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Abstract

Clouds are powerful computer centers that provide computing and storage fa-
cilities that can be remotely accessed. The flexibility and cost-efficiency of-
fered by clouds have made them very popular for business and web applica-
tions. The use of clouds is now being extended to safety-critical applications
such as factories. However, cloud services do not provide time predictabil-
ity which creates a hassle for such time-sensitive applications. Moreover, de-
lays in the data communication between clouds and the devices the clouds
control are unpredictable. Therefore, to increase predictability, an interme-
diate layer between devices and the cloud is introduced. This layer, the Fog
layer, aims to provide computational resources closer to the edge of the net-
work. However, the fog computing paradigm relies on resource-constrained
nodes, creating new potential challenges in resource management, scalability,
and reliability. Solutions such as lightweight virtualization technologies can
be leveraged for solving the dichotomy between performance and reliability in
fog computing. In this context, container-based virtualization is a key tech-
nology providing lightweight virtualization for cloud computing that can be
applied in fog computing as well. Such container-based technologies provide
fault tolerance mechanisms that improve the reliability and availability of ap-
plication execution. By the study of a robotic use-case, we have realized that
persistent data storage for stateful applications at the fog layer is particularly
important. In addition, we identified the need to enhance the current container
orchestration solution to fit fog applications executing in container-based archi-
tectures. In this thesis, we identify open challenges in achieving dependable
fog platforms. Among these, we focus particularly on scalable, lightweight
virtualization, auto-recovery, and re-integration solutions after failures in fog
applications and nodes. We implement a testbed to deploy our use-case on a
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ii

container-based fog platform and investigate the fulfillment of key dependabil-
ity requirements. We enhance the architecture and identify the lack of persis-
tent storage for stateful applications as an important impediment for the execu-
tion of control applications. We propose a solution for persistent fault-tolerant
storage at the fog layer, which dissociates storage from applications to reduce
application load and separates the concern of distributed storage. Our solution
includes a replicated data structure supported by a consensus protocol that en-
sures distributed data consistency and fault tolerance in case of node failures.
Finally, we use the UPPAAL verification tool to model and verify the fault
tolerance and consistency of our solution.
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Sammanfattning

Moln är kraftfulla datacenter som tillhandahåller beräknings- och lagringska-
pacitet som kan nås på distans. Molnens flexibilitet och kostnadseffektivitet har
gjort dem mycket populära för affärs- och webbtillämpningar. När användnin-
gen av moln nu utökas till säkerhetskritiska tillämpningar såsom fabriker, upp-
står problem eftersom molntjänster inte är tillräcklig förutsägbara tidsmässigt
för den typen av tillämpningar. För att råda bot på detta införs ett mellan-
lager mellan enheterna och molnet. Detta lager, som kallas dim-lagret (Eng.
”the fog layer”), tillhandahåller beräkningsresurser närmare kanten av nätver-
ket. Dim-paradigmet bygger dock på resursbegränsade noder, vilket skapar
nya utmaningar relaterat till resurshantering, skalbarhet och tillförlitlighet.

Virtualisering kan användas för att minska motsättningen mellan prestanda
och tillförlitlighet i dim-lagret. Här är containerbaserad virtualisering en ny-
ckelteknik med ursprung i molntjänster som också kan användas i dim-lagret.
Sådana tekniker tillhandahåller feltoleransmekanismer som förbättrar tillförlit-
lighet och tillgänglighet. Genom en fallstudie har vi identifierat att datalagring
anpassad till tillämpningar där tillståndet måste sparas mellan exekveringarna
är särskilt viktig för säkerhetskritiska tillämpningar. Dessutom identifierade
vi behovet av förbättrad containerhantering, anpassad till dim-tillämpningar
i containerbaserade arkitekturer. Bland dessa utmaningar för pålitliga dim-
plattformar fokuserar vi särskilt på skalbara virtualiserings-, återställnings- och
återintegreringslösningar efter fel i dim-tillämpningar och dim-noder. Vi im-
plementerar en testbädd för vår fallstudie på en containerbaserad dim-plattform
och undersöker om viktiga pålitlighetkrav är uppfyllda. Vi förbättrar arkitek-
turen och identifierar brister i hanteringen av tillämpningar där tillståndet måste
sparas mellan exekveringarna. Vi föreslår även en lösning för feltolerant la-
gring av sådan tillståndsinformation i dim-skiktet. Lösningen separerar lagrin-
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iv

gen från tillämpningarna för att minska belastningen på tillämpningarna och
göra dessa oberoende av den distribuerade lagringen. Vi använder en rep-
likerad datastruktur som med stöd av ett konsensusprotokoll säkerställer dis-
tribuerad datakonsistens och feltolerans vid nodfel. Slutligen använder vi ver-
ifieringsverktyget UPPAAL för att modellera och verifiera lösningens feltoler-
ans och konsistens.
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Chapter 1

Introduction

The expansion of cloud services has led to an increase in the number of cloud
users and variety of uses of clouds, from web applications to Cyber Physical
Systems (CPS), including safety-critical applications. Many CPS applications
manage data collection from devices at the edge of the network and send the
collected data to clouds to be stored and analyzed for further decisions [1].
However, in many safety-critical applications like ”fire detection” from raw
data, or collaborating industrial robots, it is necessary to have local computa-
tion and decision making closer to the network edge to reduce latencies and
jitter related to network communication and cloud computation, as well as to
increase reliability [2].

In some other cases there might be sufficient bandwidth and processing
time to send data to the cloud while the edge devices suffer from limited re-
sources to do the computation. In these cases, it is required to offload some
computation and data storage tasks to the cloud or more powerful resources
nearby known as “fog computing”. Such decisions to send data to the clouds
or providing resources close to the edge of the network is application dependent
based on the application requirements and available resources at the edge, fog
and cloud layer. With the growth of Industrial Internet of Things (IIoT) appli-
cations, it is required to consider both fog and cloud computations for applica-
tions like industrial robotics. However, this brings some issues: (1) Portability
and management of applications and processes between fog and cloud; (2) In
some cases, it is required to provide computations only at the fog layer to meet
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4 Chapter 1. Introduction

processing deadlines and save the bandwidth for other sensors, devices and ap-
plications at the edge, in this case, data computation and data storage must be
guaranteed at the fog layer [3]; and (3) Failure of applications and nodes at the
fog layer with smaller capacities, and consequently less redundancy than the
cloud, might result in data loss. It is therefore required to consider local fault-
tolerance mechanisms at the edge of the network. Using containerization and
container orchestration solutions can solve these issues by providing portable,
scalable, and automatic application deployment to move between both the fog
and the cloud layers. Containerization also saves a lot of resources at the re-
source constrained fog platforms due to its lightweight characteristic. Using
cloud native container orchestration solutions, like Kubernetes [4], also pro-
vides automatic healing for its managed containers, that is, restarting the failed
containers and replacing or rescheduling them when they or their hosts fail
[4]. In addition to these recovery actions that naturally improve the availabil-
ity of the containerized applications deployed with Kubernetes, providing re-
dundancy mechanism by replicating applications remains the most important
feature provided by Kubernetes to improve application availability [5].

In stateless applications, like web applications, the use of Kubernetes is
expanding, since it brings high availability by its built-in reliability features,
like idempotency, replication, auto recovery and hot swapping mechanisms
[6].

Replication and hot swapping of stateless applications can be performed
easily as they can be deployed as interchangeable instances. However, the
same is not applicable for stateful applications. There are two important is-
sues when it comes to deploying stateful applications using Kubernetes; (1)
the state of the failed container is not restored, and (2) the behaviour of a state-
ful application is dependent on its current state and therefore, redeploying a
new instance without providing the state of the instance it is replacing could
lead to unpredictable, or even dangerous, behaviour. Hence, a synchronization
mechanism is required to coordinate the different replicas when redeploying
stateful applications.

Deploying stateful applications using Kubernetes StatefulSet [4] or lever-
aging other methods like customizing deployment controller [5] or even using
third party solutions like Ceph storage [7] are among few approaches to solve
the statefull application deployment issue. However, they are all implemented
in the cloud and the states of the stateful applications are always kept outside
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5

the cluster in these approaches. In addition, consistency between replicas in
stateful applications remains a research challenge in the proposed solutions
that focus on stateful application deployment. Therefore, it is not possible to
directly apply these solutions for stateful fog applications that require local or
close to the edge processing and storage capacities.

