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Abstract

In this thesis, we propose a new and simple approach of extending the
single-factor Heston stochastic volatility model to a more flexible one in solv-
ing option pricing problems. In this approach, the volatility process for the
underlying asset dynamics depends on the time to maturity of the option. As
this idea is inspired by the Heath–Jarrow–Morton framework which models
the evolution of the full dynamics of forward rate curves for various maturit-
ies, we name this approach as the HJM–type stochastic volatility (HJM–SV)
model. We conduct an empirical analysis by calibrating this model to real-
market option data for underlying assets including an equity (ABB stock)
and a market index (EURO STOXX 50), for two separated time spans from
Jan 2017 to Dec 2017 (before the COVID–19 pandemic) and from Nov 2019
to Nov 2020 (after the start of COVID–19 pandemic). We investigate the op-
timal way of dividing the set of option maturities into three classes, namely,
the short-maturity, middle-maturity, and long-maturity classes. We calibrate
our HJM–SV model to the data in the following way, for each class a single-
factor Heston stochastic volatility model is calibrated to the corresponding
market data. We address the question that how well the new HJM–SV model
captures the feature of implied volatility surface given by the market data.

Keywords: Implied volatility surface, stochastic volatility model, HJM
framework
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1 Introduction

Advancements in technology are driving a transformation in finance. Assets trading
can be easily done through various platforms and markets. Thus, trading is being
done in an ever–increasing diverse set of assets and with financial contracts on just
about anything whose value is changing in time. Everyone can be a market parti-
cipant, and they must decide upon what they think such instruments are worth–to
quote bid and/or ask values. However, there are a number of difficulties that market
participants need to deal with. First, it is challenging to decide what a reasonable
price for an intricate contract is. Various research works, e.g. [5, 17, 12, 3, 22],
have been trying to eliminate certain level of subjective thinking and riskiness by
attempting to price derivatives theoretically. By making assumptions on the dy-
namics of the markets and the actions of its participants, theoretical models have
been developed to pricing financial derivatives. The most well–known and widely
used is the Black–Scholes–Merton framework [5] in which the price processes must
satisfy the Black–Scholes differential equation. Analytical price expressions for nor-
mal (vanilla) options can be found by solving the differential equation. Second,
measuring the risk in the financial market is also difficult. Risk measures are major
components in modern portfolio theory, which is a standard financial and academic
methodology for assessing the performance of a stock or a stock fund as compared
to its benchmark index.

Volatility has always been a central topic for measuring risk in the financial market.
Volatility is a statistical measure of the dispersion of returns for a given security
or market index. In most cases, the higher the volatility, the riskier the security.
Volatility is often measured as either the standard deviation or variance between
returns from same security or market index. An accurate estimation of volatility
can contribute to good performances in speculation and hedging. The introduction
of Implied Volatility Surface (IVS) is one of the methods to analyze volatility across
options’ strike prices and time to maturity. Thus, various models [5, 19, 13, 3, 4]
of surface construction and its dynamics were developed and have been improved
over time.

In particular, the Black–Scholes model and formula [5] were widely used after their
proposal as a guiding tool for pricing vanilla options. However, after the 1987 stock
market crash there are questions about the applicability of the Black–Scholes model.
The 1987 global market crash made the market had become more afraid of unusual
events and generally put a higher price on riskier derivatives than before. It also
altered implied volatility patterns that arise in pricing financial options. It has been
seen a magnification of phenomena where volatility surfaces for global indices have
been characterized by the volatility smiles and skewes. J. Hull stated in his book
[19] that

“Equity options traded in American markets did not show a volatility
smile before the crash but began showing one afterward.”
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So what are volatility smiles and skewes?. In the broad definition, volatility smiles
and skewes are a measure of the failure of market prices for vanillas to exactly agree
on the assumptions in the theoretical Black–Scholes framework. Thus, using the
Black–Scholes formula for vanillas in reverse one can find a volatility value corres-
ponding to each option. Such volatilities are called implied volatilities and when
plotting them against the strike prices of the corresponding options, one can often
see that the plot gives a convex set of data points–resembling a smile or a skew in
shape, where the Black–Scholes formula predicts a constant.

Moreover, the volatility smiles and skewes terms can also be explained by the res-
ulting graph when implied volatility is plotted against strike price. The graph is
typically downward sloping for equity markets or valley-shaped for currency mar-
kets. For markets where the graph is downward sloping, such as for equity options,
the term “volatility skew” is often used. For other markets, such as Foreign ex-
change options or equity index options, where the typical graph turns up at either
end, the more familiar term “volatility smile” is used. For example, the implied
volatility for upside (i.e. high strike) equity options is typically lower than for at
the money equity options. However, the implied volatilities of options on foreign
exchange contracts tend to rise in both the downside and upside directions. In
equity markets, a small tilted smile is often observed near the money as a kink in
the general downward sloping implicit volatility graph. Sometimes the term “smirk”
is used to describe a skewed smile.

There exists numerous empirical studies that have pointed out that the volatility
of the value of an underlying asset is not constant. Some early studies include
Mandelbrot [25] and Officer [30], and more recent research works such as [13], [33].
Stochastic volatility modeling frameworks have come with attempts to correct this
problem with Black Scholes by allowing volatility to fluctuate over time [2]. Some
of well–known stochastic volatility models are Heston [17] , Stein and Stein [36],
Melino and Turnbull [26], Hull and White model [19]. Several papers have docu-
mented that these stochastic volatility models are helpful in modeling the smirk,
and that the modeling of the leverage effect is critical in this regard (e.g., see Bak-
shi, Cao, and Chen [3], Bates [4], Chernov and Ghysels[8], Jone [21], Nandi [28] and
Pan [31]). Stochastic volatility models can also address term structure effects by
modeling mean reversion in the variance dynamic. Consequently, many papers use
a single–factor stochastic volatility model as the starting point for more complex
models.

One of the most wide-used stochastic volatility models is Heston[17] as it provides
a closed-form valuation formula that can be used to efficiently price plain vanilla
options. One of the main limitations of this model is the presence of the parameters
in the model which have to be calibrated carefully to provide a decent estimate of
the option prices. Further, it is found that the model suffers when it comes to
predicting the option prices for short-term options as the model fails to capture the
high implied volatility. In short, the single-factor Heston model is not rich enough
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to capture the structure of implied volatilities across maturities. As a remedy, vari-
ous extensions to the Heston model have been proposed, for example, the Double
Heston model by Christoffersen et. al [9] and the Gatheral model[14].

