellites represent an enabling tech-
nology for a large growth market generating truly Big Data. Examples of mod-
ern sensors that can generate very large amounts of data are optical sensing,
hyperspectral, Synthetic Aperture Radar (SAR), and Infrared imaging. Tra-
ditional handling and downloading of Big Data from space requires a large
onboard mass storage and high bandwidth downlink with a trend towards op-
tical links. Many missions and applications can benefit significantly from on-
board cloud computing similarly to Earth-based cloud services. Hence, en-
abling space systems to provide near real-time data and enable low latency
distribution of critical and time sensitive information to users. In addition,
the downlink capability can be more effectively utilized by applying more on-
board processing to reduce the data and create high value information prod-

Chapter 3. Research Description 25

improves the performance capability of in-orbit space systems such as deep-
space exploration, earth and atmospheric observation satellites, and CubeSat
constellations. However, on-board data processing encounters higher energy
consumption compared to traditional on-board space systems. This is be-
cause the traditional space systems employ simple processing units such as
single-core microprocessors as the systems do not require heavy data process-
ing. Moreover, solving the radiation hardness problem is crucial in space, and
adopting a new processing unit is challenging.

In this paper, we consider a Graphics Processing Unit (GPU) accelerated
in-orbit space system for on-board data processing. According to prior works,
there exist radiation-tolerant GPU, and the computing capability of systems
is improved by using heterogeneous computing method. We conduct exper-
imental observations of energy consumption and computing potential using
this heterogeneous computing method in our GPU accelerated in-orbit space
systems. The results show that the proper use of GPU increases computing
potential with 10-140 times and consumes between 8-130 times less energy.
Furthermore, the entire task system consumes 10-65% of less energy com-
pared to the traditional use of processing units.

Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based Onboard
Data Processing in Space
Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian Kunkel, Oskar Flordal, Ian Troxel.
Published in the CEAS Space Journal, June 2020.

Abstract: The last decade has seen a dramatic increase in small satellite mis-
sions for commercial, public, and government intelligence applications. Given
the rapid commercialization of constellation-driven services in Earth Obser-
vation, situational domain awareness, communications including machine-to-
machine interface, exploration etc., small satellites represent an enabling tech-
nology for a large growth market generating truly Big Data. Examples of mod-
ern sensors that can generate very large amounts of data are optical sensing,
hyperspectral, Synthetic Aperture Radar (SAR), and Infrared imaging. Tra-
ditional handling and downloading of Big Data from space requires a large
onboard mass storage and high bandwidth downlink with a trend towards op-
tical links. Many missions and applications can benefit significantly from on-
board cloud computing similarly to Earth-based cloud services. Hence, en-
abling space systems to provide near real-time data and enable low latency
distribution of critical and time sensitive information to users. In addition,
the downlink capability can be more effectively utilized by applying more on-
board processing to reduce the data and create high value information prod-

47

26 3.2. Summary of Included Papers

ucts. This paper discusses current implementations and roadmap for leveraging
high performance computing tools and methods on small satellites with radi-
ation tolerant hardware. This includes runtime analysis with benchmarks of
convolutional neural networks and matrix multiplications using industry stan-
dard tools (e.g., TensorFlow and PlaidML). In addition, a 1/2 CubeSat volume
unit (0.5U) (10×10×5 cm3) cloud computing solution, called SpaceCloud™
iX5100 based on AMD 28 nm APU technology is presented as an example of
heterogeneous computer solution. An evaluation of the AMD 14 nm Ryzen
APU is presented as a candidate for future advanced onboard processing for
space vehicles.

Paper D: Simulation and Analysis of In-Orbit Applications under Radiation
Effects on COTS Platforms
Nandinbaatar Tsog, Saad Mubeen, Moris Behnam, Mikael Sjödin, Fredrik
Bruhn.
Published in the Proceedings of the 42nd International IEEE Aerospace Con-
ference, March 2021.

Abstract: Radiation effects research is crucial as it defines risk to both human
bodies and spacecraft. Employing radiation-hardened products is one way to
mitigate radiation effects on in-orbit systems. However, radiation effects pro-
hibit most of the state-of-the-art commercial off-the-shelf (COTS) technolo-
gies from use in space. Furthermore, radiation effects on software components
are less studied compared to hardware components. In this work, we intro-
duce a simulation tool that simulates and performs post-simulation analysis of
the impact of radiation effects on schedulability of the software task sets that
execute on COTS system-on-chip (SoC) platforms within in-orbit systems. In
order to provide a meaningful verification environment, single-event effects
(SEEs) are introduced as aleatory disturbances characterized by probability
distribution of occurrence using their predefined models. The tool supports in-
teroperability with several other tools as it uses the extensible markup language
(XML) model files for input and output, i.e., for importing input task sets and
radiation effects and exporting the simulation and analysis results. The pro-
posed tool is extensively by running simulations using a use case of an in-orbit
onboard monitoring system.

Paper E: Static Allocation of Parallel Tasks to Improve Schedulability in GPU
Accelerated Real-Time Systems
Nandinbaatar Tsog, Matthias Becker, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin.

26 3.2. Summary of Included Papers

ucts. This paper discusses current implementations and roadmap for leveraging
high performance computing tools and methods on small satellites with radi-
ation tolerant hardware. This includes runtime analysis with benchmarks of
convolutional neural networks and matrix multiplications using industry stan-
dard tools (e.g., TensorFlow and PlaidML). In addition, a 1/2 CubeSat volume
unit (0.5U) (10×10×5 cm3) cloud computing solution, called SpaceCloud™
iX5100 based on AMD 28 nm APU technology is presented as an example of
heterogeneous computer solution. An evaluation of the AMD 14 nm Ryzen
APU is presented as a candidate for future advanced onboard processing for
space vehicles.