Problem. This thesis is motivated by the identified problems in our study
of a robotics use-case where containerizing and deploying a robotic applica-
tion in a container-based fog architecture showed the critical need of man-
aging states using fault-tolerant persistent storage for stateful applications in
container-based solutions. As discussed, the cloud native container-based so-
lution Kubernetes, suffers from certain issues when it comes to deploying state-
ful applications. In particular, stateful applications require persistent storage.
A suitable storage system for fog must be co-located with the nodes at the
fog layer and fulfill data consistency requirements when it is leveraged in dis-
tributed fog platforms which is the basis of the specific problems addressed in
this thesis.

Summary of Contributions. This thesis is a collection of four research
publications, forming four contributions. In the first contribution (C1), we
identify open challenges related to dependability of fog computing. In the sec-
ond contribution (C2), we focus on some of the identified challenges in C1. In
particular, we focus on enhancement of a light weight fog platform by means
of containerization that support self-healing, portability and scalability of fog
application in a robotics use-case. In addition, we examine the suitability of
the container-based fog platform and identify the limitations we face using the
volatile storage for stateful applications. In the third contribution (C3), we
provide solutions that overcome the volatile storage issue by proposing a fault-
tolerance distributed persistent storage that provides: (1) Dissociation of data
storage from application processes by introducing separate storage containers;
(2) A replicated data structure to increase data availability and to provide fault-
tolerant persistent storage in each node; and (3) Data consistency by adapting
a consensus protocol to keep distributed replicated data structures synchro-
nized. In the forth contribution (C4), we verify the proposed solution for fault-
tolerance persistent distributed storage for fog stateful applications using the
UPPAAL [8] verification tool.

Thesis Outline. This thesis is divided into two parts. Part I provides an
overview of the thesis and is organized as follows. Chapter 1 introduces the
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6 Chapter 1. Introduction

main challenge, Chapter 2 provides an overview of the research process pur-
sued, and Chapter 3 discusses the background and related work to this thesis.
Chapter 4, gives an overview of the included papers and the contributions. Part
I ends with Chapter 5, that concludes the thesis with a discussion on the cur-
rent work and planned work for the doctoral dissertation. Part II includes the
collection of included papers, reformatted to comply with the thesis layout.
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Chapter 2

Research Overview

In this chapter, we present the overall goals of the thesis, the research process
followed for achieving these goals, and the research methods used to realize
the research goals.

2.1 Context and Research Goals

This research is mainly carried out in the context of dependability of fog com-
puting platforms and targets design of fault-tolerance mechanism in the fog in-
frastructure prior to deploying applications on fog platforms. Fog computing is
designed to carry out the processing and storage close to the edge devices. Tra-
ditional methods for achieving fault-tolerance and dependability include im-
plementing redundancy techniques and providing replicas at different levels of
a system. These methods have been used in both embedded systems and pow-
erful cloud infrastructures. However, computational resources at the fog layer
are constrained, therefore, the resources must be managed to serve all the re-
quests from applications which in our context are assumed to be safety-critical
applications. Resource limitations at the fog layer is an obstacle in applying
the traditional redundancy techniques in which replicated components could
take the place of failed ones. Therefore, we propose to enhance the existing
dependability mechanisms and formulate our first research goal as follows:

Research Goal 1 (RG1): Identification of challenges and solutions related
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to dependability aspects of fog computing in the current state of the art.
RG1 also aims at finding novel dependability and fault-tolerance mecha-

nisms to leverage on fog platforms. In addition, it focuses on identifying the
challenges of applying traditional dependability techniques in fog computing
and finding gaps between current solutions and fog platform requirements.

In our journey to achieve RG1, we identify the current challenges and so-
lutions on fog computing dependability. We study the traditional dependability
notions [9] and compare them with the current dependability requirements and
fault-tolerance solutions. As a result, we figured out that there are two new
dependability requirements, namely, Scalability and Quality of Service (QoS)
which need to be considered while designing a dependable fog infrastructure.
We also noticed that the most common solutions for fulfilling reliability and
availability of a fog system are by redundancy. The source of threats (fault,
error and failure) are identified as fog nodes, communication channels and
application deployments. Our study also provided useful information about
the topics that attracted more attentions in the research towards dependability
aspects of fog computing. We noticed that the discussions are mainly about
the trade-off between resource utilization and fault tolerance, the use of re-
dundancy methods to increase availability, and lastly, the trade-off between
reliability and timeliness, particularly for node replication schemes.

As a result of our study, we also identified several open challenges consid-
ering the fog platform and applications requirements together with the current
solutions in the state of the art.

Different methods for fault detection, fault-tolerance, fault prevention and
fault diagnostics have been investigated. However, in a long-lived system like
the fog, there is also a need to develop methods that allow faulty components
to recover and be reintegrated in the system operation. This can prevent sys-
tem failure or shut down caused by fast redundancy attrition. Therefore, we
identified a lack of study on fault-recovery and re-integration after failure.

The re-integration and fault-recovery of a system when a failure occurs,
considering the limitations and requirements of fog platforms, brings the idea
of leveraging self-healing mechanism and auto recovery techniques. There-
fore, finding self-healing solutions to adapt in fog platforms becomes a key
activity in the context of our research. This leads to the definition of our sec-
ond research goal as:

Research Goal 2 (RG2): Design of a fault-tolerance fog architecture by
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leveraging auto-recovery and self-healing mechanisms.
RG2 mainly aims at reuse of current self-healing solutions in fault-

tolerance mechanism and enhance them to be tailored and suitable for fog
architectures, considering fog and application requirements. To achieve RG2,
we define two main tasks:

(1) Identifying self-healing mechanisms and leverage them to deploy fog
applications.

To perform the first task, we leverage the cloud native containerization and
container orchestration solutions, since they fulfil many of the fog platform
requirements. For instance, providing light weight virtualization at the OS
level, portability, scalability, etc. In addition to these features, container or-
chestration solutions provide built-in fault-tolerance mechanisms by applica-
tion replication and auto-recovery mechanisms. To test the features brought by
containerization and container orchestration in our robotics use-case, we im-
plemented a container-based platform using Kubernetes at the fog layer using
resource constrained devices and partitioned a robotics use-case into containers
and deployed our robotic application on this platform.

(2) Examining and evaluating the suitability of identified solutions for de-
ploying applications at the fog layer in the presence of faults as per dependabil-
ity aspects [9]. Specifically, node and application availability and reintegration
after failure.

To perform the second task, we used two approaches, 1) fault-tree analysis,
and 2) injecting faults to examine the behaviour of our system in the presence
of faults and failures.

The result of our study shows that the volatile storage system of the im-
plemented system is the most vulnerable point of failure. In addition, in our
study we noticed that the built-in replication and auto-recovery mechanisms of
the orchestration solution used suffer from the following issues when it comes
to deploying stateful applications: (1) in the event of failure the state of the
failed application cannot be restored, and (2) the behaviour of a stateful ap-
plications is dependent on its current state and therefore, redeploying a new
instance without providing the state of the instance it is replacing could lead to
unpredictable, or even dangerous behaviour.

As mentioned, these are the consequences of the volatile storage. In our re-
search towards identifying persistent storage solutions for stateful applications
in container-based architectures we noticed that there are available solutions
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providing persistent storage solutions at the cloud layer, however, we also no-
ticed that these solutions still have limitations when it comes to node failure
and data consistency between replicas and nodes. In addition, data access at
the fog layer is crucial for safety-critical applications like robotics applications.

In this case, the first solution is to design persistent storage at the fog layer.
However, in a distributed system designing a storage solution must be tightly
bound to data consistency as well. We also need to consider fault-tolerance
mechanism in the design of the persistent storage to ensure data availability in
the system.