In this thesis, we propose a new extension of the single–factor Heston stochastic
volatility model to a more flexible one in capturing the structure of the market
implied volatility surface, i.e. the market implied volatility as a function of both
strike prices and maturities. In this approach, the volatility process for the under-
lying asset dynamics depends on the time to maturity of the option. As this idea
is inspired by the Heath–Jarrow–Morton framework which models the evolution of
the full dynamics of forward rate curves for various maturities, we name this ap-
proach as the HJM–type stochastic volatility model, and hereafter shortened as the
HJM–SV model. Using this HJM–SV model, there is one specific Cox–Ingersoll–
Ross (CIR) volatility process for each time to maturity. Thus, not only the new
model generates stochastic correlation between volatility and underlying derivative
returns, but also expresses the dependence of volatility to the time to maturity of
the derivative instruments.
Our model is a data-driven one, to evaluate the performance of this model, we use
a large data set on daily implied volatility surfaces for two different underlying and
two separate one-year-long time periods. We note that the COVID–19 pandemic
has an obvious impact on the financial market and hence how underlying asset
models work, our data sets, therefore, cover both the period before the pandemic
and after the start of it. For each day, the implied volatility surface consists of
implied volatilities for 130 options with 10 maturities and 13 strikes. At this stage
of research, we study a simplified form of HJM–SV model, in which we group the
10 maturities into three classes. Our contribution is to calibrate this three-class
HJM–SV model to the data sets and evaluate the performance of our model by
experimental calibration studies.

Knowledge of the structure and dynamics of implied volatility is valuable for pricing
options. Accomplishing the construction of a surface requires a relevant model to
reproduce the options prices and carefully estimating parameters. The main con-
tribution of this work is the construction of the implied volatility surface based on
the pricing of ABB stock[15] and EURO STOXX 50 Index[20] derivatives under the
assumption that the underlying follows the Heath–Jarrow–Morton (HJM)-inspired
stochastic volatility with discontinuous jumps model, and the use of the Fast Four-
ier Transform (FFT) approach in calculating option premiums.

Our experimental results show that the HJM-inspired Stochastic Volatility (SV)
without diffusion jump type model adequately fits observed short maturity option
class (30 days) and medium maturity maturity option class (from 60 days up to 180
days) in period from Jan 2017 to Dec 2017 and from Nov 2019 to Nov 2020.

The remaining of the thesis is organized as follows. In Section 2, we introduce the
theoretical background of different models of underlying asset prices, their volatil-
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ity, and the Fourier based option pricing approaches. In particular, we focus on the
SV model since it is closed to the author’s proposed HJM–SV model. In Section 3,
we describe the HJM–SV model and the data selection process. Section 4 demon-
strates a calibration procedure with some highlighted techniques/algorithms used
in the procedure. Parameter estimates and the implied volatility surfaces for the
chosen sample data are shown in Section 4. The last section presents the author’s
conclusion and some potential research directions in the future. The thesis also
includes appendices of examples to sample data used in calibration as well as some
calibrated result tables.

2 Theoretical background

In this section, we present the concepts of financial derivative underlying asset
prices and option pricing models. More specifically, those concepts cover the key
dimensions of the problem at hand and also provide the fundamental to our proposed
HJM–SV model. The Black–Scholes–Merton (BSM) model [5] and Heston model
[17] are shortly recalled in this section in order to present the relative characteristic
functions used in Fourier–based method of option pricing.

2.1 Models for the underlying asset

In mathematical finance, the asset St that underlies a financial derivative, is typic-
ally assumed to follow a stochastic differential equation of the form

dSt = (rt − qt)Stdt+
√
VtStdWt, (1)

where rt is the instantaneous risk free rate, giving an average local direction to the
dynamics, qt is the dividend yield rate, and Wt is a Wiener process, representing
the inflow of randomness into the dynamics. The amplitude of this randomness is
measured by the instant volatility Vt. In the simplest model i.e. the Black–Scholes
model, Vt is assumed to be constant; in reality, the realized volatility of an under-
lying actually varies with time. When such volatility has a randomness of its own,
which often described by a different equation driven by a different Wiener process,
the model above is called a stochastic volatility model.

2.1.1 Local volatility model

When a stochastic volatility is merely a function of the current asset level and of
time, we have a Local Volatility (LV) model. The LV model is a useful simplification
of the stochastic volatility model.

“Local volatility” is thus a term used in quantitative finance to denote the set
of diffusion coefficients, Vt = V (St, t), that are consistent with market prices for
all options on a given underlying. This model is used to calculate exotic option
valuations which are consistent with observed prices of vanilla options.
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2.1.2 Discontinuous jump models

In contrast to basic insights into continuous-time asset-pricing models that have
been driven by stochastic diffusion processes with continuous sample paths, jump
diffusion processes have been used in finance to capture discontinuous behavior in
asset pricing. As described in [27], the validity of Black–Scholes formula depends
on whether the stock price dynamics can be described by a continuous-time dif-
fusion process whose sample path is continuous with probability 1. Thus, if the
stock price dynamics cannot be represented by stochastic process with a continu-
ous sample path, the Black–Scholes solution is not valid. In other words, as the
price processes feature big jumps, i.e. not continuous, continuous-time models can-
not explain why the jumps occur, and hence not adequate. In addition, Ahn and
Thompson [1] also examined the effect of regulatory risks on the valuation of pub-
lic utilities and found that those “jump risks” were priced even though they were
uncorrelated with market factors. It shows that jump risks cannot be ignored in
the pricing of assets. Thus, a “jump” stochastic process defined in continuous time,
and also called as “jump diffusion model” was rapidly developed.

The jump diffusion process is based on Poisson process, which can be used for mod-
eling systematic jumps caused by surprise effect. Suppose we observe a stochastic
process St, which satisfies the following stochastic differential equation with jump.

dSt = (r − rJ)Stdt+
√
V StdZt + JtStdNt,

where r is the constant short rate, V the constant volatility, Zt a standard Brownian
motion, Nt a Poisson process with intensity λ. Furthermore, Jt is the jump at date
t with the distribution log(1 + Jt) = N

(
log(1 + µJ) − δ2

2
, δ2
)
, where N is the

cumulative distribution function of a standardized normal random variable.

Finally, rJ = λ(eµJ+δ2/2 − 1).

2.1.3 Stochastic volatility model

Heston model [17] is the well–known pricing models of European options with SV.
The Heston model assumes that the underlying stock price, St, follows a BSM–type
stochastic process, while the variance Vt also follows a stochastic process presented
by the CIR model [10]. In their original paper, the CIR process is given by:

a(b− rt)dt+ σ
√
rtdWt, (2)

where Wt is a Wiener process which modelling the random market risk factor, and
a, b, σ are the parameters. The parameter a corresponds to the speed of adjustment
to the mean b, and σ corresponds to volatility.

Following the mathematical formulation of CIR given by (2), the stock price and
its variance in Heston model, are driven by the following system of Stochastic
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Differential Equations (SDE):

dSt = (r − q)Stdt+
√
VtStdW1,t

dVt = κ(θ − Vt)dt+ σ
√
VtdW2,t

where E[dW1,t, dW2,t] = ρdt, and the parameter of the model are: Wt is Brownian
motion; r is the drift of the process of the stock in the martingale measure; q is the
rate of paying dividends; κ > 0, θ > 0, σ > 0 are respectively, the mean reversion
speed, the mean reversion level, the volatility of the variance; and V0 > 0 is the
initial (time zero) level of the variance.