Paper D: Simulation and Analysis of In-Orbit Applications under Radiation
Effects on COTS Platforms
Nandinbaatar Tsog, Saad Mubeen, Moris Behnam, Mikael Sjödin, Fredrik
Bruhn.
Published in the Proceedings of the 42nd International IEEE Aerospace Con-
ference, March 2021.

Abstract: Radiation effects research is crucial as it defines risk to both human
bodies and spacecraft. Employing radiation-hardened products is one way to
mitigate radiation effects on in-orbit systems. However, radiation effects pro-
hibit most of the state-of-the-art commercial off-the-shelf (COTS) technolo-
gies from use in space. Furthermore, radiation effects on software components
are less studied compared to hardware components. In this work, we intro-
duce a simulation tool that simulates and performs post-simulation analysis of
the impact of radiation effects on schedulability of the software task sets that
execute on COTS system-on-chip (SoC) platforms within in-orbit systems. In
order to provide a meaningful verification environment, single-event effects
(SEEs) are introduced as aleatory disturbances characterized by probability
distribution of occurrence using their predefined models. The tool supports in-
teroperability with several other tools as it uses the extensible markup language
(XML) model files for input and output, i.e., for importing input task sets and
radiation effects and exporting the simulation and analysis results. The pro-
posed tool is extensively by running simulations using a use case of an in-orbit
onboard monitoring system.

Paper E: Static Allocation of Parallel Tasks to Improve Schedulability in GPU
Accelerated Real-Time Systems
Nandinbaatar Tsog, Matthias Becker, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin.

48

Chapter 3. Research Description 27

Published in the Proceedings of the 45th Annual Conference of the IEEE In-
dustrial Electronics Society (IECON), October 2019.

Abstract: Autonomous driving is one of the main challenges of modern cars.
Computer visions and intelligent on-board decision making are crucial in au-
tonomous driving and require heterogeneous processors with high computing
capability under low power consumption constraints. The progress of paral-
lel computing using heterogeneous processing units is further supported by
software frameworks like OpenCL, OpenMP, CUDA, and C++AMP. These
frameworks allow the allocation of parallel computation on different compute
resources. This, however, creates a difficulty in allocating the right computa-
tion segments to the right processing units in such a way that the complete sys-
tem meets all its timing requirements. In this paper, we consider pre-runtime
static allocations of parallel tasks to perform their execution either sequentially
on CPU or in parallel using a GPU. This allows for improving any unbalanced
use of GPU accelerators in a heterogeneous environment. By performing sev-
eral heuristic algorithms, we show that the overuse of accelerators results in a
bottle-neck of the entire system execution. The experimental results show that
our allocation schemes that target a balanced use of GPU improves the system
schedulability up to 90%.

Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU Hetero-
geneous Processors
Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin.
Published in the Proceedings of the 26th International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), September 2021.

Abstract: Autonomous vehicular systems require computer vision and intelli-
gent on-board decision making functionalities that include a mix of sequential
and parallel workloads. The execution times of the workloads and power con-
sumption in these functionalities can be lowered by utilizing the accelerators
(e.g., GPU) instead of running the workloads entirely on the host processing
units (CPU). However, allocating all the parallelizable workload to accelera-
tors can create a computation bottleneck in the accelerators that, in turn, can
have an adverse effect on schedulability of the systems. This paper presents
a novel framework that can allocate the accelerate-intensive workloads to the
accelerators as well as to the non-accelerated host processing units. Within
the context of this framework, the paper introduces five offloading techniques
to mitigate the accelerator-intensive workloads by utilizing excess capacity of

Chapter 3. Research Description 27

Published in the Proceedings of the 45th Annual Conference of the IEEE In-
dustrial Electronics Society (IECON), October 2019.

Abstract: Autonomous driving is one of the main challenges of modern cars.
Computer visions and intelligent on-board decision making are crucial in au-
tonomous driving and require heterogeneous processors with high computing
capability under low power consumption constraints. The progress of paral-
lel computing using heterogeneous processing units is further supported by
software frameworks like OpenCL, OpenMP, CUDA, and C++AMP. These
frameworks allow the allocation of parallel computation on different compute
resources. This, however, creates a difficulty in allocating the right computa-
tion segments to the right processing units in such a way that the complete sys-
tem meets all its timing requirements. In this paper, we consider pre-runtime
static allocations of parallel tasks to perform their execution either sequentially
on CPU or in parallel using a GPU. This allows for improving any unbalanced
use of GPU accelerators in a heterogeneous environment. By performing sev-
eral heuristic algorithms, we show that the overuse of accelerators results in a
bottle-neck of the entire system execution. The experimental results show that
our allocation schemes that target a balanced use of GPU improves the system
schedulability up to 90%.

Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU Hetero-
geneous Processors
Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin.
Published in the Proceedings of the 26th International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), September 2021.

Abstract: Autonomous vehicular systems require computer vision and intelli-
gent on-board decision making functionalities that include a mix of sequential
and parallel workloads. The execution times of the workloads and power con-
sumption in these functionalities can be lowered by utilizing the accelerators
(e.g., GPU) instead of running the workloads entirely on the host processing
units (CPU). However, allocating all the parallelizable workload to accelera-
tors can create a computation bottleneck in the accelerators that, in turn, can
have an adverse effect on schedulability of the systems. This paper presents
a novel framework that can allocate the accelerate-intensive workloads to the
accelerators as well as to the non-accelerated host processing units. Within
the context of this framework, the paper introduces five offloading techniques
to mitigate the accelerator-intensive workloads by utilizing excess capacity of

49

28 3.3. Research Process and Methodology

non-accelerated processing units under dynamic scheduling in CPU-GPU het-
erogeneous processors. The proposed techniques are evaluated using simu-
lation experiments. The evaluation results indicate that one of the proposed
techniques can achieve up to 16% improvement in schedulability of the task
sets compared to the traditional non-offloading technique.