This leads us to formulate our third research goal as follows:
Research Goal 3 (RG3): Design of a fault tolerance persistent storage

solution for stateful applications in container-based architectures.
To achieve RG3, we need to consider the following requirements: 1) en-

sure that states, libraries, input and result data indefinitely remain accessible
to a stateful application and 2) guarantee data consistency between different
distributed storages. In addition to these two characteristics, a fault tolerant
persistent storage could deliver the following services to fit into a container-
based fog architecture: 1) maintaining scalability of containerized applications,
2) portable enough to migrate between different nodes in the cluster, and 3)
self-healing when a fault occurs in the system. Considering these character-
istics and services, we propose a storage system realized by a containerized
data storage application. The proposed data storage is more than a directory
that can store data. Our solution is bound to a storage application that can
dynamically manage storage capacity, data transfer between applications, au-
tomatically recover itself and the gathered data, and provide data consistency
despite of failure of nodes, application and the storage. This means that by as-
suming a storage system that delivers data storage and fault-tolerance services
can be containerized like any other application, we can take advantage of the
containerization to deliver a storage service. To achieve data consistency we
integrate the RAFT consensus protocol [10] in the storage container (SC) sys-
tem. To investigate if the objectives of the proposed solution can be achieved,
we need to verify it. Therefore we formulated the last goal as follows:

Research Goal 4 (RG4): Evaluation of the correctness of the proposed
solution in presence of faults.

To achieve RG4, we use the UPPAAL formal verification tool to model
and verify our proposed solution. We verify the correctness of defined prop-
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2.2 Research Methodology 11

erties of our system and evaluate our system behaviour in presence of faults
and failures. We also verify system recovery and re-integration after failure at
application and node level as well as showing data eventual consistency in the
system (explained in Section 3.7).

The defined high level properties are divided into properties that verify the
fault-tolerance behaviour of system, which we call Fault-Tolerance Properties
(FTP) and properties that verify the data consistency which we call Consistency
Properties (CP).

FTP includes Application failure recovery, Node failure recovery, Data
availability after application failure, and Data availability after node failure.
CP includes data consistency in the distributed replicated data structure.

2.2 Research Methodology

The initial objective of this research is derived from the objectives of the FORA
(Fog Computing for Robotics and Industrial Automation) project 1. In accor-
dance with FORA, a dependable infrastructure is required to implement a fog
computing platform. We conduct a scientific research to narrow down this high
level objective and fulfil the dependability requirements of implementing a fog
platform for robotics applications.

To conduct a scientific research and achieve a concrete method to apply as
a solution to the problem of the thesis, leveraging a research methodology is
crucial.

Holz et al. [11] discuss the four major steps to conduct a research including
problem formulation, propose solution, implementation and evaluation. We
tried to follow a similar approach [11] in our research.

Figure 2.1 shows the process of our research in this thesis. Numbers in this
figure indicate the sequence of activities.

We first conducted a systematic literature review (SLR) and then formu-
lated the problem based on the findings of the SLR study. In the next step we
explored and extended our research in a related case study. Then, we proposed
a solution and finally we evaluated it through formal verification. The details
of our research methodology are summarized in the following:

1https://www.fora-etn.eu/
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12 Chapter 2. Research Overview

Figure 2.1: Research process followed in this thesis

2.2.1 Systematic Literature Review (SLR)

As the first step, we have done a systematic literature review to answer a
number of fundamental research questions as well as finding the current
state of the art and problems for initiation of our research. We followed the
guidelines and process proposed in [12], [13] and [14]. We first investigated
current dependability solutions in both distributed systems and clouds and then
defined four fundamental research questions. We formulated a search string
knowing the research questions and collected papers in a defined time frame.
The relevant papers in the collected papers are included in our survey study.
In Paper A and B, we discuss the gaps between the approaches studied in
the state of the art and fog computing requirements for designing dependable
fog systems. We answer four fundamental research questions. Figure 2.2
summarizes the research method we used in the SLR and Figure 2.3 shows the
numerical and details of the SLR process.
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Figure 2.2: SLR Research Method (from Paper A).

2.2.2 Problem Formulation

The results of Paper A inspired in bringing more clarity to our research problem
formulation. A number of identified challenges in Paper A were considered for
further investigation. The problem was formulated considering the finding of
Paper A and the study of trending technologies was refined in several itera-
tions. An exhaustive list of problems found in Paper A that formed the specific
problem of this thesis is also published in Paper B [15]. This motivated the
formulation of RG2.

Figure 2.3: Study Selection Process (from Paper A).

2.2.3 Case Study

After problem formulation, we focused on the most relevant and important pa-
pers found in the SLR to consolidate our ideas. Then, we summarized our find-
ings as RG2. In Papers C, we considered the main gaps found in paper A and
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B and worked on a use-case to implement a container-based fog-robotics ar-
chitecture. Our use-case comes from a cloud-native architecture. We extended
this solution to lower capacity resources down to the edge of the network to
implement it as a fog architecture. Next, we leveraged an industrial robotic ap-
plication originally implemented on ROS (Robot Operating System). We de-
ployed the robotic application on a distributed fog network (details described
in the next subsection).

2.2.4 Implementation

The practical implementation in our study refers to the implementation of a
test-bed for the case study by containerizing a robotic application and deploy-
ing it on the edge of the network. Details of the design and deployment are
explained in Section 3.4. Observations and measurements based on practical
experience helped us understand the real impact of deploying the robotic ap-
plication at the edge using cloud native solutions.

2.2.5 Evaluation

By the practical implementation, we were able to identify probable faults in the
transient storage system and its impacts on the stateful robotic applications.
Evaluation in our study consists of two steps. First, injecting faults on the
system and investigating the results of the fault injection on the system after
implementation reported in (Paper C). Fault injection and fault tree analysis
helped us identify certain problems with the volatile storage issue. Therefore,
we proposed the use of containerized storage systems to provide fault-tolerant
persistent storage. In the second step of evaluation, we modeled the proposed
solution in the well-known verification tool, UPPAAL [8] which helped us
understand the real impact of our solution on the system design and prove
that the identified problems with the volatile storage are addressed and solved
by our proposed solution. The results/outcomes of each step are presented in
Paper C and Paper D.
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Chapter 3

Background & Related Work

This chapter presents and discusses background and related work relevant to
our research in this thesis and is structured as follows. First, we present the
background on the most popular open source cloud-native containerization and
container orchestration solutions, namely Docker and Kubernetes. Then, mo-
tivated by a robotic use-case to find the dependability and fault-tolerance re-
quirements of the application level, we present background Robot Operating
System (ROS) and implementation of the robot application (our use-case) in
ROS. Next, we provide an explanation of the design rational for containerizing
the robot application, implemented and integrated at the fog layer. Finally, we
end the chapter with a short discussion on the related work.

3.1 Docker Containers

Docker is a set of ”Platform as a Service” products that uses OS-level vir-
tualization to deliver software in packages called containers. Containers are
isolated from one another and bundle their own software, libraries and con-
figuration files; they can communicate with each other through well-defined
channels [16]. Docker automates the packaging, shipping, communication and
deployment of containers [17]. Containerization exploits the kernel of the host
Operating System (OS) for running multiple isolated applications in the con-
tainers. This concept of sharing the kernel of the host OS reduces the overall
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overhead of executing the application as a guest on the shared OS resources.
Therefore, containerization is known as a light-weight virtualization technol-
ogy. Containers are portable instances of applications that can be executed
on any resources they are deployed on and they provide consistent operation.
They provide agile application deployment which accelerates system develop-
ment and simplifies the test and debug process. In addition to agile deployment,
containers exhibit good modularity and scalability for IT applications. For in-
stance, the number of containers can be increased or decreased depending on
the current traffic and processing demands.

Isolated containers protect applications from attack attempts and possible
malicious activities on the host OS, but in this work we will not consider the
security aspects of the platform. Containers also support microservice applica-
tions due to their flexibility in deployment and high resilience [18].

3.2 Kubernetes

Docker containers can reduce the complexities of developing distributed ap-
plication software like, e.g. web applications, and it can help tolerate certain
failures by regenerating faulty containers. But it still requires a significant ef-
fort in order to manage and orchestrate these containerised applications, man-
aging their dependencies, scaling up/down the application automatically, etc.
Kubernetes is an open-source container orchestration system for solving these
issues, i.e. automating application deployment, scaling, and management. It
was originally designed by Google, and is now maintained by the Cloud Native
Computing Foundation [4].