The parameter κ controls the speed of mean reversion of the volatility, σ is the volat-
ility of the volatility, and θ is the long-term of the variance process. An important
feature of the Heston model is the stochastic volatility which allows to reproduce
the implied volatility smile present in many financial markets. Each parameter has
a specific effect on the implied volatility curve generated by the dynamics so it is
interesting to study uncertainty quantification for the implied volatility as well as
for the prices of certain financial products [37].

If 2κθ > σ2, so-called Feller condition, is satisfied and the positivity of Vt is guar-
anteed, otherwise it may reach zero. The Feller condition is difficult to satisfy
in practice, so in this work the cases with and without Feller conditions will be
considered.

2.1.4 Combined models

The three model types, which are LV, SV, and discontinuous jump processes, can
be combined to more complex and far–reaching models. One motivation for such
combining is that stochastic volatility models tend to underestimate smile convexity
at short maturities and jump–diffusion models as well as local volatility models tend
to underestimate smile convexity at long maturities. When being combined, they
help with each others shortcomings. In [35], the authors claim that stochastic
volatility–jump diffusion models matches the market better than the use one of the
three types alone.

2.2 Option valuation method

In the recent years, Fourier based option pricing approaches is well–known as an
efficient method for valuing financial derivatives because it satisfies the important
demands of being fast and accurate. Moreover, this option pricing approach al-
lows the use of semi–analytic valuation formulas for European options whenever
the characteristic function of the stochastic process representing the underlying is
known [18]. We believe that applying Fourier–based method allows us to efficiently
calculate the model price and calibrate the parameters to SV type model in different

14



designed markets.

Definition 1. (Fourier Transform). Given an integrable function f(x), its Fourier
transform is defined as the function [18]:

f̂(u)
def
=

∫ ∞
−∞

eiuxf(x)dx, (3)

with u either real or complex, eiux is called the phase factor.

The Fourier inverse transform allows to recover f(x) via the integrals [18]:

f(x) =
1

2π

∫ ∞
−∞

e−iuxf̂(u)du, for u ∈ R (4)

f(x) =
1

2π

∫ ∞+iui

−∞+iui

e−iuxf̂(u)du, for u ∈ C with u = ur + iui (5)

Parseval’s Relation. Given two square–integrable functions f, g taking values in
C, the following relation holds:

〈f, g〉 =
1

2π
〈f̂ , ĝ〉 (6)

with 〈·, ·〉 denoting the inner product between the two argument functions: 〈f, g〉 def
=∫∞

−∞ f(x)g(x)dx.

Definition 2. (Characteristic Function) The characteristic function q̂ of a random
variable X is the Fourier transform of its probability density function q(x) [18],

q̂(u)
def
=

∫ ∞
−∞

eiuxq(x)dx (7)

= EQ(eiuX),

where the superscript EQ refers to expectation under probability measure Q with
probability density function q(x).

2.3 No–Arbitrage Option Pricing

We consider an economy over a fixed time interval [0, T ] ∈ R+. At date 0 there is
uncertainty about the true state of the economy at the terminal date T. The set of
possible states, however, is known. The set of all possible states ω is denoted by Ω
and called the state space. Subsets of Ω are called events. The family of sets that
forms the set of observable events is an algebra in Ω.

15



Let’s consider a discrete market model where, for a fixed time interval [0, T ], we
suppose that all transactions take place only at times

0 = t0 < t1 < · · · < tN = T.

The market consists of one riskless asset (bond) B with unitary face value, such that
Bt = e−r(T−t); and d risky assets S = (S1, S2, · · · , Sd) that are stochastic processes
defined on a discrete probability space (Ω,F , P ). We assume Ω has a finite number
of elements, F = P (Ω) and P (ω) > 0 for any ω ∈ Ω.

In a discrete-time market, on a discrete probability space (Ω,F , P ) the following
theorems hold [32]:

Theorem 1. (The First Fundamental Theorem of Asset Pricing) The discrete mar-
ket is arbitrage free if, and only if, there exists at least one risk neutral probability
measure that is equivalent to the original probability measure, P .

Theorem 2. (The Second Fundamental Theorem of Asset Pricing) An arbitrage–
free market (St, Bt) consisting of a collection of stocks S and a risk–free bond B is
complete if and only if there exists a unique risk–neutral measure that is equivalent
to P and has numeraire Bt.

Let’s consider a continuous market model M = {(Ω,F ,F, P ), T, (S,B)}, where:

• (Ω,F ,F, P ) is a probability space with a filtration F of non-decreasing sigma-
algebras,

• T ∈ (0,∞) is the final date,

• (S,B) is the set of tradable assets: a positive stock index St, where t ∈ [0, T ]
which is a semimartingale and a risk–less bond B with unitary face value,
such that Bt = e−r(T−t), with short rate r ≥ 0.

By the Fundamental Theorem of Asset Pricing, if we assume no free lunch with
vanishing risk, then there exists a P–equivalent martingale measure Q under which
all stochastic processes of the market model are martingales. The value at time t
of an European option maturing at T is then obtained by discounting its expec-
ted payoff under the equivalent martingale measure Q. Therefore, the price of a
European call option is:

Ct = e−r(T−t)EQ
t (CT ) with CT = (ST −K)+ and K > 0 (8)

When we move to the integral representation we have:

Ct = e−r(T−t)
∫ ∞

0

CT (s)Q(ds) = e−r(T−t)
∫ ∞

0

CT (s)q(s)ds (9)

Problems arise when the risk–neutral probability density function q(s) of ST is not
known, as it quite often happens. However, whenever the characteristic function of
ST is known it can be used along with the Fourier transform of the option’s payoff
in order to determine the option price, and this sets the base for Fourier–based
pricing.
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2.4 Fourier–based Option Pricing

Using the mathematical tools provided in the previous sections, Fourier–based pri-
cing approaches were developed in order to obtain a more general valuation of
option prices, where the fundamental ingredient is the characteristic function of
the underlying stochastic process. Furthermore, this kind of pricing proves to be
accurate and efficient: numerical evaluation methods reach high levels of accuracy
while maintaining low computational costs and high speed. We review several es-
sential concepts on Fourier Series and Fast Fourier Transform in this section and
our discussion is based on [18].

2.4.1 Lewis Approach

Lemma 1. (Call Option Transform) [18]. We consider a European call option with
payoff CT

def
= (es − L)+, with s def

= logS. The Fourier transform of CT is

ĈT (u) = − Kiu+1

u2 − iu
, (10)

for u = ur + iui, with ui > 1.