3.3 Research Process and Methodology

A research method is a way to uncover new knowledge or create better un-
derstanding of research problems. A scientific method is the logical scheme
of the research method that is used to answer to scientific questions posed
within science [20]. A research methodology is the primary principle that will
guide the research topic conducting a collection of the specific scientific meth-
ods [21]. Holz et al. [22] discuss the four major steps (problem definition, idea
development, implementation and evaluation) of the research process that we
adopt in our research. The research methodology that is used in our research
is illustrated in Figure 3.2.

Figure 3.2: Research Methodology.

Problem definition. As first step in our research process, we have done a
review of both the state of the art and practice including the reason/problem for
initiation of our research which has not been investigated before. In addition
to the discussion between the involved parties, the research goals are formu-
lated as an outcome of the problem definition step. In Papers A, B, and C, we
have conducted a review of the state of the practice with the help of the indus-

28 3.3. Research Process and Methodology

non-accelerated processing units under dynamic scheduling in CPU-GPU het-
erogeneous processors. The proposed techniques are evaluated using simu-
lation experiments. The evaluation results indicate that one of the proposed
techniques can achieve up to 16% improvement in schedulability of the task
sets compared to the traditional non-offloading technique.

3.3 Research Process and Methodology

A research method is a way to uncover new knowledge or create better un-
derstanding of research problems. A scientific method is the logical scheme
of the research method that is used to answer to scientific questions posed
within science [20]. A research methodology is the primary principle that will
guide the research topic conducting a collection of the specific scientific meth-
ods [21]. Holz et al. [22] discuss the four major steps (problem definition, idea
development, implementation and evaluation) of the research process that we
adopt in our research. The research methodology that is used in our research
is illustrated in Figure 3.2.

Figure 3.2: Research Methodology.

Problem definition. As first step in our research process, we have done a
review of both the state of the art and practice including the reason/problem for
initiation of our research which has not been investigated before. In addition
to the discussion between the involved parties, the research goals are formu-
lated as an outcome of the problem definition step. In Papers A, B, and C, we
have conducted a review of the state of the practice with the help of the indus-

50

Chapter 3. Research Description 29

try, including Unibap AB (publ.), Volvo Construction Equipment, SAAB, and
Advanced Micro Devices (AMD). Furthermore, we investigate how heteroge-
neous and parallel computing are introduced in the state of art technologies
such as HSA, CUDA, OpenCL, OpenMP and so on. The literature reviews
surveys have been conducted in order to understand how different communi-
ties deal with heterogeneous computing. In other words, Papers E and F are
focused on heterogeneous computing in real-time systems, while Papers A and
C survey the relation between heterogeneous computing and space community.
As a result, we extract some ideas for the technical contributions presented in
this thesis.

Idea development. After the survey study, we have chosen the most rel-
evant works which help to consolidate our ideas. In Papers D, E, and F, we
extract models from real applications and propose a solution using models to
improve the existing solutions. In Papers A, B, C, and D, we have identified
the metrics which are used to understand the characterization of heterogeneous
architectures.

Implementation of the proposed solutions. The implementation step re-
sults with empirical studies based on either real implementation (Papers A, B,
C) and simulation using the state of the art analysis tool (Papers E, F and D).
Real implementations help to perform benchmarking study, i.e., measurement
based experiments. Some understanding of the proposed solutions using the
implementation has been published as work-in progress and workshop papers,
and technical reports (listed in this thesis as not included publications) in early
stage.

Evaluation of the solutions. In the last part research process, we draw
conclusion and determine limitations of our approach by conducting the eval-
uation of the proposed solution. In the evaluation process, the introduced met-
rics, tools including MUST (implemented by us during this PhD journey), and
research methods are used. Depending on the results of the evaluation step,
the problem definition and idea development are revised and continue with the
later steps. This process is iterated until the results are acceptable. The final-
ized results/outcomes are presented as conference and journal publications.

Chapter 3. Research Description 29

try, including Unibap AB (publ.), Volvo Construction Equipment, SAAB, and
Advanced Micro Devices (AMD). Furthermore, we investigate how heteroge-
neous and parallel computing are introduced in the state of art technologies
such as HSA, CUDA, OpenCL, OpenMP and so on. The literature reviews
surveys have been conducted in order to understand how different communi-
ties deal with heterogeneous computing. In other words, Papers E and F are
focused on heterogeneous computing in real-time systems, while Papers A and
C survey the relation between heterogeneous computing and space community.
As a result, we extract some ideas for the technical contributions presented in
this thesis.

Idea development. After the survey study, we have chosen the most rel-
evant works which help to consolidate our ideas. In Papers D, E, and F, we
extract models from real applications and propose a solution using models to
improve the existing solutions. In Papers A, B, C, and D, we have identified
the metrics which are used to understand the characterization of heterogeneous
architectures.

Implementation of the proposed solutions. The implementation step re-
sults with empirical studies based on either real implementation (Papers A, B,
C) and simulation using the state of the art analysis tool (Papers E, F and D).
Real implementations help to perform benchmarking study, i.e., measurement
based experiments. Some understanding of the proposed solutions using the
implementation has been published as work-in progress and workshop papers,
and technical reports (listed in this thesis as not included publications) in early
stage.

Evaluation of the solutions. In the last part research process, we draw
conclusion and determine limitations of our approach by conducting the eval-
uation of the proposed solution. In the evaluation process, the introduced met-
rics, tools including MUST (implemented by us during this PhD journey), and
research methods are used. Depending on the results of the evaluation step,
the problem definition and idea development are revised and continue with the
later steps. This process is iterated until the results are acceptable. The final-
ized results/outcomes are presented as conference and journal publications.