There are other solutions, such as Docker Swarm, Docker Compose, that
we initially considered. But after reviewing the state of the art [19, 20, 21,
22, 18, 23, 1], we concluded that even if implementation and adaptation of
Kuberenetes seem more complicated, the features it provides for container or-
chestration better meet the fault-tolerance requirements of an architecture at
the fog layer, considering the resource constrained, low-latency, scalability,
mobility, geo-distributed, etc, characteristics of fog [24].

Figure 3.1 presents the structure of a Kuberenetes architecture. In the fol-
lowing we will describe the components of the architecture to later map them
to our proposed architecture.
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3.2 Kubernetes 17

Figure 3.1: Kubernetes Architectures

Figure 3.1 depicts a cluster based Kubernetes architecture including one
master and a worker node, known as node. A Kubernetes cluster can consist of
a single node (a master) or multiple nodes (one master and several workers).
We follow the terminologies given at the Kubernetes foundation website [4]
for explaining each of its cluster elements.

Kubernetes Worker Node

Worker nodes are the hosts to entities named Pod. Pods are the smallest com-
ponents of Kubernetes providing execution units for the applications. The con-
tainerised applications in a Pod are automatically co-located and co-scheduled
on the same physical or virtual machine in the cluster. The containers can share
resources and dependencies, communicate with one another, and coordinate
when and how they are terminated. Containers inside the Pods are managed
by container runtime which is a software responsible to run and manage the
containers. We use the Docker engine as Container runtime in our use-case.
When a container fails or terminates, the Docker engine will automatically re-
generate a new container inside the Pod. Worker nodes communication to the
master node is maintained through two different components: (1) kubelet and
(2) kube-proxy. Kubelet works as an agent which is running on all the nodes in
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a Kubernetes cluster, it ensures that the containers inside the Pods are healthy
and working; it checks container availability using the Pod specifications, re-
ceived by different mechanisms in the deployment process. Kublet only takes
care of the containers which are created in the Kubernetes cluster. Kub-proxy
also runs in each node in the cluster. It acts as a communication module and
maintains network rules.

There are also a list of Addons in each node in Kubernetes, that use re-
sources to implement features in a cluster. For instance, the DNS addon acts as
a specific Domain Name System server inside the Kubernetes cluster.

Kubernetes Master Node

The master node is the control plane of the whole Kubernetes cluster, managing
nodes and Pods. It consists of different components to make decisions about
the cluster, including:

• The API server that exposes the Kubernetes API. The API server is the
front end for the Kubernetes control plane.

• Etcd, a consistent and highly-available key value store used as Kuber-
netes’ backing store for all cluster data.

• Kube-scheduler that watches for newly created Pods with no assigned
node, and selects a node for them to run on.

• Replication Controller which is responsible for maintaining the correct
number of pods to make sure pods and containers are running in case a
pod or node fails.

3.3 Robotics Use-case

Our study on container-based architectures for fog computing is based on a
use-case that integrates ROS, Docker Containers, and Kubernetes. Section 3.1
and 3.2 explained about Docker and Kubernetes. Here, we provide a brief
introduction to ROS and continue with a detailed description of the robotics
application.
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3.3 Robotics Use-case 19

3.3.1 Robotic Application Implemented in ROS

The Robot Operating System (ROS) is a well-known open source robotic
meta-operating system (middleware) that has become the de-facto standard in
the industry. ROS provides services similar to those of an operating system
(OS), such as hardware abstraction, low-level device control, implementation
of commonly-used functionality and message-passing between processes, but
it has to work alongside a real operating system that provides the services that
ROS does not include [25].

The essential components of a ROS application are ROS packages, nodes
and topics. Communication among ROS nodes is implemented with a Pub-
lish/Subscribe mechanism via shared topics; where a topic in ROS is the com-
munication module over which nodes exchange messages.

The implemented application in ROS is a navigator robot application that
constantly moves towards newly set goals, while avoiding obstacles. The be-
havior is illustrated in Figure 3.2, showing that the robot first aims to reach
goal 1, while it should avoid the obstacles. It plans the optimum path to the
goal and when it reaches there, a new goal is set, as shown in Figure 3.2B.
Now the robot should reach goal number 2 without hitting the obstacles. The
robot starts execution in its base station and turns around to observe the envi-
ronment before deciding on the best route to the goal. This process is repeated
every time the robot reaches the goal and a new goal is set for it, as shown in
Figure 3.2C.

Figure 3.2: How the Robot works (from Paper C).

Our robotic application includes the following nodes:
Navigate Node: This node works as the main part of our robot applica-

tion. It receives/sends data from the movebase node through topics and makes
the robot repeatedly navigate toward new goals. It basically subscribes to the
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feedback topic and publishes the optimal path plan toward a random goal.
Movebase Node: This node has a fundamental role, as it makes the robot

turn around itself and observe the environment, including obstacles and goals
[26]. It publishes feedback topics to the navigate and simulation nodes. It
subscribes to topics from map, obstacle, broadcaster and simulation nodes.

Mover Node: The Mover node subscribes to the movebase feedback topic
to make the robot move. It publishes the speed, distance and movement data
of the robot so that other nodes will know if the movement was backward or
forward, etc. It is used for simulation in our scenario.

Simulation Node: This node handles simulation. It enables controllers to
be integrated into motion enabled behaviour and processes for the robot(s). To
run a simulation in ROS, this node (named stageros in ROS) is required for
interpretion of the simulation data [27].

Broadcaster Node: Broadcasts the changes of the coordinate frame of the
Robot as it moves around. It only publishes coordinate frame topics and does
not subscribe to other topics from other nodes.

Obstacle Node: This node generates obstacles in random places in the
environment that the robot is moving through. It publishes transformation of
coordinate frames of different obstacles to the movebase node so that the robot
can detect the obstacles and re-plan to navigate to its goal.

Mapserver Node: This node dynamically publishes updated map data as
topics to the movebase node [28].

Following the example given in Figure 3.2, the interaction of the nodes
would be the following. First, the Robot moves around itself and checks the
environment and publishes feedback to the navigate node, checking out the
new goal location and subscribing to the map data and the obstacle’s coordi-
nates frames. The simulation node also subscribes to the feedback topic pub-
lishes by movebase to simulate sensor data and exchange data with the mover
node. Mover node publishes the distance and speed and the step direction. The
broadcaster node publishes the coordinate frames of the robot on each move.
The Mapserver node updates and publishes the map. Obstacle publishes ob-
stacles coordinate frames whereas Mapserver and Navigate subscribe to it. A
graph showing the relations between different nodes in this setup is presented
in Figure 3.3.
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3.4 Integration of ROS and Kubernetes at the Fog: design options 21

Figure 3.3: ROS Nodes Graph

3.4 Integration of ROS and Kubernetes at the
Fog: design options

Building a well-designed system using Docker/Kubernetes and ROS together
is a challenging task. There are several ways to design such a system, which
will end up in configurations with different nodes and different dependencies.

Considering the ROS nodes we mentioned earlier, there are three reason-
able design choices for this robot system: (1) Putting all ROS nodes in the
same Docker container. This will result in a huge and heavy container. (2)
Allocating the ROS nodes to a number of different containers. In this design,
we put nodes that are working together in the same container. (3) Putting each
ROS node in a single container. The latter would result in a huge number of
containers, especially when the robot system is complicated with a large num-
ber of nodes. Setting up and managing such a complex system adds complexity
to the design.
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Therefore, we choose design model (2) and decompose our ROS applica-
tion into three different containers: (A) ROS Core application (B) Navigation
application (C) Simulator application.

The ROS core application container (A), includes the ROS core nodes, e.g.,
the movebase, map, broadcaster, and mover nodes. The Navigate application
container (B), includes navigate nodes to repeatedly setup new goals for the
robot and the obstacle node which publishes the obstacles coordinate frames.
The Simulator application container (C), consist of simulation and graphical
components, required to simulate and display robot movements and sensor
data.

To containerise the ROS application, we used so-called dockerized images
of ROS from Open Source Robotic Foundation (OSRF) [29], which simplifies
the installation and setup of the ROS system.