The proof to Lemma 1 is provided in [18].

We can now retrieve the payoff function CT (s) via Fourier inversion, obtaining the
following expression:

CT (s) =
1

2π

∫ ∞+iui

−∞+iui

e−iusĈT (u)du (11)

The value of the call option in t = 0 is then obtained by applying martingale pricing.
Discounting the expected payoff as in (8) and using the transform representation of
CT yields:

C0 = e−rTEQ
0 (CT )

= e−rTEQ
0

(
1

2π

∫ ∞+iui

−∞+iui

e−iusĈT (u)du

)
=
e−rT

2π

∫ ∞+iui

−∞+iui

EQ
0 (ei(−u)s)ĈT (u)du (12)

where we have assumed that the interchange of integration and expectation is valid.
We derive an application of Parseval’s relation to the risk–neutral pricing equation.

Recall that by equation (7), when replacing u by −u, we have:

q̂(−u)
def
=

∫ ∞
−∞

ei(−u)xq(x)dx

= EQ(ei(−u)X), (13)
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From (12) and (13), we obtain the call option price at time t = 0 as the following:

C0 =
e−rT

2π

∫ ∞+iui

−∞+iui

q̂(−u)ĈT (u)du

Further computations are done assuming St
def
= S0e

rt+Xt with Xt a Lévy process,
namely an adapted real valued process with X0 = 0 and stationary independent
increments.

Then, being φ(·) the characteristic function ofXT we can write q̂(−u) = e−iuyφ(−u),
with y = logS0 + rT . We define k = log(S0/K) + rT , and substitute all quantities
in the option’s value expression, obtaining:

C0 = −Ke
−rT

2π

∫ ∞+iui

−∞+iui

e−iukφ(−u)
du

u2 − ui
(14)

A pricing formula for the European call option can now be derived:

Proposition 1. [23]. Assuming ui ∈ (0, 1), the present value of a European call
option is

C0 = S0 −
Ke−rT

2π

∫ ∞+iui

−∞+iui

e−iukφ(−u)
du

u2 − ui
(15)

When ui = 0.5, the option is evaluated as

C0 = S0 −
√
S0Ke

−rT/2

π

∫ ∞
0

Re[eizkφ(z − i/2)]
dz

z2 + 1/4
(16)

The proof to proposition 1 is provided in [18].

Option pricing with Fourier–based methods can be implemented using direct integ-
ration methods. In alternative, we can use the Discrete Fourier Transform computed
via the FFT.

2.4.2 Fourier Series and Discrete Fourier Transform

Definition 3. (Fourier series). A Fourier series to a 2π–periodic function f(x) is an
infinite sum of the form:

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx)

For an arbitrary interval [−L,L], the Fourier series is

f(x) = a0 +
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))
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with coefficients

a0 =
1

2L

∫ L

−L
f(x)dx

an =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx

If u ∈ C with u = ur + iui, Euler identity holds:

eiux = eurx(cos(uix) + isin(uix))

so that the function f(x) can be written as

f(x) =
∞∑

n=−∞

cne
inπ
L
x (17)

cn =
1

2L

∫ L

−L
f(x)e−i

nπ
L
xdx (18)

What we get is a complex Fourier series from which we can obtain a Fourier trans-
form representation in discrete form.
Setting kn = 2π

L
, ĉ(kn) = cn and ∆ such that ∆n = 1 and L

π
∆2π

L
= 1 yelds

f(x) =
L

π

∞∑
n=−∞

ĉ(kn)eiknx∆kn

We now define f̂(kn) = L
π
ĉ(kn), so that

f(x) =
∞∑

n=−∞

f̂(kn)eiknx∆kn

and

f̂(kn) =
L

π

1

2L

∫ L

−L
f(x)e−iknxdx

Taking the limit L → ∞ the sum becomes an integral and we can drop the n
subscript. Additionally, we change the sign in the phase factor and multiply f(x)
by 2π, retrieving the Fourier transform and inverse transform presented in (3) - (4)

f̂(k) =

∫ ∞
−∞

eikxf(x)dx

f(x) =
1

2π

∫ ∞
−∞

e−ikxf̂(k)dk
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2.4.3 Fast Fourier Transform

FFT is an algorithm that computes the Discrete Fourier Transform. It consists in
computing the following sums:

FFT (u) =
N∑
j=1

e−i
2π
N

(j−1)(u−1)x(j), u = 1, ..., N (19)

Imposing the following relations:

vj = v1 + η(j − 1), with j = 1, ..., N

ku = −b+ ε(u− 1), with u = 1, ..., N

ηε =
2π

N

where ε denote a regular spacing parameter. We have that the FFT returns N
values for log-strikes ku ranging from −b to b with b = 0.5Nε.
The integral in the expression for call option price (13) can be discretized in the
following way:

N∑
j=1

e−ivjku
φ(−vj − i/2)

v2
j + 1/4

η

Substituting vj and ku yields:

N∑
j=1

e−iηε(j−1)(u−1)e−i(v1ku+k1η(j−1))φ(−vj − i/2)

v2
j + 1/4

η

We then introduce weights according to Simpson’s rule:

N∑
j=1

e−iηε(j−1)(u−1)e−i(v1ku+k1η(j−1))φ(−vj − i/2)

v2
j + 1/4

η

3
(3 + (−1)j − �j−1),

where �n is the Kronecker delta function which takes value one for n = 0 and zero
otherwise.
Finally, observing that e−iηε(j−1)(u−1) = e−i

2π
N

(j−1)(u−1), we can directly use FFT to
compute the expression above and retrieve the call option price [22].

2.5 Implied volatility and computing approach

As we stated in the introduction part, the Black–Scholes model was, and still,
favourable used by investors for calculating the option premiums. The reason, per-
haps, is thanks to its simplicity. Of all the variables used in the Black–Scholes
model, the only one that is not known with certainty is volatility. At the time of
pricing, strike price, time to maturity, current underlying asset price, interest rate
and dividend yield, are clear and known. For this reason, in some literature, the
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call prices for a vanilla option is simply express by C = BS(σ). Theoretically, the
implied volatility for a vanilla call option with price C can always be found from
the inverse Black–Scholes formula. This is done by inputting the price C, strike
price K, time to maturity T , current price of the underlying asset S0, interest rate
r and dividend yield q in the formula C = BS(S0, K, T, r, q, σ). However, there is
no closed-form inverse for it, but because it has a closed-form ν (volatility deriv-
ative) and the derivative is nonnegative, we can use the Newton–Raphson with a
confidence level.