51

30 3.3. Research Process and Methodology 30 3.3. Research Process and Methodology

52

Chapter 4

Related Work

Space missions are constrained to bring the technological advances in COTS
platforms due to the radiation effects and other limitations. Many works ex-
plore the behaviour of COTS platforms under radiation effects such as [23],
[24], [25], and so on. Their focus is the effect of radiation regarding total ion-
izing dose (TID) and single-event effects (SEEs) on in-orbit hardware and ma-
terials used in the spacecraft. Miller et al. [26] and Troxel [23] study the radia-
tion effect on commercial DRAMs. The studies show that the exposed particle
can damage hardware, which may end up with data loss as well. Moreover, the
authors report the changes of chip revision within each family can be another
concern of radiation effects. Therefore, the current state of the art considers
how radiation effects can affect materials of hardware that, in turn damage
the stored data. This thesis explores how GPU accelerated COTS platforms
fit in in-orbit missions, measuring various types of applications considering
different limitations such as radiation effect, SWaP, and real-time constrains.
However, there is a lack of research on investigation of radiation effects on the
execution behavior of applications that are stored in the hardware. Hence, in
the thesis, we provide a framework and a tool to simulate how radiation effects
influence the execution behavior of applications on the on-board computing
platforms including heterogeneous processing units.

Historically, the adoption of heterogeneous processing units is intimately
bound to the development of high-performance computing such as supercom-
puters, especially, in the area of distributed heterogeneous supercomputing [12].
The execution times and manners of the workloads can vary a lot depending
on what type of processing units they are executed on. To this end, several
existing works focus on how to allocate applications to the appropriate pro-
cessing units in order to achieve the best-case execution time, i.e., the shortest
execution time [27, 28, 29]. In contrast, the work presented in the thesis con-

31

Chapter 4

Related Work

Space missions are constrained to bring the technological advances in COTS
platforms due to the radiation effects and other limitations. Many works ex-
plore the behaviour of COTS platforms under radiation effects such as [23],
[24], [25], and so on. Their focus is the effect of radiation regarding total ion-
izing dose (TID) and single-event effects (SEEs) on in-orbit hardware and ma-
terials used in the spacecraft. Miller et al. [26] and Troxel [23] study the radia-
tion effect on commercial DRAMs. The studies show that the exposed particle
can damage hardware, which may end up with data loss as well. Moreover, the
authors report the changes of chip revision within each family can be another
concern of radiation effects. Therefore, the current state of the art considers
how radiation effects can affect materials of hardware that, in turn damage
the stored data. This thesis explores how GPU accelerated COTS platforms
fit in in-orbit missions, measuring various types of applications considering
different limitations such as radiation effect, SWaP, and real-time constrains.
However, there is a lack of research on investigation of radiation effects on the
execution behavior of applications that are stored in the hardware. Hence, in
the thesis, we provide a framework and a tool to simulate how radiation effects
influence the execution behavior of applications on the on-board computing
platforms including heterogeneous processing units.

Historically, the adoption of heterogeneous processing units is intimately
bound to the development of high-performance computing such as supercom-
puters, especially, in the area of distributed heterogeneous supercomputing [12].
The execution times and manners of the workloads can vary a lot depending
on what type of processing units they are executed on. To this end, several
existing works focus on how to allocate applications to the appropriate pro-
cessing units in order to achieve the best-case execution time, i.e., the shortest
execution time [27, 28, 29]. In contrast, the work presented in the thesis con-

31

53

32

siders offloading the accelerator-intensive workloads, constrained by real-time
requirements, e.g., deadlines on the response times of the workloads, to the
available non-accelerated host processing units.

Beside radiation effects, the use of heterogeneous processing units in real-
time applications is another main focus of this thesis. The heterogeneous pro-
cessing units considered in the thesis consist of mainly two parts: (i) a host
processing unit, CPU, and (ii) accelerator(s) that include GPUs and FPGAs,
among others. There exist several research trends on how to tackle heteroge-
neous processing units in real-time applications. One of the research trends
is to explore the properties of accelerators in heterogeneous processing units
since a host processing unit is a well-studied single-core CPU. The existing
explorations in this regard include TimeGraph [30], Gdev [31], the black-box
method [32], to mention a few.

Another line of existing studies targets resource management in the sys-
tems that use heterogeneous processing units. There are several studies [33,
34, 35] that focus on splitting a task on accelerators for improving the schedu-
lability. Moreover, TimeGraph [30], GPUSync [36], and the works by Kim et
al. [37] and Biondi et al. [38] consider schedulability analysis of the systems
that use heterogeneous processing units. These studies focus on accelerators,
which obviously offer better (shorter) execution times of the compute-intensive
workloads compared to the executions on the host processing units. On the
other hand, this thesis aims at mitigating the accelerator-intensive workload by
efficiently offloading it to the non-accelerated host possessing units.

From the real-time perspective, there exist several works that support server-
based scheduling on single- and multi-core CPU(s) such as the constant band-
width server (CBS) [39], total bandwidth server (TBS) [40], polling server
(PS), sporadic server (SS) and deferrable server (DS) [41]. Some of the ex-
isting works also address the challenge of using the server-based scheduling
in accelerators. For example, the works in [42, 43] show that the server-based
scheduling on accelerator(s) can improve the schedulability of the systems that
use heterogeneous processing units. In comparison to these works, the work
presented in the thesis uses the server-based (DS) scheduling in the host pro-
cessing units instead of accelerators. The rationale behind the decision is that
the proposed framework, based on alternative executions of parallel segments,
offloads the accelerator-intensive workloads to host processing units to effi-
ciently utilize their excess resources to assist the accelerators.

The idea of using alternative executions of parallel segments of real-time
workloads is discussed in a few works [44]. Baruah [44] uses conditional
branching by using the if-then-else construct for two or more alternative exe-
cutions of a workload. Moreover, a scheduling approach employs the condi-

32

siders offloading the accelerator-intensive workloads, constrained by real-time
requirements, e.g., deadlines on the response times of the workloads, to the
available non-accelerated host processing units.

