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ABSTRACT
In this article, a model under which the underlying asset follows a
Markov regime-switching process is considered. The underlying
economy is partially observable in a form of a signal stochasti-
cally related to the actual state of the economy. The American
option pricing problem is formulated using a partially observable
Markov decision process (POMDP). Through the article, a three-
state economy is assumed with a focus on the threshold for the
early exercise, hold regions and its monotonicity. An extensive
numerical experimental study is conducted in order to clarify the
relationship between the monotonicity of the exercising strategy
and the sufficient conditions which are obtained in Jin, Dimitrov,
and Ni. In this article, the effect of sufficient conditions is con-
firmed. It was shown that sufficient conditions are not necessary
for the monotonicity of the exercising strategy, and a discussion
including milder conditions is presented based on the numerical
studies.
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1. Introduction

An American call (put) option is a financial contract that gives its holder
the right but not obligation to buy (sell) the so-called underlying asset for
a predetermined strike price K on or before a maturity time T. Note that
American options can be exercised any time before or at maturity, which
makes the pricing problem of an American option difficult. Knowing some
analytical properties of the American option price and the structural properties
of the optimal exercising strategies is very useful for the pricing problem. We
refer to Jönsson (2005) for a good survey on optimal exercising regions for
American options and books by Silvestrov (2014a,b) for more comprehensive
bibliographic remarks on American options.

Since Black and Scholes proposed their celebrated option pricing model
where the underlying asset follows a geometric Brownian motion with constant
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volatility, numerous extensions have appeared to relax the unrealistic assump-
tion of constant volatility. Option pricing under Markov-modulated regime-
switching models has been actively studied in the last decades. Under such a
model, model parameters, for instance, the volatility, can be modulated by a
hidden Markov chain whose states refer to the hidden states of an economy.

The regime-switching model was first introduced to economic analysis by
Hamilton (1989) with the purpose of explaining business cycles. There are
many sources on option pricing of which we name a few. Naik (1993), Guo
(2001) and Buffington and Elliott (2002) have priced European options, Guo
and Shepp (2001) have discussed pricing problems for European, perpetual
American and look-back options. Under the assumption of a two-state economy,
an analytical approximation for the price of an American option has also been
obtained in Buffington and Elliott (2002) and an explicit formula, in terms of
infinite series, in Chan and Zhu (2021) by means of the homotopy analysis. As
regime-switching models often result in an incomplete market, Liew and Siu
(2010) have investigated two approaches in selecting the equivalent martingale
measure to option valuation. We refer to the collective books by Mamon and
Elliott (2007, 2014) and references therein for an overview of hidden Markov
models in Finance.

In using regime-switching models, parameter estimation and calibration is
an important issue. To obtain an estimate of the state of the economy, filtering
methods can be applied to the historical time series of the underlying asset. For
example, Elliott, Malcolm, and Tsoi (2003) have proposed such an algorithm
and tested it successfully on simulated data. More recent work is given by He and
Zhu (2017, 2021) in which the authors proposed a new algorithm for calibrating
a local regime-switching model using both simulated and real market data.

As pointed out in Elliott and Siu (2013), most of the earlier work on option
pricing seems to assume an observed underlying Markov chain and does not
address the estimation of the supposedly hidden states. However, in reality,
the economic states are often not directly observable. Some studies consider
partially observable hidden economy states. Elliott and Siu (2013) have inves-
tigated option pricing in a continuous-time, hidden Markov-modulated, pure-
jump asset price model without the observable assumption. In the previously
mentioned work by Liew and Siu (2010), the option price is obtained by
conditioning on observable information for the hidden states. In addition, Liew
and Siu (2010) have estimated the unknown transitional probability matrix of
the hidden Markov chain and asset price model parameters under a two-state
economy, using real market time series of IBM from the year 2008 to 2010. This
further confirms the practical use of hidden Markov models.

Our work, in the present article and an earlier one Jin, Dimitrov, and Ni
(2019), is closely related to Sato and Sawaki (2014, 2018). In these articles, the so-
called callable American option has been studied. The economy states of an N-
state regime-switching model are assumed to be observable in Sato and Sawaki
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(2014) but partially observable through some signal in Sato and Sawaki (2018).
Moreover, the probabilistic relationship between the observable signal and the
hidden states of the economy is assumed to be known. For a callable American
option, both the buyer and seller can terminate the option before the maturity,
Sato and Sawaki (2018) have investigated the early optimal strategies for both
the buyer and seller and the analytical properties of early exercising decisions.