One can choose a starting value σ0, for example, the authors of [6] provided a closed
form estimate of implied volatility as follows:

σ =

√
2π

T

C

S0

(20)

If one uses (20) to compute the initial guess σ0, then iterate:

σn+1 = σn −
BS(σn)− C

ν(σn)
(21)

until reaching a solution of sufficient accuracy. This technique is known as Newton–
Raphson method, which is a way to quickly find a good approximation for the root
of a real–valued function f(x) = 0. The ν in the function (21) is one of the Greeks.
By definition, the ν of an option is the sensitivity of the option price to a change
in volatility. Black–Scholes formula for ν is:

ν = S

√
T

2π
e−
(

log ( S
K

)+(r+σ2

2
)T
)2
/(2σ2T )

or, in the Black–Scholes d1 notation,

ν = S
√
Tφ(d1), φ(·) is the normal density

A volatility smile or skew is a common graph shape that results from plotting the
strike price and implied volatility of a group of options with the same underlying
asset and expiration date. If the Black–Scholes model were completely correct, then
the implied volatility for different strike prices should be a constant. In practice,
this is unfortunately not the case. The implied volatility actually varies over time
because the assumptions of the Black–Scholes model obviously are not always true.
For instance, options with lower strike prices tend to have higher implied volatilities
than those with higher strike prices. For a given strike price, implied volatility can
be increasing or decreasing with time to maturity, giving rise to a shape known as a
volatility smile because it looks like a person smiling. Volatility smiles are created
by implied volatility changing as the underlying asset moves more In The Money
(ITM) or Out The Money (OTM). Figure 1 shows that the more an option is ITM
or OTM, the greater its implied volatility becomes. Implied volatility tends to be
lowest with At The Money (ATM) options.
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Figure 1: Volatility smiles.

3 Model implementation

In this section, we first motivate the idea of HJM–SV model for option pricing.
Then, we describe our proposed model by SDEs. We implement and test the HJM–
SV model using data on European call options on ABB stock and EURO STOXX
50 index options. The section also presents the choice of calibrating functional and
selection of numerical optimization algorithms.

3.1 The HJM–SV model

The HJM framework is a general framework to model the evolution of interest rate
curves – instantaneous forward rate curves in particular (as opposed to simple for-
ward rates)[16]. Simple interest models before HJM framework present the short
interest rate r(t) as the only explanatory variable for entire money market, which
seems unreasonable from an economic point of view. The method proposed by
Heath–Jarrow–Morton uses the entire forward rate curve as their infinite dimen-
sional state variable. Mathematical formulation for the instantaneous forward rate
is f(t, T ), where t ≤ T , and f(t, T ) is defined as the continuous compounding
rate available at time T as seen from time t. Modeling the interest-rate evolution
through the instantaneous short rate has some advantages, mostly the freedom one
has in choosing the related dynamics [7]. Take one-factor interest rate models, for
example, one is free to choose the drift and instantaneous volatility coefficient in
the related diffusion dynamics as his own suitable consideration, with no general
restrictions. Therefore, we would like to develop a model which can capture the
evaluation of volatility for underlying asset price depending of the time to maturity
of the derivative instrument. We start with the idea of HJM–SV model, in which
there is one specific CIR process [10] presenting the underlying assets volatility pro-
cess depending on time to maturity option. Based on the mathematical formulation
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of CIR given by (2), we illustrate the model by the following SDE under risk–neutral
probability.

dV Ti
t = CIRTi(κi, θi, ρi, σi, V

Ti
0 ) = κi(θi − V Ti

t )dt+ σi

√
V Ti
t dBi,t

where Ti denote the time to maturity for the ith option class, for i = 1, 2,... , N with
an assumption that T1 < T2 < ... < TN . Vector (κi, θi, ρi, σi, V

Ti
0 ) is the parameter

vector of CIR model for stochastic volatility V Ti
t . Denote by Θ the parameter vector

in the new model, thus we have

Θ = (κi, θi, ρi, σi, V
Ti

0 ) (22)

• κi is the mean reversion speed

• θi is the mean reversion level

• σi is the volatility of the asset’s volatility

• ρi is the correlation coefficient between the Wiener process (dWt) in the SDE of
underlying asset price and the Wiener process (dBt) in the SDE of underlying
asset’s volatility, generally E[dWt, dBi,t] = ρidt

• V Ti
0 is the initial (time zero) level of the volatility.

In mathematical finance, mean reversion is a term for the assumption that an as-
set’s price will tend to converge to the average price over the long–run time.

Besides, it is worth to mention that the main challenge in the HJM model is that
all model parameters must be recalibrated at each point in time; there is no mech-
anism for sequential updating. Also, it is difficult to calibrate the model to actively
traded prices in the market [34]. Thus, in the scope of the thesis work, we aim to
demonstrate the HJM model with 3 maturity option classes, which includes short,
medium and long time to maturity. Denote by T1 the short time to maturity and T2,
T3, respectively for the medium and long time to maturity. Moreover, the dynamic
of the underlying asset price S is given by dS = rSdt+

√
V T
t SdWt. Then we have

our initial proposed model for the simple case of 3 class time to maturity as the
following:


dS = rSdt+

√
V T
t SdW1,t

dV T1
t = CIRT1(κ1, θ1, ρ1, σ1, V

T1
0 )

dV T2
t = CIRT2(κ2, θ2, ρ2, σ2, V

T2
0 )

dV T3
t = CIRT3(κ3, θ3, ρ3, σ3, V

T3
0 )

(23)

We aim to investigating whether the new HJM–SV model, given by (23) captures
the market implied volatility surface better than other multi-factor models. In
particular, we want to see if it outperforms or comparable the double Heston model
in the paper [9].
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Characteristic function In order to apply the Fast Fourier method for option
valuation in the HJM–SV model we need to drive its characteristic function of
underlying asset in the model. Fortunately, since we treat each time to maturity
class separately with each other, i.e there is no correlation between dBi,t, each time
to maturity SV process is one CIR process. Based on the characteristic function of
stock price in Heston model, [17], in which the characteristic function of stock price
is also followed one CIR process, we can derive the characteristic function for stock
price in HJM–SV as following:

ϕ
(HJMSV (Tj))
0 (u, Tj) = exp (A1(u, Tj) + A2(u, Tj)v0) (24)

where:

c1 = κjθj

c2 = −
√

(ρσiui− κj)2 − σ2
j (−ui− u2)

c3 =
κj − ρσjuj + c2

κj − ρσjui− c2

A1(u, Tj) = r0,TuiT +
c1

σ2
j

{
(κj − ρσjui+ c2)T − 2log

[
(
1− c3e

c2T

1− c3

]}
A2(u, Tj) =

κj − ρσjui+ c2

σ2
j

[ 1− ec2T

1− c3ec2T

]
,

and ϕ(HJMSV (Tj))
0 (u, Tj) is the characteristic function of stock price with to time to

maturity option class Tj, j = 1, 2, 3, in equation (23).