Beside radiation effects, the use of heterogeneous processing units in real-
time applications is another main focus of this thesis. The heterogeneous pro-
cessing units considered in the thesis consist of mainly two parts: (i) a host
processing unit, CPU, and (ii) accelerator(s) that include GPUs and FPGAs,
among others. There exist several research trends on how to tackle heteroge-
neous processing units in real-time applications. One of the research trends
is to explore the properties of accelerators in heterogeneous processing units
since a host processing unit is a well-studied single-core CPU. The existing
explorations in this regard include TimeGraph [30], Gdev [31], the black-box
method [32], to mention a few.

Another line of existing studies targets resource management in the sys-
tems that use heterogeneous processing units. There are several studies [33,
34, 35] that focus on splitting a task on accelerators for improving the schedu-
lability. Moreover, TimeGraph [30], GPUSync [36], and the works by Kim et
al. [37] and Biondi et al. [38] consider schedulability analysis of the systems
that use heterogeneous processing units. These studies focus on accelerators,
which obviously offer better (shorter) execution times of the compute-intensive
workloads compared to the executions on the host processing units. On the
other hand, this thesis aims at mitigating the accelerator-intensive workload by
efficiently offloading it to the non-accelerated host possessing units.

From the real-time perspective, there exist several works that support server-
based scheduling on single- and multi-core CPU(s) such as the constant band-
width server (CBS) [39], total bandwidth server (TBS) [40], polling server
(PS), sporadic server (SS) and deferrable server (DS) [41]. Some of the ex-
isting works also address the challenge of using the server-based scheduling
in accelerators. For example, the works in [42, 43] show that the server-based
scheduling on accelerator(s) can improve the schedulability of the systems that
use heterogeneous processing units. In comparison to these works, the work
presented in the thesis uses the server-based (DS) scheduling in the host pro-
cessing units instead of accelerators. The rationale behind the decision is that
the proposed framework, based on alternative executions of parallel segments,
offloads the accelerator-intensive workloads to host processing units to effi-
ciently utilize their excess resources to assist the accelerators.

The idea of using alternative executions of parallel segments of real-time
workloads is discussed in a few works [44]. Baruah [44] uses conditional
branching by using the if-then-else construct for two or more alternative exe-
cutions of a workload. Moreover, a scheduling approach employs the condi-

54

Chapter 4. Related Work 33

tional DAG model for reserving the necessary amount of computing resources.
This thesis discusses a static allocation of real-time tasks using alternative exe-
cution of parallel segments of the tasks. Both works construct the fundamental
of alternative executions of segments under real-time constraints. However,
dynamic allocation of tasks using the alternative executions of parallel seg-
ments is missing from the state of the art. Hence, provisioning of such an
allocation is the main focuses of this thesis.

Chapter 4. Related Work 33

tional DAG model for reserving the necessary amount of computing resources.
This thesis discusses a static allocation of real-time tasks using alternative exe-
cution of parallel segments of the tasks. Both works construct the fundamental
of alternative executions of segments under real-time constraints. However,
dynamic allocation of tasks using the alternative executions of parallel seg-
ments is missing from the state of the art. Hence, provisioning of such an
allocation is the main focuses of this thesis.

55

34 34

56

Chapter 5

Conclusions

5.1 Summary and Conclusions

This thesis conducts an investigation of COTS heterogeneous architectures un-
der the real-time and space-specific constraints, i.e., space computing using
COTS heterogeneous platforms. The work conducted in the thesis addresses
the goal of improving timing predictability of real-time applications on het-
erogeneous computing platforms under harsh environments without degrading
their computing performance and energy efficiency.

First, we have investigated the characteristics of processing units in the
heterogeneous computing architectures focusing on computing potential and
energy efficiency. We confirm that CPU performs better computing perfor-
mance in the case of small workloads. Otherwise, GPU performs better than
CPU in computing performance. In addition, GPU is more energy efficient
compared to CPU for any type of workloads. Hence, from the execution-time
perspective, we conclude that larger workloads can benefit more compared to
smaller workloads by computing on GPU. This conclusion builds the base of
an idea about alternative executions of parallel segments. In other words, alter-
native executions of parallel segments can impact on the timing predictability
and energy use of the total system.

Then, the investigations of alternative executions of parallel segments have
been conducted in three phases introduced. In the first phase, we have studied
the characteristics of alternative executions of parallel segments considering
computing performance and energy efficiency. The results indicate that the
appropriate use of heterogeneous processing units for parallel segments can
achieve up to 64.3% decrease in the total energy consumption by the systems.
In the second phase, the study continues with the scheduling of real-time appli-
cations applying the alternative executions of parallel segments. The results in-

35

Chapter 5

Conclusions

5.1 Summary and Conclusions

This thesis conducts an investigation of COTS heterogeneous architectures un-
der the real-time and space-specific constraints, i.e., space computing using
COTS heterogeneous platforms. The work conducted in the thesis addresses
the goal of improving timing predictability of real-time applications on het-
erogeneous computing platforms under harsh environments without degrading
their computing performance and energy efficiency.

First, we have investigated the characteristics of processing units in the
heterogeneous computing architectures focusing on computing potential and
energy efficiency. We confirm that CPU performs better computing perfor-
mance in the case of small workloads. Otherwise, GPU performs better than
CPU in computing performance. In addition, GPU is more energy efficient
compared to CPU for any type of workloads. Hence, from the execution-time
perspective, we conclude that larger workloads can benefit more compared to
smaller workloads by computing on GPU. This conclusion builds the base of
an idea about alternative executions of parallel segments. In other words, alter-
native executions of parallel segments can impact on the timing predictability
and energy use of the total system.

Then, the investigations of alternative executions of parallel segments have
been conducted in three phases introduced. In the first phase, we have studied
the characteristics of alternative executions of parallel segments considering
computing performance and energy efficiency. The results indicate that the
appropriate use of heterogeneous processing units for parallel segments can
achieve up to 64.3% decrease in the total energy consumption by the systems.
In the second phase, the study continues with the scheduling of real-time appli-
cations applying the alternative executions of parallel segments. The results in-

35

57

36 5.2. Future Work

dicate that the schedulability of task set can be improved up to 90% compared
to the existing solutions. In the third phase, we propose a dynamic scheduling
technique for alternate execution of parallel segments on CPU-GPU heteroge-
neous computing platforms. The results indicate that the dynamic scheduling
of the proposed task model can improve the schedulability up to 16% com-
pared to the state-of-the-art solutions.