We built a Kubernetes cluster (Version 1.16) in our local network without
using any cloud platform. The cluster we implemented has three nodes. One
Kubernetes master node and two worker nodes. The Master node and one
worker node are running under Linux Ubuntu 18.04.

The other node is a Raspberry Pi (RPi) running Rasbian OS, which is a
Linux based OS.

To deploy each container (ROS Master, Navigate and Simulator) in Pods,
we need to consider the communication between the ROS nodes that are now
inside the containers. Communication between nodes in ROS is based on pub-
lish/subscribe topics and the ROS master dynamically allocates unique port
numbers to each publisher [30]. However, dynamic port allocation is not avail-
able in Kubernetes. Thus, to configure the communication between containers
that contain ROS nodes using publish and subscribe topics, we use the headless
services function that enables publisher and subscribers to directly communi-
cate with each others by name, rather than by IP address, and we statically
define the same port for all Pods as the one defined in the ROS master.

In Kubernetes, configuration and the container dependencies need to be
carried out through a YAML file, in which we define communication, storage,
number of replicas, etc.

The Pods hosting the containers are deployed to the worker nodes (not
the master) in the Kubernetes cluster. We set the number of replicas for this
scenario to one (1) to have the minimum resource consumption.
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3.5 Related Works on Fault-tolerant Container-
based Fog

A key factor of maintaining computing resources closer to the edge devices is to
make sure they function correctly in the design stage of the implementation. In
that case, applying fault-tolerance mechanism in the architecture design of fog
computing can provide guarantee of correct service and application execution
[31, 32].

In designing and implementing a fault-tolerance system at the fog layer,
using container-based virtualization has gained traction because of its light-
weight characteristic and support of a variety of edge devices that increase
system performance compared to hypervisor-based virtualization [33, 34].

There are a number of works in the literature proposing fog architectures,
particularly container-based fog architectures focusing on different aspects and
benefits that containerization brings [35]. To the best of our knowledge, no
work has addressed fault-tolerance to the extent that is required for critical fog
applications. Most of the works are focused on performance, data collection
from unreliable resources at the edge and task allocation [36]. Here we review
a number of studies that propose container-based architectures and then we
discuss in which way they fall short in addressing dependability.

Pahl et al. [19] describe the requirements for an edge cloud Platform as a
Service (PaaS). Different solutions and technologies, like, Kubernetes, Docker
and Mesos are evaluated to investigate which one can meet the edge cloud PaaS
requirements. The evaluation results indicate a need to develop an own cluster
management tool. The tool they propose use topology-based service orches-
tration together with Docker Swarm for application orchestration on an edge
PaaS with a focus on improving the system performance without considering
dependability requirements, such as availability and reliability.

Ismail et al. [20] evaluate Docker Swarm to enable an edge computing
platform. They considered four fundamental criteria 1) deployment and termi-
nation, 2) resource & service management, 3) fault tolerance and 4) caching.
The result of their evaluation is that Docker Swarm and Consul can meet the
first and second criteria. For the third criteria, the Docker import/export feature
is used as a fault-tolerance solution using the built-in Docker back-up solution.
However, they do not propose any unified system fault-tolerance mechanism
and disregard application re-integration.
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The same approach for comparing different orchestration and management
tools and technologies is used by Tosatto et al. [21]. They compare differ-
ent container orchestration solutions, Kubernetes, Docker compose, etc., and
conclude that each orchestration solution can be helpful in specific use-case
scenarios, but that there is no solution that fit all scenarios. This work does not
consider dependability.

In a recent work by Toffetti & Bohnert [22], a state of the art for cloud
robotics is presented. The authors discuss the needs for an architecture based
on Kubernetes for cloud application orchestration. The focus of this work is
to investigate the requirements and challenges for a cloud robotic system, and
considers dependability requirements, such as reliability, availability and ro-
bustness. This determines the need for a dependable system architecture to
address fault-tolerance in robotics applications. However, there is no solution
suggested in this work. We address a number of challenges explained in this
paper in our implementation and proposed architecture.

A three layered architecture for containerized micro-services for Industrial
Internet of Things (IIoT) is proposed in [18]. The architecture is composed of
three basic layers, 1) Cyber physical system, 2) Gateway and 3) Enterprise sys-
tem. The authors discuss reliability aspects by explaining how modularity of
independent container-based micro-services can improve the system resilience
to probable failures. They show that the overall system can continue working
even if some applications fail in this architecture. However, they do not, as we
do, consider how to tolerate application failures.

Hoque et al. [23] evaluate different container orchestration tools with the
aim of comparing the impact of each tool on the overall performance in fog
nodes. They propose a container orchestration framework for fog computing
infrastructures using the ”Open IoT Fog Toolkit”. However, they do not, as we
do, consider fault-tolerant aspects of the whole system and specifically not for
fog nodes.

A fault-tolerance architecture for edge and cloud is proposed by Javed et
al. [1]. They integrate Kafka and Kubernetes for data replication and cluster
configuration. The proposed architecture has three abstracted layers: 1) Appli-
cation isolation using containers, 2) Data transport with the help of Kafka and
3) Multi-cluster management by implementing Kubernetes. Their proposal for
tolerating faults is based on replicating data collected from edge devices. Fault
detection mechanisms and node failure recovery are not addressed.
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3.6 Related Works on Fault-tolerant Distributed Storage Systems 25

The study of the state of the art shows that there is growing interest in the
application of container-based solutions for fog. In general, the light-weight of
these applications is seen as a very appealing property, but there is consensus
about the need to provide new orchestration services and, in particular, sup-
port for replication and redeployment of containers. However, an orchestration
architecture with focus on tolerating faults in different levels of the system (ap-
plication level, node level, etc.) is still missing in the literature. We should
also consider the fact that as containerization is a cloud-native solution, there
is a lack of study on container’s transient storage system as there are already
a number of solutions providing persistent storage systems in the cloud. How-
ever, this is a cost and time inefficient solution while deploying applications on
the fog layer.

3.6 Related Works on Fault-tolerant Distributed
Storage Systems

Although containers increase application execution reliability by ease of cre-
ating replication, there still remains the issue that the state of the failed con-
tainer cannot be restored. Applications use container volumes to maintain their
states, however, volumes are transient storage systems which cannot be recov-
ered when a container fails.

As container-based fog architectures are distributed systems, we review the
works in the literature with a focus on fault-tolerant distributed storage systems
both in container-based architectures and traditional distributed systems.

Proposed solutions for distributed fault-tolerant distributed storage systems
in fog, edge and cloud computing show that authors have more focused on
two fundamental problems in distributed systems, (1) Fault tolerant, perma-
nent data storage [15], (2) Achieving a decentralised consensus. The first one
has a focus on distributed data storage systems and optimal allocation of re-
dundancy, to reduce utilization and techniques for error detection and recon-
figuration upon failure. The latter one is applying consensus protocols based
on system requirements [37].

In a work by Shahaab et al. [37], 66 consensus protocols such as RAFT
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43



26 Chapter 3. Background & Related Work

[10], Byzantine Fault Tolerance [38], Sieve [39], etc. are studied and analysed
based on different objectives, like, sustainability, efficiency, etc. The authors
conclude their work by stating that there is no single consensus protocol to
apply as a solution for all the requirements in a distributed system. A consensus
solution must be leveraged based on the network and types of nodes and the
whole system requirements.

There are also a number of recent works proposing persistent storage solu-
tions for container-based architectures in cloud platforms. Sharma et al. [40]
propose a distributed storage system using storage application deployment on
Kubernetes. However, they do not address the transient storage issue for the
Pods in the orchestration solution. This work also lacks a consideration of any
consensus algorithm.

To ensure that operations are executed on all the containers and their repli-
cas, state-machine replication in containers is proposed by Netto et al. [41].
This work uses the DORADO protocol which uses shared memory to project
communication and persistent data. Requests can be sent to any replicated con-
tainer, matching the cloud in regard to load balancing. However, the overhead
of this solution on containers violates the light-weight nature and increases the
container image size.