3.2 Data selection

We select the European call options data on ABB stock and EURO STOXX 50
index (SX5E) options for evaluating our the HJM–SV model. ABB stock is issued
by ABB Ltd [15], a manufactures and sells electrification, industrial automation,
and robotics and motion products for customers in utilities, industry and trans-
port, and infrastructure worldwide. The SX5E [20] is a leading index of Europe’s
blue chip companies owned by the Deutsche Borse, Dow Jones and SWX Group.
Similar to the Dow Jones 30 index in the U.S., the SX5E is made up of 50 of the
largest and most liquid stocks across 12 eurozone countries. As of August 2020, the
index is dominated by France (representing 36.4% of all total assets) and Germany
(35.2%). The index futures and options on the SX5E, traded on Eurex, are among
the most liquid products in Europe and the world. The SX5E is one of the most
liquid indices for the Eurozone, thus it is an ideal underlying for financial products
or for benchmarking purposes.

Our data on daily implied volatility surfaces is processed from the data product
IvyDB Europe provided by OptionMetrics [24]. These implied volatility surfaces
are constructed and interpolated using call options traded in Nasdaq OMX Nordic
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Exchange (for ABB stock) and in Eurex (for EURO STOCXX 50 index). The time
spans for the dataset are Jan 2017–Dec 2017 and Dec 2019–Dec 2020. In total,
there are 523 days of implied volatility surfaces for ABB stock and 529 days for
Euro Stoxx 50. For each trading day, we have a volatility surface for the two under-
lying assets. There are in total 10 maturities ranging from 30 to 730 calendar days.
There are 13 implied strikes prices corresponding to the following values of Deltas
(an quantity in the Black–Scholes option pricing formula): 0.20 + 0.05i, i = 0, 1, 12.
Hene, for each trading day, the constructed implied volatility surface are based on
N = 10× 13 = 130 options.

Some remarks on the IvyDB Europe option pricing methodology [24]:

• For a given option, the appropriate interest rate input corresponds to the
zero-coupon rate that has a maturity equal to the option’s expiration, and is
obtained by linearly interpolating between the two closest zero-coupon rates
on the zero curve. Options with expiration greater than longest available
maturity use the longest available maturity point.

• An assumption on that the security’s current dividend yield (defined as the
most recently announced dividend payment divided by the most recent closing
price for the security) remains constant over the remaining term of the option.
This “constant dividend yield” assumption is consistent with most dividend-
based equity pricing models (such as the Gordon growth model) under the
additional assumptions of constant average security return and a constant
earnings growth rate.

• For dividend-paying indices, IvyDB Europe assumes that the security pays di-
vidends continuously, according to a continuously-compounded dividend yield.
The dividend yield for European indices is calculated based on linearized put-
call parity. The present value of the dividend payments is:

PV (div) = P − C + (S −K) +K(erT − 1)

where r is interest rate to the option expiration and T is time to maturity in
years. Then the implied dividend yield, q, is: q = PV

T−S

When selecting data for calibration, an approach similar to the one of Galluccio
and Le Cam [12], who proposed to use at least three different options per maturity,
we use a set of market quotes for European call options on ABB stock and SX5E
as follows:

• Maturities: three maturities classes which corresponding to the short, medium
and long maturity.

• strikes: 13 strikes per maturity in the initial calibration round and 8 strikes
per maturity in the second calibration round. The differences between two
round of calibration are objective function and the percentage of ITM and
OTM options in the data.
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• zero short interest rate for ABB stock and SX5E

• zero dividend yield rate for ABB stock and for SX5E.

To divide data selection into three maturity classes, we use:

• the short maturity option class, T1 = 30 days

• the medium maturity option class 30 days < T2 ≤ 182 days

• the long maturity option class 182 days < T3 ≤ 730 days

Regarding our setting of a zero short interest rate and a zero dividend yield rate
in the implementation, it will, in one hand, certainly simplify the calibration pro-
cess and in the other hand, will affect the calibrating results as the interest rate
and dividend yield are different for the market data and for the model. Therefore,
instead of using the market options premium in the original data, we convert the
option premiums from the market implied volatility. By doing so, we are using the
same interest rate and dividend yield for both the market data and for the model,
which creates a fair investigation on if the model captures well the implied volatility
surfaces.

In addition, in the time span from Nov 2019 to Nov 2020, the stock market has
experienced an extraordinary fluctuation. Thus we also would like to involve some
investigation on how the implied volatility had behaved during that period. This
lead us to divide data sample into two sub-data sets, before and after the stock
market cash in March 2020.

March 2020 saw one of the most dramatic stock market crashes in history. In barely
four trading days, Dow Jones Industrial Average plunged 6,400 points, an equivalent
of roughly 26%. This crash was caused by the COVID–19 pandemic. The European
countries economy also was affected strongly with a plunged in SX5E by nearly 37%
in March 2020. As shown in Figure 2a and 2b, both the SX5E index and ABB stock
experienced a significant drop in prices from the end of Feb 2020. In the appendix
A.3 we include the evidence on CBOE Volatility Index (VIX) fluctuation between
Nov 2019–Nov 2020, see Figure 14, to give a better explanation why March 2020
could be accepted as the borderline of the stock market before and after COVID–19.
The VIX index is a real-time index that represents the market’s and according to
Figure 14 the index volatile up to 250% during first few days starting of March 2020.

Data used in Figure 2a, 2b, and 14 are taken from Yahoo Finance [11], the original
currency of ABB and VIX index is in USD while SX5E index is in EURO, thus the
author use average exchange rate USD-SEK between November 2020 and 9 May
2021 to convert the ABB stock price to its original price, in SEK.
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(a) ABB stock price from Jan 01, 2019 to
Nov 30, 2020.

(b) SX5E index from Jan 01, 2019 to Nov
30, 2020.

Figure 2: ABB stock price and SX5E index from Jan 01, 2019 to Nov 30, 2020.
Currency in SEK.

4 Calibration procedure and Results

In this section, we first present the objective function used in calibration process in
the consideration to three most commonly functions used in literature. Afterward,
we explain an useful technique, called Brute–Force algorithm, applying to estimate
the HJM–SV model parameters by minimizing the objective function value. Finally,
we present experiment results of the model on real data.

4.1 Objective function

To calibrate a financial market model, one needs a performance yardstick for the
quality of the calibration–formally, an objective or error function which is to be
minimized. Three objective functions most commonly used in the literature are:

• The Mean Square Error (MSE) of the price differences in currency units:

MSE = min
Θ

1

N

N∑
n=1

(Cmarket
n − Cmodel

n (Θ))2 (25)

• MSE of the relative price differences:

MSE = min
Θ

1

N

N∑
n=1

(Cmarket
n − Cmodel

n (Θ))2

Cmarket
n

) (26)

• MSE of the implied volatility differences:

MSE = min
Θ

1

N

N∑
n=1

(σmarket imp
n − σmodel imp

n (Θ))2 (27)
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where Θ is the model parameter vector, Cmarket
n and Cmodel

n are the market and
model prices of the call option respectively. σmarket imp is the market implied volat-
ilities, such gives a BSM option value equal to market price, Cmarket. σmodel imp(Θ)
is the model implied volatilities, such gives a BSM option value equal to model price
Cmodel(Θ)

In the first stage of our framework, we use the MSE of the price differences, from
now called by MSE–prices for short, given by (25), in the calibration. The main
reason for choosing the MSE–prices is the fitting process will be quite straightfor-
ward. Parameter set Θ in HJM–SV model will be estimated by fitting the model
option prices to the market values, just in comparison with MSE of the implied
volatility differences, called MSE–impVol for short, which requires a considerable
amount of time trying to fetch the implied volatility from the Black–Scholes formula
using the scheme which was described in section 2.5.