Finally, we have implemented a simulation tool for heterogeneous COTS
platforms under harsh environments. In this tool, we applied the proposed task
model for the parallel segments of applications. This tool opens a new research
direction regarding heterogeneous COTS platforms under harsh environments,
when we consider different radiation tolerance levels for the different process-
ing units and peripheral devices.

We believe that the proposed techniques using our novel task model im-
prove the timing predictability of real-time applications on heterogeneous com-
puting platforms without degrading their computing performance and energy
efficiency. Moreover, our implemented tool and framework build a base of
a new research area for heterogeneous COTS platforms under harsh environ-
ments such as electromagnetic environments and radiation environments.

5.2 Future Work

There are several research directions for the future work:

• Validation on industrial case studies is crucial, since the need for the
practical use of heterogeneous architectures increases dramatically. Con-
cerning the proposed task model, a real-time GPU scheduler using alter-
native executions of parallel segments can be useful for the industrial
use cases. This scheduler can be implemented by customizing HSA-
compliant ROCm. ROCm is adopted already in mainline Linux kernel
and the thesis confirms that it performs very stable from Linux kernel
5.0.

• Tackling the radiation effect problems from software level is an interest-
ing research direction. In this field, the thesis has opened a new research
direction using different radiation tolerance levels for different process-
ing units, and other peripherals for computation.

• In this thesis, our focus was on the processing units. The investigation
can be extended to memory management of platforms that employ het-
erogeneous processing units. Among the memory models introduced
in Section 2.2.2, the research direction can be focused on the shared

36 5.2. Future Work

dicate that the schedulability of task set can be improved up to 90% compared
to the existing solutions. In the third phase, we propose a dynamic scheduling
technique for alternate execution of parallel segments on CPU-GPU heteroge-
neous computing platforms. The results indicate that the dynamic scheduling
of the proposed task model can improve the schedulability up to 16% com-
pared to the state-of-the-art solutions.

Finally, we have implemented a simulation tool for heterogeneous COTS
platforms under harsh environments. In this tool, we applied the proposed task
model for the parallel segments of applications. This tool opens a new research
direction regarding heterogeneous COTS platforms under harsh environments,
when we consider different radiation tolerance levels for the different process-
ing units and peripheral devices.

We believe that the proposed techniques using our novel task model im-
prove the timing predictability of real-time applications on heterogeneous com-
puting platforms without degrading their computing performance and energy
efficiency. Moreover, our implemented tool and framework build a base of
a new research area for heterogeneous COTS platforms under harsh environ-
ments such as electromagnetic environments and radiation environments.

5.2 Future Work

There are several research directions for the future work:

• Validation on industrial case studies is crucial, since the need for the
practical use of heterogeneous architectures increases dramatically. Con-
cerning the proposed task model, a real-time GPU scheduler using alter-
native executions of parallel segments can be useful for the industrial
use cases. This scheduler can be implemented by customizing HSA-
compliant ROCm. ROCm is adopted already in mainline Linux kernel
and the thesis confirms that it performs very stable from Linux kernel
5.0.

• Tackling the radiation effect problems from software level is an interest-
ing research direction. In this field, the thesis has opened a new research
direction using different radiation tolerance levels for different process-
ing units, and other peripherals for computation.

• In this thesis, our focus was on the processing units. The investigation
can be extended to memory management of platforms that employ het-
erogeneous processing units. Among the memory models introduced
in Section 2.2.2, the research direction can be focused on the shared

58

Chapter 5. Conclusions 37

memory architectures as it can already be divided as uniform memory
access, non-uniform memory access, and heterogeneous uniform mem-
ory access. We plan to investigate the different use case scenarios of
these architectures with heterogeneous processing units.

• Last, but not least, the consideration of the collaboration of heteroge-
neous processing units, AI, and big data can be an interesting research
direction. This thesis limits AI applications as test-beds that use hetero-
geneous processing units. However, for example, AI optimized schedul-
ing policy for heterogeneous processing units will be crucial when we
consider big data, data inefficiency, extracting the important parts from
data and their uses.

Chapter 5. Conclusions 37

memory architectures as it can already be divided as uniform memory
access, non-uniform memory access, and heterogeneous uniform mem-
ory access. We plan to investigate the different use case scenarios of
these architectures with heterogeneous processing units.

• Last, but not least, the consideration of the collaboration of heteroge-
neous processing units, AI, and big data can be an interesting research
direction. This thesis limits AI applications as test-beds that use hetero-
geneous processing units. However, for example, AI optimized schedul-
ing policy for heterogeneous processing units will be crucial when we
consider big data, data inefficiency, extracting the important parts from
data and their uses.

59

38 Bibliography

Bibliography

[1] J. Bouwmeester and J. Guo, “Survey of worldwide pico-and nanosatellite
missions, distributions and subsystem technology,” Acta Astronautica,
vol. 67, no. 7-8, pp. 854–862, 2010.

[2] M. Swartwout, “Cubesats and mission success: 2017 update,” in Elec-
tronic Technology Workshop, NASA Electronic Parts and Packaging Pro-
gram (NEPP), NASA Goddard Space Flight Center, vol. 27, 2017.

[3] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small satellite
trends 2009-2013,” 2015.

[4] T. Segert, “Why did Google dump Skybox?” [Online]. Avail-
able: https://www.linkedin.com/pulse/why-did-google-dump-skybox-
tom-segert/ (Accessed Nov 14, 2019)

[5] M. T. Hicks and C. Niederstrasser, “Small sat at 30: trends, patterns, and
discoveries,” 2016.