As the hidden Markov model is partially observable and is given in a discrete-
time setting, moreover as the American option pricing problem involves deci-
sions of holding and exercising, a partially observable Markov decision problem
can be formulated. We note that American option pricing usually is considered
as an optimal stopping problem, which in a discrete-time setting is a special case
of the more general Markov decision problem.

In our earlier article Jin, Dimitrov, and Ni (2019), we have followed the
framework in Sato and Sawaki (2018) and considered valuation and optimal
strategies using a partially observable Markov decision process. However, we
note that Assumption 3.1 in Sato and Sawaki (2018) is too stringent for most
of the applications in option pricing. This assumption requires that the random
variable of the underlying asset return can be ordered in terms of stochastic
increasing across different economic states, which is very difficult to satisfy with
state-inhomogenous volatilities.

In Jin, Dimitrov, and Ni (2019), we have proved the analytical properties of
American options under a set of sufficient conditions without this key assump-
tion as in Sato and Sawaki (2018). However, relaxing this key assumption has
posed a challenge, so at this stage of research, our model had to be more explicit.
The asset return random variable is also assumed to be discrete with two possible
values, as in a binomial tree. We consider the standard plain-vanilla American
options instead of callable American options with general payoff functions.
Nevertheless, our N-state partially observable Markov decision model is still
novel and the corresponding results are new to the literature. A follow-up work,
for a general asset return distribution with an arbitrary distribution function
F(·), is under preparation.

It should be pointed out that most of the earlier studies on American option
pricing under the regime-switching model deal with approximating the price by
an explicit valuation formula, under the assumption of a two-state economy, as
in Buffington and Elliott (2002) and Chan and Zhu (2021). There is so far very
little work on the analytical structural properties for the American option prices
and optimal exercising strategies under a partially observable hidden Markov
model with an N-state economy.

This present article is a continuation of Jin, Dimitrov, and Ni (2019) with
the following purpose. In this previous work, we have proved that the optimal
exercising strategy is monotone in asset price, time-to-maturity, and economic
information if both the transition probability matrix (TPM) for the hidden
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Markov chain and the observable conditional probabilities (CPM) has a prop-
erty of totally positive of order two (TP2). However, the TP2 properties of TPM
and CPM are proved to be sufficient conditions. This means TP2 may be relaxed
to a milder condition.

As analytical proofs have limitations, in this work, we conduct extensive
numerical experimental studies on randomly simulated matrices for TPM and
CPM, in order to further clarify the relationship between the monotonicity of
the exercising strategy and the properties of TPM and CPM. We assume a three-
state economy and focus on the monotonicity of the threshold for the early
exercise and hold regions. We confirm the effect of the sufficient conditions
based on the results of our numerical experiments. Moreover, our results show
that TPM affects the monotonicity of the threshold more than CPM. In addition,
we add a numerical discussion on TPM with the stochastic increasing property
introduced in Marshall, Olkin, and Arnold (1979), which is a milder condition
than TP2, and found that it also establishes the monotonicity of threshold with
a large range.

This article proceeds as follows. The Markovian regime-switching model is
presented in Sec. 2 and the American option pricing problem is formulated in
Sec. 3. In Sec. 4, a summary without proofs of some analytical results from our
previous research Jin, Dimitrov, and Ni (2019) is given. In the end, in Sec. 5,
results of numerical experimental studies are presented.

2. Partially Observable Markovian Regime-Switching Model

Consider an American option with a strike price K and a maturity time T. The
payoff function for call (put) is given by ve(s) = max{s−K, 0} (ve(s) = max{K−
s, 0}) with domain s ∈ [0, ∞).

Make a grid on [0, T] using M + 1 grid points {0, 1h, . . . , t h, . . . , Mh = T}.
Here, M is an integer and h is the length of period. Let (�,F , {Ft}t∈M, Q),
M = {0, 1, . . . , M} be a complete filtered probability space where the probability
measure Q is the market-chosen risk-neutral probability measure which we take
as given. All expectations are taken with respect to Q hereafter, all stochastic
processes and probability distributions are defined in the above probability
space.