Kristiani et al. [42] propose a persistent volume for container-based archi-
tectures using Openstack and Kubernetes. Although in this work the container-
based applications are running on the edge devices in the network, the persis-
tent storage solution is still located in the Cloud which increases delay for each
application data access request.

3.7 Eventual Consistency
A distributed system exhibits the property data consistency if all the data con-
current read operations are guaranteed to return the same value [43]. In dis-
tributed database systems committed write is defined as a write operation that
stores a value permanently in the possibly distributed and replicated database
and makes it accessible to all the nodes. In this context, strong consistency
[44] means that the data returned must be exactly the same on each node. It
therefore implies that a read data operation will return a value only if that value
has been committed by all nodes, and that the operation will be delayed in case
the value has not been committed, until it is either accepted or rejected by all
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nodes. In particular, with strong consistency it is impossible for a read data op-
eration executed by two nodes at the same time to return two different values.
Eventual consistency [44] is more relaxed than strong consistency. Eventual
consistency means that when no updates are executed on the data, all read op-
erations to that data will eventually return the same value, yet it is possible that
in some intermediate states, some simultaneous read operations in different
nodes will return different values (normally a previous write).

The advantage of eventual consistency compared to strong consistency is
that the eventual consistency will be fulfilled even if some part of the system is
not working, and this could be important in safety-critical applications.

According to the Consistency, Availability and Partition tolerance (CAP)
theorem [45], access to data in distributed systems can only satisfy two out of
the three attributes consistency, availability and partition tolerance where (1)
consistency is when all the data read return the most recent write; (2) avail-
ability is when all the read requests return a response but without guaranteeing
that the response is the most recent write; and (3) partition tolerance is when
a system continues to provide service despite an arbitrary number of nodes are
not returning any response due to a network failure or the failure of one of the
components or any failures that causes the node to partition from the network.

When a failure occurs in a distributed system and causes node unavail-
ability, we could decide to reduce availability by stopping the operation and
achieve data consistency or achieve data availability by proceeding with the
operation and achieve eventual consistency [44].

Strong consistency is a requirement in applications like financial transac-
tions where data accuracy is more important than timing. However, in other
applications where low latency and timeliness is a requirement, like in factory
automation, eventual data consistency which favors continued operation and
low latency over strong consistency is often sufficient.

When the priority is data availability, the data might not be updated on
all the nodes simultaneously. In this case the data access is faster, but comes
at the cost of reduced data accuracy. In applications where low latency is a
requirement, for example, in industrial automation, if the latency is high, the
reaction time required to process a response for an event could be slower than
the rate at which the events are generated. In safety-critical applications late
reactions might have hazardous consequences.

Bailis and Ghodsi [44] explain that there are two important metrics, namely,
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28 Chapter 3. Background & Related Work

Table 3.1: Summary of Most Related Works

Aspects Our solution [5] [20] [46] [41] [47]
Persistent storage 3 3 — — — —
Stateful application 3 3 3 3 3 3

Data consistency
between storages 3 — — 3 3 3

Fault-tolerant storage 3 — Flocker — — —
Node failure recovery 3 — 3 — — 3

Self-healing 3 — — — — —
Timing requirements — 3 — 3 3 3

Network level Fog Cloud Edge Cloud Cloud Cloud

Application Industrial
robotics

Video
streaming

Not
specified

Log
producer

Log
producer

Log
producer

time and version, when designing a system that fulfils eventual consistency.
Time refers to the time when the latest write is accessible for a read request
and version refers how many versions of the written data a read request could
have access to, i.e. in the worst case, how many versions back in time from the
most recent write the value read could be.

We decided to choose eventual consistency in our system design as it has
a non-blocking character, which simplifies meeting the timing requirements of
safety-critical applications. Furthermore, the low rate of node failure compared
to application failure in a container-based architecture reduces periods of tem-
porary inconsistency of eventual consistency. Still, as some applications may
require strong consistency, for correct operations, it is important that applica-
tion developers consider that it is eventual consistency we provide. However,
when an application in a node reads data from another application in the same
node, strong consistency is guaranteed even in the case of application failure,
thanks to the use of a replicated data structure.

3.8 Reflection on Related Works

Studying the literature provided us with a better view of the existing solutions,
as well as broadened our knowledge about our system requirements. The need
for persistent storage comes from the stateful application we aim at dealing
with in our use-case. In addition, we need to investigate what can be done at
the network edge in the fog layer to reduce data latency and provide immediate
response to data access requests in the fog layer.
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3.8 Reflection on Related Works 29

In this work we take advantage of the light-weight and self-healing charac-
teristics of containers and propose container-based storage applications which
can provide a distributed storage system for the containerized robotic appli-
cations in our use-case. This storage system can be recovered upon failure
just like other containerized applications. Regarding the consensus protocol
we decided to choose RAFT as we found it more suitable for our use-case
because it is designed to deliver correct data and fulfills safety, liveliness and
fault-tolerance properties for data and states [37].

Table 3.1 provides a summary of the most related works to ours with a
comparison to aspects each provides for managing states using container-based
solutions.
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Chapter 4

Research Results

In this chapter, we discuss our results and present a summary of our contri-
butions. We highlight the specific contributions of the included papers by a
discussion of the results.

4.1 Thesis Contributions

This thesis focuses on four main goals, realized by four corresponding contri-
butions. We re-present the research goals as follows:
RG1: Identification of challenges and solutions on dependability aspects of
fog computing in the current state of the art.
RG2: Design of a fault-tolerance fog architecture by leverage auto-recovery
and self-healing mechanisms.
RG3: Design of a fault tolerance persistent storage solution for stateful
applications in container-based architectures.
RG4: Evaluation of the correctness of the proposed solution in presence of
faults.

Our research goals are realized by the following four main contributions:

• C1: We identify open challenges related to dependability of fog comput-
ing and the gap between the existing dependability solutions and depend-
ability requirements for fog computing. (Fog Dependability Challenges)
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32 Chapter 4. Research Results

• C2: We enhance current container-based architectures, tailored them for
fog applications specifically considering robotic and other control appli-
cations. (Fog Container-based Architecture)

• C3: We develop a fault-tolerant persistent distributed container-based
storage (SC) solution, characterized by self-healing and consistency
mechanisms. (Fault-Tolerant Distributed Persistent SC)

• C4: We formally verify the properties of the proposed container storage
(SC) solution. (Formal Verification of SC)

4.1.1 C1: Fog Dependability Challenges

Paper A [36] and Paper B [15] form this thesis contribution. Paper A, presents a
systematic literature review that answers four fundamental research questions
(RQ), formed at the beginning of our research. The research questions aim
at finding: 1) dependability attributes, 2) source of failure, 3) dependability
means and techniques to implement them, and 4) relations between depend-
ability and security in the current solutions proposed for fog computing.

In Paper A, we provide answers to these research questions based on our
observations as follows:

1. Reliability and availability are the dependability attributes that most au-
thors are focusing on and QoS and Scalability are new requirements
which attract the attention of authors in ensuring dependability in fog
computing.

2. Node failure and link or path failure are the main source of failures. In
addition, failures due to resource allocations and application placement
are causes for application execution failure.

3. Redundancy techniques are the most common methods to increase de-
pendability level in fog computing.

4. Security in fog is mainly discussed from the perspective of privacy and
confidentially. However, the existence of malicious faults and the design
of fault-tolerant security solutions are not addressed in the literature.
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We also observe that the two problems that are in main focus in the current
state of the art are: guaranteeing reliable data storage/collection in systems
with unreliable and untrusted nodes, and guaranteeing efficient task allocation
in the presence of varying computing load.

The outcome of Paper A, in addition to the answers to the fundamental re-
search questions, is a non-exhaustive list of research challenges discussed in
both Paper A and Paper B. The highlight of the challenges in Paper A and B
that formed basis for RG 2 are: 1) the lack of domain specific dependability
solutions that are designed based on the requirements of specific applications,
2) unsuitability of the current physical and virtual platforms for resource con-
strained fog devices, 3) shortage of solutions for reintegration after fault recov-
ery in distributed systems, 4) absence of self-healing and auto recovery mecha-
nism for resource constrain fog platforms, and 5) negligence of scalability and
portability of application at the node level.