[6] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
in 2010 31st IEEE Real-Time Systems Symposium. IEEE, 2010, pp.
239–248.

[7] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Fu-
rano, “High-performance embedded computing in space: Evaluation of
platforms for vision-based navigation,” Journal of Aerospace Informa-
tion Systems, vol. 15, no. 4, pp. 178–192, 2018.

[8] L. Walsh, U. Schneider, A. Fogtman, C. Kausch, S. McKenna-Lawlor,
L. Narici, J. Ngo-Anh, G. Reitz, L. Sabatier, G. Santin et al., “Research
plans in europe for radiation health hazard assessment in exploratory
space missions,” Life sciences in space research, vol. 21, pp. 73–82,
2019.

[9] J. Rask, W. Vercoutere, B. Navarro, and A. Krause, “Space faring: The
radiation challenge,” Nasa, Module, vol. 3, no. 8, p. 9, 2008.

[10] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2018.

38 Bibliography

Bibliography

[1] J. Bouwmeester and J. Guo, “Survey of worldwide pico-and nanosatellite
missions, distributions and subsystem technology,” Acta Astronautica,
vol. 67, no. 7-8, pp. 854–862, 2010.

[2] M. Swartwout, “Cubesats and mission success: 2017 update,” in Elec-
tronic Technology Workshop, NASA Electronic Parts and Packaging Pro-
gram (NEPP), NASA Goddard Space Flight Center, vol. 27, 2017.

[3] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small satellite
trends 2009-2013,” 2015.

[4] T. Segert, “Why did Google dump Skybox?” [Online]. Avail-
able: https://www.linkedin.com/pulse/why-did-google-dump-skybox-
tom-segert/ (Accessed Nov 14, 2019)

[5] M. T. Hicks and C. Niederstrasser, “Small sat at 30: trends, patterns, and
discoveries,” 2016.

[6] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
in 2010 31st IEEE Real-Time Systems Symposium. IEEE, 2010, pp.
239–248.

[7] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Fu-
rano, “High-performance embedded computing in space: Evaluation of
platforms for vision-based navigation,” Journal of Aerospace Informa-
tion Systems, vol. 15, no. 4, pp. 178–192, 2018.

[8] L. Walsh, U. Schneider, A. Fogtman, C. Kausch, S. McKenna-Lawlor,
L. Narici, J. Ngo-Anh, G. Reitz, L. Sabatier, G. Santin et al., “Research
plans in europe for radiation health hazard assessment in exploratory
space missions,” Life sciences in space research, vol. 21, pp. 73–82,
2019.

[9] J. Rask, W. Vercoutere, B. Navarro, and A. Krause, “Space faring: The
radiation challenge,” Nasa, Module, vol. 3, no. 8, p. 9, 2008.

[10] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2018.

60

Bibliography 39

[11] H. Andrade, L. E. Lwakatare, I. Crnkovic, and J. Bosch, “Software chal-
lenges in heterogeneous computing: A multiple case study in industry,”
in 2019 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). IEEE, 2019, pp. 148–155.

[12] R. F. Freund and D. S. Conwell, “Superconcurrency: A form of dis-
tributed heterogeneous supercomputing,” NAVAL OCEAN SYSTEMS
CENTER SAN DIEGO CA, Tech. Rep., 1991.

[13] B. Jeff, “Ten things to know about big. little,” ARM Holdings, 2013.

[14] HSA Foundation, “”Heterogeneous System Architecture.”,” available:
http://www.hsafoundation.com/ [Oct 16, 2018].

[15] M. Barr and A. Massa, Programming embedded systems: with C and
GNU development tools. ” O’Reilly Media, Inc.”, 2006.

[16] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[17] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Pro-
ceedings of the 22Nd International Conference on Real-Time Networks
and Systems, 2014, pp. 3–12.

[18] J. A. Stankovic and K. Ramamritham, “What is predictability for real-
time systems?” 1990.

[19] S. Mubeen, E. Lisova, and A. Vulgarakis Feljan, “Timing predictability
and security in safety-critical industrial cyber-physical systems: A posi-
tion paper,” Applied Sciences, vol. 10, no. 9, p. 3125, 2020.

[20] G. Dodig-Crnkovic, “Scientific methods in computer science,” in Pro-
ceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Sweden, Skövde, Suecia, 2002,
pp. 126–130.

[21] C. Dawson, A–Z of Digital Research Methods. Routledge, 2019.

[22] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and C. Reed,
“Research methods in computing: What are they, and how should we
teach them?” in Working group reports on ITiCSE on Innovation and
technology in computer science education, 2006, pp. 96–114.

Bibliography 39

[11] H. Andrade, L. E. Lwakatare, I. Crnkovic, and J. Bosch, “Software chal-
lenges in heterogeneous computing: A multiple case study in industry,”
in 2019 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). IEEE, 2019, pp. 148–155.

[12] R. F. Freund and D. S. Conwell, “Superconcurrency: A form of dis-
tributed heterogeneous supercomputing,” NAVAL OCEAN SYSTEMS
CENTER SAN DIEGO CA, Tech. Rep., 1991.

[13] B. Jeff, “Ten things to know about big. little,” ARM Holdings, 2013.

[14] HSA Foundation, “”Heterogeneous System Architecture.”,” available:
http://www.hsafoundation.com/ [Oct 16, 2018].

[15] M. Barr and A. Massa, Programming embedded systems: with C and
GNU development tools. ” O’Reilly Media, Inc.”, 2006.

[16] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[17] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Pro-
ceedings of the 22Nd International Conference on Real-Time Networks
and Systems, 2014, pp. 3–12.

[18] J. A. Stankovic and K. Ramamritham, “What is predictability for real-
time systems?” 1990.