In the formulated model, the asset price process with a deterministic initial
value S0, defined on times epochs 1, 2, . . . , t, . . . , M, is given by

St = St−1Xt, t = 1, . . . , M,

where the price relative Xt depends on a variable economic situation Z at time t.
Next, suppose that economy Zt takes a value from a finite state space Z =

{1, 2, . . . , n}. The economy states are ordered in an ascending order with 1 being
the worst economic situation and n being the best. Let the changing of economic
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situation Z be defined by known a TPM P = [pij]i,j∈Z where pij refers to the
probability that the economic situation transits from level i to level j.

At each period, consider a random variable Y that provides incomplete
information related to the real economic situation Z. An observation of Y comes
from a finite set Y = {1, 2, . . . , m}. Let ��� = [γjθ ]j∈Z,θ∈Y be a conditional
probability matrix (CPM) that describes the relationships between the economic
situation and the observations. Here, γjθ = P(Y = θ |Z = j) is the element of ���

in jth row and θ th column.
Let πππ = (π1, . . . , πn) be a probability vector, called the economy information

vector, that expresses the information about the economic situation. Here,

πj = P
(
Z = j

)
, j = 1, 2, . . . , n,

n∑
j=1

πj = 1.

At any period, the pair (s,πππ) is called a process state, meaning that the current
asset price is s and the economy information vector is πππ .

3. American option pricing

It is well known that it is never optimal to early exercise an American call
option on a non-dividend-paying underlying asset. Therefore, we consider a
dividend-paying underlying asset with a continuously compounded dividend
yield, denoted by δ, throughout the paper.

At each time epoch t, the option holder can choose to early exercise or hold
the option. If the holder decides to early exercise, then a payoff of ve(s) is received
where s is the underlying asset price at time t.

Assume that if a holder decides to hold the option, then the information
vector at the beginning of the next period is updated to T(πππ , θ), given the
observation θ with probability ψ(θ |πππ). The probability ψ(θ |πππ) is given by

ψ(θ |πππ) =
n∑

j=1

n∑
i=1

πipijγjθ ,

and the jth element of the updated information vector T(πππ , θ) is

Tj(πππ , θ) =
∑n

i=1 πipijγjθ

ψ(θ |πππ)
.

In the next step, we formulate the optimal stopping problem using a partially
observable Markov decision process.

Denote N be the remaining periods to maturity, for example N = M = T/h
at the beginning of option transaction and N = 0 at maturity.
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Let r > 0 be the continuous compounded risk-free interest rate. Assume that
Xj is distributed as the well-known risk-neutral distribution in a binomial tree,

P(Xj = xj) =
{

qj, xj = uj

1 − qj, xj = dj

where

qj = e(r−δ)h − dj

uj − dj
, uj = eσj

√
h, dj = 1

uj
,

and σj > σj′ for j < j′. The arbitrage opportunities are excluded when

dj < e(r−δ)
√

h < uj, j ∈ Z.

Note that the economy is ordered according to the volatility σi, where higher
volatility is linked to a worse economy and lower volatility to a better economy.
Indeed, low volatility indicates usually a stable market, on the other hand, most
of the assets show very high volatility under a bad economy.
Remark 1. In our model, it can be calculated that E[Xj], j = 1, 2, . . . , N is the
same for all states. This is because, under the risk-neutral probability, the under-
lying asset drift at the state-homogeneous risk-free interest rate subtracting the
state-homogeneous dividend yield rate. At the same time Var[Xj] > Var[Xj′ ]
for states j < j′. Hence, Xj and Xj′ cannot be ordered in terms of stochastic
ordering. Therefore, as mention in the introduction, Assumption 3.1 (i) in Sato
and Sawaki (2014) does not apply, implying that our model is not a particular
case of the generic model in their work.

Consider an American option with the current process state (s,πππ) and
remaining periods to maturity N. The option price vN(s,πππ), is given by

vN(s,πππ) = max

⎧⎪⎨
⎪⎩

max{K − s, 0} = ve
N(s)

β

m∑
θ=1

ψ(θ |πππ)

2∑
k=1

vN−1
[

sxk
j , T(πππ , θ)

]
P(xk

j ) = vh
N(s,πππ)

where x1
j = uj, x2

j = dj, and β = e−rh (0 < β < 1) is the discount factor.
The quantity denoted by ve

N(s,πππ) is the payoff when the holder exercises
the option at the beginning of the current period, and denoted by vh

N(s,πππ) is
the value when the holder decides to hold and follow the optimal strategy in
the remaining periods. As the payoff of early exercise does not depend on the
remaining periods, notation ve(s) is used instead of ve

N(s).
The hold value vh

0(s,πππ) is zero at the maturity. So the option value at the
maturity is simply the payoff function, i.e.,

v0(s,πππ) = max{ve(s), vh
0(s,πππ)} = ve(s).
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4. Analytical structural properties of American options

First, we review the following definitions of totally positive property of order 2
(Karlin 1968) and stochastic increasing property (Marshall, Olkin, and Arnold
1979).