4.1.2 C2: Fog Container-based Architecture

C2 is realized by Paper C [48]. In the non-exhaustive list of challenges found in
C1, the need of light-weight platforms that support automatic re-integration af-
ter failure realized by self-healing, portability and scalability characteristics of
fog applications is identified as a major requirement for forming a dependable
fog platform. Therefore, we explored the current cloud-native solutions and
identified the containerization solutions as light-weight virtualization platforms
that support portability, self-healing and scalability features. We examined the
possibilities to implement fog computing infrastructure for our robotics use-
case as a fog application using container-based solutions. We performed two
approaches to identify the vulnerable points of failures and the shortages of
extension of container-based solutions to the fog layer considering the appli-
cation requirements coming from our use-case. The first approach is a fault
tree analysis, and the second approach is fault injection. The fault tree analy-
sis shows that the most vulnerable point of failure for our stateful application
is the volatile storage of container-based architecture. The fault injection ap-
proach confirmed this. In addition, through the fault injection approach, we
identified that although containerization brings built-in fault-tolerance by auto-
recovery of applications, the current container-based architecture suffers from
limitations that are threats to dependability, although, they are not considered
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as failure. These limitations are the lack of monitoring and resource manage-
ment mechanisms.

To solve the aforementioned volatile storage issue for stateful applications
we formed RG3 which is achieved by C3. To solve the monitoring and re-
source management issues identified by the fault injection approach, we pro-
pose enhancing the container-based architecture with monitoring and resource
management components, together with another layer of fault-tolerance mech-
anism that handles application and node failure. This platform is also designed
to be suitable to host the storage solution we explain in C3.

4.1.3 C3: Fault-tolerant Distributed Persistent SC

Motivated by C2, Paper C [48] presents the main thesis contribution com-
plemented with some low-level details in Paper D [49]. When we container-
ized our robotics use-case and deploy it at the test-bed implemented using the
container-based platform, we realized that the main differences between our ap-
plication and cloud-native applications are their statefulness and idempotency
characteristics.

We realize this by the two fault tree analysis and fault injection explained
in C2.

When an application fails and recovers, its access to the volatile storage
is lost, therefore, the application will start working again from the beginning.
However, in safety-critical applications which are not idempotent, access to the
latest state is critical, otherwise, there could be hazardous consequences.

Therefore, a persistent storage is required to solve the volatile storage is-
sue of containerization and container orchestration. Although there are already
some solutions providing persistent storage for container-based architecture,
they still suffer from some limitations: 1) They are all implemented using cloud
storage, while we aim to provide a fault-tolerant storage system at the fog level;
2) Solutions proposed for data consistency between different nodes and appli-
cations inside nodes require at least two replicas of each application and all
the load of execution is always on one container. (All other containers in the
cluster will remain standby, apart from forwarding the task and result to/from
the leader.); 3) Node failure in a cluster has not been investigated; and 4) Data
consistency between containers of different kinds has not been investigated.

In this contribution, we propose a storage solution to address the volatile
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storage issue in container-based architectures in fog platforms by taking the
advantages of containerization: scalability, self-healing and portability. In this
solution, the use of storage containers (SC) provides suitable mechanisms for:
(1) Outsourcing data storing and data retrieving upon failure to containerized
storage mechanisms, thereby reducing the application load; (2) Storing data/s-
tates of stateful application (execution) locally inside each node; (3) Tolerating
failures at two levels, application (software) and node failures (Software and
Hardware); and (4) Achieving data consistency between nodes and applications
inside nodes using the RAFT consensus protocol.

4.1.4 C4: Formal Verification of SC

This thesis contribution is presented in Paper D [49] and motivated by C3.

In this contribution we verify our proposed SC solution in C3 using the
UPPAAL verification tool. We present a formal verification of three categories
of key properties: 1) model properties, 2) fault-tolerance properties, and 3)
consistency properties of the proposed container-based persistent storage and
the data consistency protocol used in this solution between nodes is provided
in this contribution.

4.2 Overview of the Included Papers

In this section, we present the abstracts and short descriptions of the contribu-
tions of the included papers.

The mapping of contributions to the included papers are shown in Table 4.1.

Table 4.1: Mapping of contributions to the included papers.

C 1 C 2 C 3 C 4
Paper A
Paper B
Paper C
Paper D
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Individual Contributions

I have been the initiator and main author for the included papers. The su-
pervision team participated in the brainstorming and planning sessions for the
research and provided valuable feedback and helped in writing few sections in
some of the included papers.

4.2.1 Paper A

Title: Dependable Fog Computing: A Systematic Literature Review [36].
Authors: Zeinab Bakhshi, Guillermo Rodriguez-Navas, Hans Hansson.

Abstract. Fog computing has been recently introduced to bridge the gap
between cloud resources and the network edge. Fog enables low latency and
location awareness, which is considered instrumental for the realization of
IoT, but also faces reliability and dependability issues due to node mobility
and resource constraints. This paper focuses on the latter, and surveys the
state of the art concerning dependability and fog computing, by means of
a systematic literature review. Our findings show the growing interest in
the topic but the relative immaturity of the technology, without any leading
research group. Two problems have attracted special interest: guaranteeing
reliable data storage/collection in systems with unreliable and untrusted nodes,
and guaranteeing efficient task allocation in the presence of varying computing
load. Redundancy-based techniques, both static and dynamic, dominate the
architectures of such systems. Reliability, availability and QoS are the most
important dependability requirements for fog, whereas aspects such as safety
and security, and their important interplay, have not been investigated in depth.

Paper contribution: The main contribution of this paper is to answer four
fundamental research questions and finding the current state of the art related
to implementation of dependable fog networks, understanding future trends,
and identifying the gap between current approaches and solution and fog com-
puting requirements.
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4.2.2 Paper B

Title: A preliminary Roadmap for Dependability Research in Fog Computing
[15].
Authors: Zeinab Bakhshi, Guillermo Rodriguez-Navas.

Abstract. Fog computing aims to support novel real-time applications by
extending cloud resources to the network edge. This technology is highly het-
erogeneous and comprises a wide variety of devices interconnected through the
so-called fog layer. Compared to traditional cloud infrastructure, fog presents
more varied reliability challenges, due to its constrained resources and mobility
of nodes. This paper summarizes current research efforts on fault tolerance and
dependability in fog computing and identifies less investigated open problems,
which constitute interesting research directions to make fogs more dependable.

Paper contribution: The main contribution of this paper are: (1) iden-
tification and classification of current research approaches for dependability
in fog computing, (2) comparison of different proposed solutions, considering
traditional dependability notions for critical systems, and (3) a discussion of
research gaps related to fog computing dependability.

4.2.3 Paper C

Title: Fault-tolerant Permanent Storage for Container-based Fog Architectures
[48].
Authors: Zeinab Bakhshi, Guillermo Rodriguez-Navas, Hans Hansson.

Abstract. Container-based architectures are widely used for cloud
computing and can have an important role in the implementation of fog
computing infrastructures. However, there are some crucial dependability
aspects that must be addressed to make containerization suitable for critical
fog applications, e.g.,in automation and robotics. This paper discusses
challenges in applying containerization at the fog layer, and focuses on one
of those challenges: provision of fault-tolerant permanent storage.The paper
also presents a container-based fog architecture utilizing so-called storage
containers, which combine built-in fault-tolerance mechanisms of containers
with a distributed consensus protocol to achieve data consistency.
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38 Chapter 4. Research Results

Paper contribution: The main contributions of this paper are (1) we
identify key limitations of directly applying existing containerization and
orchestration solutions in the resource constrained fog layer, and (2) we
propose remedies in addressing related dependability challenges.

4.2.4 Paper D

Title: Using UPPAAL to Verify Recovery in a Fault-tolerant Mechanism
Providing Persistent State at the Edge [49].
Authors: Zeinab Bakhshi, Guillermo Rodriguez-Navas, Hans Hansson.

Abstract. In our previous work we proposed a fault-tolerant persis-
tent storage for container-based fog architecture. We leveraged the use of
containerization to provide storage as a containerized application working
along with other containers. As a fault-tolerance mechanism we introduced a
replicated data structure and to solve consistency issue between the replicas
distributed in the cluster of nodes, we used the RAFT consensus protocol. In
this paper, we verify our proposed solution using the UPPAAL model checker.
We explain how our solution is modeled in UPPAAL and present a formal
verification of key properties related to persistent storage and data consistency
between nodes.