Furthermore, the implied volatilities are the target of the calibration procedure, so
in the second stage of our framework, we use MSE of the implied volatility differ-
ences, given by (27), as our error function in calibration.

4.2 Nelder–Mead (Brute–Force) algorithm

While calibrating, we use a Nelder–Mead simplex algorithm [29] to find the min-
imum of our objective function, which has a set variable Θ. The Nelder–Mead
algorithm has a long history of successful use in applications, even though it will
usually be slower than an algorithm that uses first or second derivative informa-
tion. In addition, since there currently is no complete theory describing when the
algorithm will successfully converge to the minimum, or how fast it will if it does,
for convergence both the ftol and xtol criteria must be met. Thus we decide to set
ftol and xtol equal to 0.001 with belief that our function achieves convergence. By
doing that we accept the sacrifice in computing time.

4.3 Results

In this subsection, we show the experimental results in our two calibration rounds.
The motivation of conducting two separate calibration rounds is given as follows.

The first round of calibration characterized by:

• Data time spans from Jan 2017–Dec 2017

• There are 13 strikes per one maturity in each time to maturity option class.
That means, no cleaning data step has been made and this leads to the avail-
ability of extremely ITM or OTM options.

• Try with both objective function mention in 4.1
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The aim in this round is to compare the calibrated results when using the objective
function MSE–prices and MSE–impVol.

The second round of calibration characterized by:

• Use only the MSE–impVol objective function

• Data time spans from Nov 2019–Nov 2020

• There are 8 strikes per one maturity in each time to maturity option class
as we add an extra condition while selecting options for calibration. We
eliminating those options which are extremely in ITM or OTM by setting the
condition for option Selection before calibrating: choose only options, which
has abs(K − S0)/S0 < tol, where tol is the percent ITM/OTM options, and
in our experiment we choose a tol = 0.02.

The aim of the second round of calibration is to compare the calibrated results for
before and after the market crash in March 2020.

4.3.1 Parameter estimates from calibration with MSE–prices vs MSE–
impVol

Using different objective functions in the calibration procedure will definitely lead
to different outputs. Each objective function has its own advantages and drawbacks.
The motivation for us to use MSE–prices and MSE–impVol have been explained
in the previous subsection. Thus in the following, we show how the MSE–impVol
works in comparison to MSE–prices in our evaluation.

In order to show the summary results for an arbitrary date in the first round time
spans, we select the day 2017/12/11. Table 1 and Table 2 illustrate the comparison
errors when calibrated on call options ABB stock on 2017/12/11, using the two
different objective functions.

Parameters kappa theta sigma rho V0

Short maturity MSE prices 1.018 0.297 0.777 -0.090 0.007
MSE impVol 1.068 0.445 0.975 -0.060 0.000

Medium maturity MSE prices 1.953 0.013 0.047 -1.000 0.025
MSE impVol 0.961 0.012 0.151 -0.652 0.024

Long maturity MSE prices 13.522 0.020 0.359 -1.000 0.055
MSE impVol 0.084 0.020 0.047 -0.994 0.023

Table 1: Comparison calibrated parameters using different objective functions. Cal-
ibrated on call options ABB stock on 2017/12/11.

Figure 3a illustrates the comparison between ABB stock calls model values and mar-
ket values. Figure 3b illustrates the comparison between ABB stock calls model
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(a) Compare market with model option
premiums ABB calls on 2017/12/11; for
maturity class T1 = 30 days.

(b) Compare market with model option im-
pVol ABB calls on 2017/12/11; for matur-
ity class T1 = 30 days.

Figure 3: Compare market with model result on ABB calls on 2017/12/11.

impVol and market impVol. Obviously, the model impVol is far from fit to mar-
ket imVol curve. Thus, one conclusion can be made is that using the MSE–prices
objective function, the calibrated results lead to a well-fitted model call values to
market call values while does not perform well on the target of the optimization
which is generating a similar smile curve as market impVol.

We show on Figure 4 the comparison between market impVol and model impVol
for medium maturity class of ABB options, which have 60 days ≤ T2 ≤ 182 days.
While Figure 5 the comparison–for the long maturity class, 273 days ≤ T3 ≤ 730
days. From these comparisons, we can see that the HJM–SV model still works for
medium maturity class, but does not capture well the long maturity class. For the
long maturity class options, the model impVol curves loose the form of smiles/skews.
They are displayed as linear lines with negative slopes, which are significant differ-
ent from the market impVol curves.

In addition to visualize comparison the , we would like to use the numerical com-
parison in order to have a fair evaluate on which objective function works better
for our calibration. Thus we use the mean absolute error (MAE), as shown in the
Table 2, between market and model impVol. The MAE is calculated as follows:

MAE =
1

13

N∑
i=1

|(σmarket
i − σmodel

i )|

where i is the ith option in the 13 options used for calibration on 2017/12/11.

From Table 2, one can see that the MSE–impVol gives us smaller MAEs value
in all maturity class calibration. Therefore, from now on we focus on displaying
experimental results of calibration using MSE–impVol. This is also the main reason
that in the next section, while calibrating with new data time spans we only apply
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(a) Market ImpVol smiles for different
maturities

(b) Model ImpVol smiles for different
maturities

Figure 4: Compare market with model result on ABB calls on 2017/12/11.Medium
maturity class 60 days ≤ T2 ≤ 182 days, ABB stock call options

(a) Market ImpVol smiles for different
maturities

(b) Model ImpVol smiles for different
maturities

Figure 5: Compare market with model result on ABB calls on 2017/12/11. Long
maturity class 273 days ≤ T3 ≤ 730 days, ABB stock call options
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MSE–impVol as our objective function. Besides, the HJM–SV model does not
capture well the long maturity class, we, therefore, eliminate the long maturity in
the second round of calibration with data time spans from Dec 2019–Dec 2020.

Parameter MAE

Short Maturity Class MSE prices 0.0093
MSE impVol 0.0088

Medium Maturity class MSE prices 0.0056
MSE impVol 0.0038

Long Maturity class MSE prices 0.00466
MSE impVol 0.0030

Table 2: MAE between market and model implied volatility for different maturity
classes and with different choices of objective function, on 2017/12/11.