Definition 4.1. If for two vectors x = (x1, x2, . . . , xn), and y = (y1, y2, . . . , yn)∣∣∣∣xi xj
yi yj

∣∣∣∣ ≥ 0, 1 ≤ i < j ≤ n,

holds, then it is said that y dominates x in the sense of totally positive ordering
of order 2, denoted by x

TP2≺ y.

Definition 4.2. Let X = [xij]ij be an n × m matrix for which
det(B) ≥ 0

for every submatrix B = [xikjl]kl of dimensions 2 × 2 where 1 ≤ i1 < i2 ≤
n, 1 ≤ j1 < j2 ≤ m. Matrix X is said to have a property of totally positive of
order two, denoted by X ∈ TP2.

Definition 4.3. If for two vectors x = (x1, x2, . . . , xn), and y = (y1, y2, . . . , yn)
n∑

i=k
xi ≤

n∑
i=k

yi for k = 1, . . . , n,

holds, then it is said that y dominates x in the sense of stochastic increasing
order, denoted by x SI≺ y.

Definition 4.4. Let X = [xij]ij be an n × m for which
m∑

j=k
xij ≤

m∑
j=k

xi′j for 1 ≤ i < i′ ≤ n and k = 1, . . . , m.

Matrix X is said to have a stochastic increasing (SI) property, denoted by X ∈ SI.

To obtain structural properties of American options, let us impose the fol-
lowing assumptions.

(A-1) TPM P, corresponding to economic situation, has a TP2 property.
(A-2) Conditional probability matrix ���, corresponding to signal, has a TP2

property.

The TP2 property of TPM implies that a better economy in a period moves
to a more progressive situation in the next period. The TP2 property of CPM
implies that a better economic situation gives rise to higher output levels for the
observations probabilistically.
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In the authors’ previous research Jin, Dimitrov, and Ni (2019), analytical
structural properties of American options were derived using the sufficient con-
ditions given by assumptions (A-1) and (A-2). Some results that are important
for the experimental studies in this article are given below without proof. Note
that functions are considered as increasing or decreasing in the weak sense
throughout the article.
Proposition 4.5. For a put (call) American option, if assumptions (A-1) and (A-
2) hold, then hold value of the option vh

N(s,πππ) is

1. decreasing (increasing) in asset price s for every N and πππ ;
2. increasing in remaining period N for every s and πππ ;
3. decreasing in information vector πππ in the sense of TP2 for every s and N.

Proposition 4.5 establishes the monotonicity of vh
N(s,πππ) in N, s, and πππ , that

is, to be monotone in remaining time to maturity, asset price and the economic
situation.
Proposition 4.6. For an American put (call) option, (i) vh

N(s,πππ) is a convex
function of s, (ii) the decreasing (increasing) rate of vh

N(s,πππ) in s is less than
1 for any πππ under the assumptions (A-1) and (A-2).
Proposition 4.7. For an American put or call option, the difference between
vh

N(s,πππ) and ve(s) is increasing in N for any s and πππ under the assumptions
(A-1) and (A-2).
Proposition 4.8. For an American put or call option, the difference between
vh

N(s,πππ) and ve(s) is decreasing in πππ in the sense of TP2 ordering for any N
and s under the assumptions (A-1) and (A-2).

Propositions 4.6–4.8 provide some properties of the relationship between
vh

N(s,πππ) and ve(s), and these properties are important for the following discus-
sion on the thresholds for the following two regions.