Paper contribution: Evaluation and verification of the solution proposed
for permanent storage application in container-based fog architectures.
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Chapter 5

Discussion, Conclusion and
Future Work

In this chapter, we discuss our experimental results and conclude the thesis
with a list of potential future research directions.

5.1 Conclusion and Summary

Fog computing helps to provide computing resources closer to the edge of
the network and has potential to increase predictability and time to respond,
important for safety-critical applications like robotics where prompt decision
making is required, and sending data to clouds might increase response time
and latency and leads to hazardous consequences. However, there are many
aspects to consider in designing a fog architecture. For instance, fog resources
are constrained resources. Therefore, light-weight platforms are desirable for
hosting fog applications. Other aspects to consider are the portability, scalabil-
ity and fault-tolerance required when deploying applications at the fog layer.
This thesis focuses on four research goals: (RG1) identifying dependability
challenges in fog; (RG2) designing a light-weight fault-tolerance fog architec-
ture; (RG3) designing a fault tolerance persistent storage for stateful applica-
tions in container-based architectures; and (RG4) evaluating the correctness of
the proposed solution. The goals are met by four contributions, packaged into
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40 Chapter 5. Discussion, Conclusion and Future Work

the four included papers. In Paper A, we present a systematic literature review
to answer four fundamental research questions. Paper A shows that reliability
and availability aspects of dependability are the main focus of authors dealing
with the design of fog-based architectures [50, 51, 52, 53, 54]. To address re-
liability and availability, redundancy techniques are leveraged in the proposed
solutions [50, 55, 51, 52]. However, considering limitations in resources in
fog computing, using replicas as redundant components is identified as a chal-
lenge for our further studies. Moreover, most of the proposed solutions aim at
providing dependability means by developing solutions on fault-tolerance and
failure recovery [56, 57]. However, the way the system will re-integrate after
failure is not discussed, nor evaluated in the literature,and is thus identified as
a challenge for our research.

In paper B, we refine our previous study in Paper A and categorized the
challenges identified in Paper A into different groups based on the sources
where the failure is initiated. We present a non-exhaustive list of challenges
which helped us formulate our research problem on designing a fault-tolerance
fog-base architecture by leveraging auto-recovery mechanisms.

In Paper C, we present a design of an enhanced container-based architec-
ture tailored for fog applications. The requirements of the fog applications in
this study are derived from a robotics use-case. In the study of our use-case we
identify two critical aspects related to handling failures, namely the lack of per-
sistent storage for stateful applications and challenges in resource management
while deploying applications. We propose remedies realized by adding new
components and services to the current container orchestration architecture. In
addition, we propose using a container-based storage system integrated with
a consensus protocol to provide fault-tolerant persistent storage for distributed
stateful applications at the fog layer.

In Paper D, we evaluated our solution presented in Paper C using the UP-
PAAL formal verification tool. We model our solution and define the properties
of the proposed solution and verify these type of properties: (1) Model prop-
erties; (2) Fault-tolerance properties; and (3) Data consistency properties. We
also add a safety properties to show the system is deadlock free. Since all
properties are proved to be satisfied using UPPAAL, we can conclude that our
proposed solution fulfils the consistency and fault-tolerance requirements in
the modeled container-based fog application.

The solution proposed for the persistent storage in our study is realized by
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5.2 Discussion and Future Work 41

a container-based storage system that uses RAFT. This solution is based on
three principles: (1) Dissociation of data storage from application processes;
(2) Using a replicated data structure to increase data availability and to provide
fault-tolerant persistent storage in each node of the cluster; and (3) Adding a
consistency protocol to keep the replicated data structures that are distributed
in the cluster of nodes synchronized.

5.2 Discussion and Future Work

In the future, we plan to address some of the challenges encountered in the
included papers. This section provides a brief overview of identified limitations
of our work, in addition to the possible future directions and extensions for the
work presented in this thesis.

5.2.1 Timing Aspects

In the studied use-case, the application is redesigned from a ROS implemented
application to a containerised ROS application. At the same time, its depend-
ability and fault-tolerance requirements have always been the point of focus.
Therefore, the main focus in our study is the correctness of the application exe-
cution. However, when re-designing the application to fit it into the container-
based architecture, there are some timing requirements that are not specifically
addressed in our study. For instance, application startup delay after container
failure and application redeployment delay after a node failure. Although these
delays are known to be very short in the approach we leveraged in the deploy-
ment, we are aware of the possible effects that these delays might have on the
functionality and service delivery of the application.

Another timing aspect that has not been investigated in our work is the
communication delays. The studied use-case in ROS uses publish/subscribe
methods for communication and when redesigning the architecture we use a
communication model based on the services in Kubernetes. In our experiments
we did not observe delays comparing these two design models when containers
communicate with each other. However, by adding the storage system that
handles the states and their consistency in the distributed network, there might
be delays in communication between SCs and the SC leader. We consider that
we can rely on the RAFT timeouts which are defined to guarantee that if a
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42 Chapter 5. Discussion, Conclusion and Future Work

node does not provide response in the defined deadline it will be excluded in
the election process. However, a timing analysis is required to make sure if
these delays are tolerable considering the application timing requirements.

5.2.2 Performance Degradation

The solution proposed in our study for the persistent storage by leveraging
replicated data structure and disassociation of application from storage system
aims to reduce the load of data synchronization from the application by off-
loading it to containerized storage applications. However, adding the RAFT
consensus protocol to the storage system might result in degradation of per-
formance for two reasons: 1) overhead related to the extra storage containers
(SCs) that need to access replicated data structures and consume resources in
each node and 2) the integration of RAFT that might result in performance
overhead for election and state management.

At the same time, adding SCs reduces the load of application communi-
cation and data synchronization in applications as well as reduced number
of replicas, since the need for unnecessary application replication is reduced
compared to other solutions that require more replicas of application for data
synchronization [47].

Regarding the use of RAFT protocol in our solution we need to evaluate
the system performance in our future work.

5.2.3 Extensions to the Included Papers

In Paper C we presented an approach to provide fault-tolerant persistent stor-
age for container-based architectures and integrated this solution with a con-
sensus protocol. We extended this work in Paper D by formally verifying the
proposed solution using UPPAAL. However, two important aspects of evalua-
tions remain for further investigations, namely, timing and performance. In our
future works we aim to consider timing requirements of application, commu-
nication, application recovery and application redeployment on another node
in the network. In addition, we will evaluate the performance of a system con-
sidering resource consumption by comparing our solution to pure Kubernetes
implementation explained in Section 3.4.
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IoT architecture for edge and cloud. In 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT), pages 813–818, 2018.

[2] Nan Tian, Ajay Kummar Tanwani, Jinfa Chen, Mas Ma, Robert Zhang,
Bill Huang, Ken Goldberg, and Somayeh Sojoudi. A fog robotic sys-
tem for dynamic visual servoing. In 2019 International Conference on
Robotics and Automation (ICRA), pages 1982–1988. IEEE, 2019.

[3] Michael Rabinovich, Zhen Xiao, and Amit Aggarwal. Computing on the
edge: A platform for replicating internet applications. In Web content
caching and distribution, pages 57–77. Springer, 2004.

[4] Kubernetes Foundation, Kubernetes Documentation. https://
kubernetes.io/.

[5] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek. Mi-
croservice based architecture: Towards high-availability for stateful ap-
plications with kubernetes. In 2019 IEEE 19th International Confer-
ence on Software Quality, Reliability and Security (QRS), pages 176–185,
2019.

[6] Gigi Sayfan. Mastering kubernetes. Packt Publishing Ltd, 2017.

[7] Lubos Mercl and Jakub Pavlik. Public cloud kubernetes storage perfor-
mance analysis. In International Conference on Computational Collec-
tive Intelligence, pages 649–660. Springer, 2019.

43

Bibliography

[1] A. Javed, K. Heljanko, A. Buda, and K. Främling. Cefiot: A fault-tolerant
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