[19] S. Mubeen, E. Lisova, and A. Vulgarakis Feljan, “Timing predictability
and security in safety-critical industrial cyber-physical systems: A posi-
tion paper,” Applied Sciences, vol. 10, no. 9, p. 3125, 2020.

[20] G. Dodig-Crnkovic, “Scientific methods in computer science,” in Pro-
ceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Sweden, Skövde, Suecia, 2002,
pp. 126–130.

[21] C. Dawson, A–Z of Digital Research Methods. Routledge, 2019.

[22] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and C. Reed,
“Research methods in computing: What are they, and how should we
teach them?” in Working group reports on ITiCSE on Innovation and
technology in computer science education, 2006, pp. 96–114.

61

40 Bibliography

[23] I. Troxel, “Memory technology for space,” Military and Aerospace Pro-
grammable Logic Devices (MAPLD), 2009.

[24] D. Sinclair and J. Dyer, “Radiation effects and cots parts in smallsats,”
2013.

[25] R. Kingsbury, F. Schmidt, W. Blackwell, I. Osarentin, R. Legge, K. Ca-
hoy, and D. Sklair, “Tid tolerance of popular cubesat components,” in
2013 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2013, pp.
1–4.

[26] C. Miller, R. Owen, M. Rose, P. M. Rutt, J. Schaefer, and I. A. Troxel,
“Trends in radiation susceptibility of commercial drams for space sys-
tems,” in 2009 IEEE Aerospace conference. IEEE, 2009, pp. 1–12.

[27] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st In-
ternational conference on high performance computing (HiPC). IEEE,
2014, pp. 1–10.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE international symposium on workload characteriza-
tion (IISWC). Ieee, 2009, pp. 44–54.

[29] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[30] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in 2011
USENIX Annual Technical Conference (USENIX ATC 11), 2011, pp. 17–
30.

[31] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 401–412.

[32] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for support-
ing real-time computer-vision workloads,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 353–364.

40 Bibliography

[23] I. Troxel, “Memory technology for space,” Military and Aerospace Pro-
grammable Logic Devices (MAPLD), 2009.

[24] D. Sinclair and J. Dyer, “Radiation effects and cots parts in smallsats,”
2013.

[25] R. Kingsbury, F. Schmidt, W. Blackwell, I. Osarentin, R. Legge, K. Ca-
hoy, and D. Sklair, “Tid tolerance of popular cubesat components,” in
2013 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2013, pp.
1–4.

[26] C. Miller, R. Owen, M. Rose, P. M. Rutt, J. Schaefer, and I. A. Troxel,
“Trends in radiation susceptibility of commercial drams for space sys-
tems,” in 2009 IEEE Aerospace conference. IEEE, 2009, pp. 1–12.

[27] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st In-
ternational conference on high performance computing (HiPC). IEEE,
2014, pp. 1–10.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE international symposium on workload characteriza-
tion (IISWC). Ieee, 2009, pp. 44–54.

[29] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[30] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in 2011
USENIX Annual Technical Conference (USENIX ATC 11), 2011, pp. 17–
30.

[31] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 401–412.

[32] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for support-
ing real-time computer-vision workloads,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 353–364.

62

Bibliography 41

[33] C. Basaran and K.-D. Kang, “Supporting preemptive task executions and
memory copies in GPGPUs,” in 2012 24th Euromicro Conference on
Real-Time Systems. IEEE, 2012, pp. 287–296.

[34] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Ra-
jkumar, “Rgem: A responsive gpgpu execution model for runtime en-
gines,” in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011,
pp. 57–66.

[35] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel, “Preemp-
tion of the partial reconfiguration process to enable real-time computing
with FPGAs,” ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), vol. 11, no. 2, pp. 1–24, 2018.

[36] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[37] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based ap-
proach for predictable gpu access control,” in 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017, pp. 1–10.

[38] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 1–12.

[39] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings 19th IEEE Real-Time Systems Sym-
posium (Cat. No. 98CB36279). IEEE, 1998, pp. 4–13.

[40] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service Under Earliest
Deadline Scheduling,” in RTSS, 1994, pp. 2–11.

[41] H. Zhu, S. Goddard, and M. B. Dwyer, “Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach,” in
32nd Real-Time Systems Symposium. IEEE, 2011, pp. 239–248.

[42] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar, “Resource shar-
ing in GPU-accelerated windowing systems,” in 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE,
2011, pp. 191–200.

Bibliography 41

[33] C. Basaran and K.-D. Kang, “Supporting preemptive task executions and
memory copies in GPGPUs,” in 2012 24th Euromicro Conference on
Real-Time Systems. IEEE, 2012, pp. 287–296.

[34] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Ra-
jkumar, “Rgem: A responsive gpgpu execution model for runtime en-
gines,” in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011,
pp. 57–66.

[35] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel, “Preemp-
tion of the partial reconfiguration process to enable real-time computing
with FPGAs,” ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), vol. 11, no. 2, pp. 1–24, 2018.

[36] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[37] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based ap-
proach for predictable gpu access control,” in 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017, pp. 1–10.

[38] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 1–12.

[39] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings 19th IEEE Real-Time Systems Sym-
posium (Cat. No. 98CB36279). IEEE, 1998, pp. 4–13.

[40] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service Under Earliest
Deadline Scheduling,” in RTSS, 1994, pp. 2–11.

[41] H. Zhu, S. Goddard, and M. B. Dwyer, “Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach,” in
32nd Real-Time Systems Symposium. IEEE, 2011, pp. 239–248.

[42] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar, “Resource shar-
ing in GPU-accelerated windowing systems,” in 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE,
2011, pp. 191–200.

63

42 Bibliography

[43] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time task schedul-
ing in heterogeneous multicore system-on-a-chip,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 1, pp. 118–130, 2012.

[44] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

42 Bibliography

[43] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time task schedul-
ing in heterogeneous multicore system-on-a-chip,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 1, pp. 118–130, 2012.

[44] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

64

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 538.58 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309

 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 538.5827
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