The early exercising region and holding region for every remaining periods
to maturity N are defined by

◦ Exercise region

De
N =

{
(s,πππ) | vh

N(s,πππ) < ve(s)
}

= {
(s,πππ) | vN(s,πππ) = ve(s)

}
◦ Hold region

Dh
N =

{
(s,πππ) | vh

N(s,πππ) > ve(s)
}

=
{
(s,πππ) | vN(s,πππ) = vh

N(s,πππ)
}

Next, we investigate the thresholds in both πππ and s for the above two regions.
To discuss the threshold in πππ , one needs to define the set of all TP2-ordered sets
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of economy information vectors, denoted by �, as follows

� =
⋃

{πππ i, i ∈ I : πππk TP2≺ πππ l for k ≤ l, k, l ∈ I},

where I refers to the enumeration of information vectors in each TP2-ordered
set. There are infinitely many elements, i.e., TP2-ordered sets, in �. The set �,
which is the union of all such ordered-sets, matches the space of all economy
information vectors {(π1, . . . , πn) :

∑n
i=1 πi = 1}.

Notation TP∗
2 is used to denote an arbitrary TP2-ordered set in �.

Proposition 4.9. For an American put or call option, there exists at most one
threshold πππN(s) for any s and N which separates an ordered set TP∗

2 into two
regions: an (early) exercise for any πππ (∈ TP∗

2) less than πππN(s), and a hold region
otherwise. Moreover, πππN(s′) TP2≺ πππN(s) for s < s′, and πππN1(s)

TP2≺ πππN2(s) for
N1 < N2.

Proposition 4.9 focuses on economy situation and presents a property of the
threshold in πππ (∈ TP∗

2). Figures 1 and 2 are used to illustrate the thresholds for
different s and N.

Figure 1. Threshold πππN(s) with different asset prices s for the case of an American put option.

Next, focus on the asset price s and obtain a similar property of the threshold
in s as given in Proposition 4.10.
Proposition 4.10. For an American put or call option, there exists at most one
threshold sN(πππ) for anyπππ and N which separates the space of s into two regions:
(early) exercise region (s < sN(πππ)) and holding region (s > sN(πππ)). Moreover,
sN(πππ1) ≤ sN(πππ2) for πππ1 TP2≺ πππ2, and sN1(πππ) ≥ sN2(πππ) for N1 < N2.

From Propositions 4.9 and 4.10, we know that the information space (s,πππ) for
any πππ(∈ TP∗

2) is divided into at most two regions, De
N and Dh

N , and the area of
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Figure 2. ThresholdπππN(s) with different remaining periods N for the case of an American put option.

holding region Dh
N increases with the remaining periods N as shown in Figure 3.

This means it is preferable to hold the option if more time periods remain.

Figure 3. Threshold on space πππN(s) with different remaining periods N for the case of an American
put option.

Remark 2. It should be noted that the monotonicity of the threshold with
respect to the information vectorπππ is not naturally established. It is necessary to
confirm, under which conditions, the optimal strategy is increasingly or decreas-
ingly monotone with respect to the information vector. This was addressed in
the present section. As shown in the next section, in Case 3 with a violation of
the TP2 property of TPM, the monotonicity is not guaranteed.
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5. Numerical experimental studies

In this section, results of experimental studies are presented. The object of inter-
est is the behavior of the analytical properties of optimal exercising strategies
under some deviations from the strict assumptions (A-1) and (A-2).

5.1. Three-state model

Assume that the information vector consists of three pieces of information.
Hence, consider a three-state model. For the details of the model implemen-
tation refer to the previous research by Jin, Dimitrov, and Ni (2019).

The thresholds in the numerical examples are obtained as follows. Let S be a
set of initial asset prices S0. First, take a finite subset S∗ ⊆ S, and an order-set
TP∗

2 ∈ � for n = 3. Then, for a fixed economy information vector πππ ∈ TP∗
2

compute the option price for every S0 ∈ S∗. Initial asset price s∗ ∈ S∗ is the
one-threshold that splits the set S∗ into a (early) exercise region De

N and a hold
region Dh

N .

5.2. TP∗
2-ordered set of economy information vectors

To determine a TP2 ordered set of economy information vectors, that is a set
TP∗

2 ∈ � for n = 3, the following proposition was used.
Proposition 5.1. Letπππ1 = (p1, p2, 1−p1−p2) andπππ2 = (q1, q2, 1−q1−q2) such
that πππ1 �= πππ2. If p1 �= 0 and p1 = q1, then πππ1 and πππ2 are not TP2 comparable.
If p1 ≥ q1 and p2 = q2, then πππ1

TP2≺ πππ2.

Proof. Let p1 = q1,

πππ1 = (p1, p2, 1 − p1 − p2),
πππ2 = (p1, q2, 1 − p1 − q2).