In the attempt of investigating whether or not the calibrated parameters on a
trading day could be useful in forecasting the impVol of the options in the near
future, we use the calibrated parameter set of a day, and apply it the day after, i.e.
the next trading day. Then we evaluate the error that it generates. We call this
error as the next day error. Table 3 shows the next day errors for each maturity
class on the trading date 2017/12/12.

Parameter MAE
Short Maturity Class 0.009
Medium Maturity class 0.0085
Long Maturity class 0.00363

Table 3: Using calibrated parameters on 2017/12/11 to calculate the model impVol
in the next trading day, 2017/12/12.

4.3.2 Parameter estimates for data before vs after Covid 19

Figure 6 and Figure 7 show the resulting model values compared to the market
quotes of the ABB stock call options and EX50 call options, respectively. Although
this is not the direct target of the optimization, the calibrated parameters set gives
us quite fitted model values to its market values.
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(a) Compare market and model option
premiums of EX50 calls on 2019/11/04; for
maturity class T1 = 30 days.

(b) Compare model impVol and market imp
Vol of ABB calls on 2019/11/04; for matur-
ity class T1 = 30 days.

Figure 6: Compare calibrated results on ABB stock calls on 2019/11/04; for ma-
turity class T1 = 30 days.

(a) Compare market and model option
premiums of EX50 calls on 2019/11/04; for
maturity class T1 = 30 days.

(b) Compare model impVol and market imp
Vol of EX50 calls on 2019/11/04; for matur-
ity class T1 = 30 days.

Figure 7: Compare calibrated results on EX50 calls on 2019/11/04; for maturity
class T1 = 30 days.

Figure 8 show the resulting model impVols compared to the market impVols. We
want to recall that we used the error function (27) used in our calibration.
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(a) Compare model impVol and market imp
Vol of ABB calls on 2019/11/04

(b) Compare model impVol and market imp
Vol of EX50 calls on 2019/11/04

Figure 9: Compare market with model results on 2019/11/04; for maturity class
60 days ≤ T2 ≤ 182 days.

(a) Compare model impVol and market imp
Vol of ABB calls on 2019/11/04; for matur-
ity class T1 = 30 days.

(b) Compare model impVol and market im-
pVol of EX50 calls on 2019/11/04; for ma-
turity class T1 = 30 days.

Figure 8: Compare model impVol and market impVol. Short maturity class T1 = 30
days.

Similarly, we generate the plots to compare HJM–SV model impVol and market
imp Vol for the medium group maturity 60 days ≤ T2 ≤ 182 days. The plots for
ABB stock and EX50 are respectively Figure 9a, and Figure 9b.

In the appendix B.1, we illustrate the daily MAE of the market and HJM–SV
model impVol of ABB calls in Jan 2020, Feb 2020, Mar 2020, and Apr 2020. The
last column shows how well the estimates for parameters set Θ in HJM–SV model
work on the next trading days in term of forecasting the volatility.

The MAE calibrated with ABB stock, and EX50 call options for short maturity class
(= 30 days) are shown in the following Table 4. From this table one can see that the
errors in period before the pandemic is relatively smaller than the error in the crisis
month of the pandemic, e.g. Mar 2020 and Apr 2020. A reasonable explanation
could be that our input ranges for initial parameter guesses are unchanged in the
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calibrations for the most and the least market fluctuated days. As a result, it would
be hard to have a good approximation of optimal parameter set.

Calibration with MSE–impVol
Average of MAE for daily calibration
Before Covid After Covid

Jan 2020 Feb 2020 Mar 2020 Apr 2020
Short maturity, ABB stock 0.0013 0.0014 0.0433 0.0350

Short maturity, EUROSTOX50 index 0.0001 0.00006 0.1590 0.000001

Table 4: Compare errors when calibrating with MSE–impVol before and after the
Covid pandemic.
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5 Conclusions

In our work, we use a large data set on daily implied volatility surfaces to calibrate
our proposed HJM–SV model, and from the experimental results we observe that
the new model works better for the maturity classes less than 6 months, rather than
the long maturity from 9 months up to 2 years. In particular, the model adequately
fits observed short maturity option class (30 days) and medium maturity maturity
option class (from 60 days up to 180 days) in the period from Jan 2017 to Dec 2017
and from Nov 2019 to Nov 2020, while it fails on the long maturity class (from 273
days to 730 days) in the same time period.

Besides, a combination of the expected speed and ease of implementation made us
go with a choice of using Fourier–based approach option pricing in our work. We
believe that applying the Fourier–based method could allow us to expand the work
in the future for using HJM–SV model in different designed markets. It means
once the framework is set up, other different St-models can be evaluated simply by
interchanging the characteristic equations. The calculations in this method could
be done quickly and with good accuracy, while the surfaces produced should have
neat shapes.

Future works

As reported in the calibrated results section, for the long maturity class from 273
days up to 730 days, we could not find reasonable estimates of parameter set in
HJM–SV. Perhaps we need to include more constraints in the model in order to build
a implied volatility curve for options maturity class above 1 year. As mentioned
in the section 2.1.4, some researchers including Y. Le Cam and S. Galluccio, have
claimed that SV–jump diffusion models matches the market better than the use SV
types alone. One potential approach to improve our HJM–SV model is adding the
jump confusion process to the SV of underlying asset prices.
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A Appendix Sample Data

A.1 ABB call option data

Figure 10: Snapshoot of calls on ABB stock in Nov 2019 from IvyDBEurope

40



Figure 11: Snapshoot of one sample data of calls on ABB stock used in calibration
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A.2 EURO STOXX 50 call option data

Figure 12: Snapshoot of calls on Eurostoxx 50 in Nov 2019 from IvyDBEurope

Figure 13: Snapshoot of one sample data of calls on Eurostoxx 50 used in calibration
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A.3 Supporting figures

Figure 14: CBOE Volatility Index (VIX) index from Jan 01, 2019 to Nov 30, 2020;
currency in USD
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B Appendix Results

B.1 Mean absolute error between model and market impVol–
calibrated on ABB options data

Figure 15: ABB calls data; Mean absolute error between model and market impVol
in Jan 2020
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Figure 16: ABB calls data; Mean absolute error between model and market impVol
in Feb 2020
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Figure 17: ABB calls data; Mean absolute error between model and market impVol
in Mar 2020
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Figure 18: ABB calls data; Mean absolute error between model and market impVol
in Apr 2020
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Figure 19: EUROSTOX50 calls data; Mean absolute error between model and
market impVol in Jan 2020
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Figure 20: EUROSTOX50 calls data; Mean absolute error between model and
market impVol in Feb 2020
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Figure 21: EUROSTOX50 calls data; Mean absolute error between model and
market impVol in Mar 2020
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Figure 22: EUROSTOX50 calls data; Mean absolute error between model and
market impVol in Apr 2020
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