Assume opposite that πππ1
TP2≺ πππ2. Then q2 ≥ p2 from∣∣∣∣p1 p2

p1 q2

∣∣∣∣ ≥ 0.

However, q2 ≥ p2 leads to ∣∣∣∣p1 1 − p1 − p2
p1 1 − p1 − q2

∣∣∣∣ ≤ 0,

Therefore, πππ1 and πππ2 are not TP2 comparable if p1 = q1. Assume that p2 = q2,
by the definition of totally positive of order two, it follows thatπππ1

TP2≺ πππ2 because
p1 ≥ q1.
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Table 1. General model test parameters.
Name Notation Parameters

Maturity time T 8/252
Number of steps M 4
Time duration of a step h 2/252
Volatility vector σσσ (0.5, 0.3, 0.1)

Strike price K 100
Interest rate r 0.02
Dividend yield (American call) δ 0.1
TPM P [pij]i,j=1,2,3
CPM ��� [γij]i,j=1,2,3

5.3. Numerical results

In this subsection, unless it is said otherwise, the parameters used for computa-
tion are given in Table 1.

The choice of parameters has to satisfy assumptions (A-1) and (A-2). Hence,
both the TPM and CPM matrices should have the property of TP2.

The experimental study in this paper will be concentrated on the threshold,
that is the early exercise and hold regions. Other results may be found in Jin,
Dimitrov, and Ni (2019). To show the early exercise and hold regions, as well as
the monotonicity of threshold in the information vectors πππ , a set TP∗

2 ∈ � and
a set S∗ of initial asset prices are required. Denote the following set with TP∗

2:

π2 = 0.05,
π1 = π2 + 0.03 × i, i = 0, 1, . . . , 30,
π3 = 1 − π1 − π2.

As explained in Sec. 5.2, this is a set of TP2 ordered information vectors. Thus,
TP∗

2 ∈ �. Next, the set of initial asset prices used for the experimental studies is

S∗
p =

{(
0.7 + 0.3

5000
× i

)
× K : i ∈ {0, 1, . . . , 5000}

}
for an American put, and

S∗
c =

{(
1 + 0.3

5000
× i

)
× K : i ∈ {0, 1, . . . , 5000}

}
for an American call option with dividend yield δ = 0.1 were used. Let TPM
and CPM be

P =
⎡
⎣ 0.7 0.2 0.1

0.1 0.4 0.5
0.05 0.25 0.7

⎤
⎦ , ��� =

⎡
⎣ 0.6 0.2 0.2

0.1 0.4 0.5
0.05 0.4 0.55

⎤
⎦ .

respectively. This choice of matrices satisfies TP2 property, P,��� ∈ TP2.
Figure 4(a) and (b) show that the threshold is decreasing and increasing in πππ

for N = 4, as well as the exercise and hold regions for both American call option
with dividend yield and American put, respectively.
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Figure 4. An example of the optimal stopping regions for an American option and the monotonicity
of the threshold in πππ with parameters given in Table 1, TP∗

2 , S∗
c , and S∗

p .

Consider an American put option in the following until the end. To see the
model behavior when P, ��� or both do not have TP2 property, a various sets
TPi

2 ∈ �, i = 1, 2, . . . , 10, 000 were used. To do such Monte Carlo simulation,
sets TPi

2 ∈ �, i = 1, 2, . . . , 10, 000 were randomly generated, as well as P, ��� or
both. The following three cases were considered

1. both TPM and CPM are randomly generated;
2. CPM is randomly generated;
3. TPM is randomly generated.

In all three cases sets of TP2 ordered vectors were randomly generated according
to the property explained in Sec. 5.2.

Case 1: TPM and CPM are randomly generated matrices that satisfy condi-
tions of the TPM of a Markov chain. As expected, varying both matrices, TPM
and CPM, the claim that the threshold is monotonically increasing does not
stand. Figure 5(a) shows that the threshold is decreasing in information vector
πππ under assumptions of Case 1, on the other hand, Figure 5(b) shows that the
threshold is increasing in information vector πππ under assumptions of Case 1.

Figure 5. An example of Case 1, where matrices TPM and CPM were randomly generated and the
threshold is monotone in information vector πππ .
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Case 2: In this case, TPM P is fixed and given by

P =
⎡
⎣ 0.7 0.2 0.1

0.1 0.4 0.5
0.05 0.25 0.7

⎤
⎦

and CPM ��� is a randomly generated matrix that satisfies conditions of the
TPM of a Markov chain. Based on the simulation, deviation from the sufficient
assumption ��� ∈ TP2 does not affect the monotonicity of the threshold as much
as the deviation from the sufficient conditions presented in Case 1. Figures 6(a)
and 7(b) show that the threshold is increasing in the information vectorπππ under
assumptions of Case 2, that is, CPM is a randomly generated matrix.

Figure 6. Two examples of Case 2, where matrix CPM was randomly generated and the threshold is
increasing in information vector πππ .

Figure 7. An example of Case 3, where matrices TPM and CPM were randomly generated and the
threshold is monotone in information vector πππ .

Case 3: Assume now that CPM ��� is fixed and given by

��� =
⎡
⎣ 0.6 0.2 0.2

0.1 0.4 0.5
0.05 0.4 0.55

⎤
⎦

and TPM P is randomly generated matrix that satisfies conditions of TPM of a
Markov chain. Violation of assumption P ∈ TP2 influence the results obtained
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for the threshold after a couple of simulations. It is clear that the condition
P ∈ TP2 affects the monotonicity of threshold more than the condition ��� ∈
TP2. Figure 5(a) shows that the threshold is increasing in information vector πππ

under assumptions given in Case 3, and Figure 5(b) shows that the threshold is
decreasing in information vector πππ under assumptions of Case 3.

Henceforth, a milder condition for TPM will be investigated. Particularly,
assume that TPM has stochastic increasing property, but it does not have TP2
property. The following matrix is an example of such case:

X =
⎛
⎝ 0.7 0.2 0.1

0.1 0.4 0.5
0.1 0.1 0.8

⎞
⎠ .

The parameters from Table 1 are used for the numerical study with a change
of TPM matrix P which is in the following form:

P =
⎡
⎣0.7 0.2 0.1

0.1 0.4 0.5
px 1 − px − py py

⎤
⎦

where 0 ≤ px ≤ 0.1 and 0.5 ≤ py ≤ 1. It can be shown that matrix P has
stochastic increasing property. A couple choices of px and py contemplated that
yield matrix of interest, that is, a matrix which has stochastic increasing but not
TP2 property, are given in Table 2. In combination with the previously chosen
set TP∗

2 ∈ �, as well as other randomly chosen sets from �, the extensive
numerical study suggest that the monotonicity of threshold is established under
the milder condition—stochastic increasing property. The analytical proof is yet
to be derived.

Table 2. Choices of probabilities in the last row of P that yield a matrix with stochastic increasing
property and without TP2 property.

px 1 − px − py py

0.1 0.3 0.6
0.1 0.2 0.9
0.1 0.1 0.8
0.1 0 0.9
0 0.5 0.5
0.05 0.15 0.8
0.05 0.05 0.9

6. Conclusion and future research

Review of the previous research and new experimental results of the American
option pricing and the corresponding optimal exercising strategies under a
novel model were presented. Under this model, the asset price follows an
extended binomial tree with the volatility parameter governed by a discrete-time
hidden Markov chain.
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The numerical results indicate that violation of sufficient conditions affect
the structural properties of American put and call options with dividend yield.
That is, the TP2 property of the TPM for the economic situations is important
for having the monotonically decreasing (increasing) property of the exercising
threshold. One of the assumptions may be relaxed in practice as it does not affect
the monotonicity to great extent. Specifically, the TP2 property of CPM may be
ignored as it has little effect on the monotonicity.

For future research, the model shall be generalized by permitting a more gen-
eral probability distribution for the asset price dynamics. In particular, a follow-
up work including an arbitrary distribution function F(·) is under preparation.
As the results of this research are limited to the pricing of short-maturity options
future research may contain extensions of the model for options with longer
maturities.

In addition, estimation and calibration of the model shall be implemented.
In the recent years, machine learning had a great impact on the development
of model estimation. With that said, to estimate the parameters of the model
considered in this paper the online Hidden Markov model estimation-based Q-
learning algorithm for partially observable Markov decision process studied in
Yoon, Lee, and Hovakimyan (2019) may be used. A modification of the algo-
rithm for regime-switching calibration that uses the Tikhonov regularization
approach provided in He and Zhu (2021) may be considered in combination
with the mentioned estimation procedure. Real market data will be used for both
estimation and calibration.
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