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Abstract

In order for governments and demographers to, among other things, design policies and pension
plans, as well as for insurance companies to offer policies that serve general public, having
reliable mortality data plays a crucial role. The academic world works actively in developing
tools (models and methods) that can, based on collected mortality data, forecast future death
rates in the observed population. Obviously, to be able to rely on the predicated data one needs
a reliable source of existing mortality data. In the light of the ongoing COVID-19 pandemic,
reliability of certain death-case reporting has been questioned. In this thesis, the Benford’s
Law is used to evaluate how well countries with authoritarian regimes (Azerbaĳan, Belarus),
and with democratic regimes (Greece, Serbia, Sweden), report their COVID-19 cases to the
worldwide public. Statistical tests such as the Chi-squared test, mean absolute deviation,
and the distribution distance were used to obtain the results needed to form our conclusions.
During our testing, we found that countries with democratic regimes do conform better to the
Benford’s law than the authoritarian ones.
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WHO World Health Organization

PDF Probability density function

MAD Mean absolute deviation

df Degrees of freedom

3



List of Symbols

∞ infinity

∈ belongs in⋃
arbitrary union

∪ union

log logarithm base 10

ℳ significand f-algebra
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0 significance level

� Borel set

1 BL distribution for each digit

13 Benford’s Law distribution

3 3 = (1, 2, ..., 9) where 1,2,...,9 are the first digits
3∗ distribution distance test statistic

� (-) expected value of random variable X

4 the number e or Euler’s number

5 (G) density function of X

�0 null hypothesis

�0 alternative hypothesis

ℎ3 observed different frequencies

: degrees of freedom

# number of data points

#3 number of observations of the integer 3

= number of observations / sample size
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((G) significand

B scalar

+ (-) variance of random variable X

- random variable

U shape parameter

V scale parameter

Γ(U) gamma function

\ inverse scale parameter

` mean∑
summation or sum

f2 variance

j2 Chi-square test
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Chapter 1

Introduction

1.1 Overview

Nowadays, everything is related to enormous amounts of data. Satellites provide daily
information greater than the entire Kungliga biblioteket (The National Library of Sweden)
meaning that the researchers need to efficiently and quickly analyze these sets of data. Con-
sequently, individuals are interested in patterns of data. Benford’s Law (BL) is one of these
applications that analyze data patterns and has to do with how frequently the leading digits or
first digits appear. The concept of scientific notation was introduced which is that: a nonzero
number H can be written as ((H) ∗ 10: , where ((H) ∈ [1, 10) is the significand and : is an
integer. This integer part is the leading digit or the first digit [21].

Although, the lawholdsBenford’s name, in reality hewas not the first to observe such a lead-
ing digit distribution. Simon Newcomb (1835-1909) who was an astronomer-mathematician
noticed this behaviour almost five decades before Benford [21]. One of Newcomb’s short
articles indicates that digits do not occur with the same probability and that the most frequent
occurring first digit is integer 1 whereas 9 is the digit with occuring the least. Furthermore,
the paper also notes that is crucial to not select natural numbers at random but to choose two
specific ones and then find the probability of the first significant digit = with the help of their
ratio [22].

Frank Benford was a physicist in the Research Laboratory of the General Electric Company
in Schenectady, NY, USA and his work there was most related with optics. The notable law
is also known under the name of "The Law of Anomalous Numbers". Moreover, he was the
one to study the distribution of twenty different sets of data, such as area, population, rivers,
newspapers etc. and check this kind of leading digit behaviour. Noteworthy is one important
finding in his study that indicates that while individual sets may not satisfy BL, connecting
different data of sets forms a sequence which seems to behave similar to the corresponding law
[21].

Benford’s Law arises in a variety of disciplines and few of them take place afterwards.
In electrical engineering by using lightning data in order to check if the data follows the
BL distribution [19]. The document is using data taken from the European Cooperation for
Lightning Detection. It then applies a Chi-square goodness-of-fit test in order to examine if
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the two considered data sets named Lightning Peak current and Inderstroke interval follow the
BL distribution which in fact they do. In addition, the law can be found, in biological sciences
according to the paper [9]. Four hundred and nine Microcystis aeruginosa colonies were
collected from different locations in Andalusia, Spain and their number of cells were analyzed
by using Chi-square goodness-of-fit test with eight degrees of freedom. The result gives that
the number of cells of the certain cyanobacterium follow the BL distribution. Furthermore,
in social sciences through the study of the paper [14] , where the study analyzes the data of
five major social networks. Four of them followed the BL distribution, whereas one did not
due to a feature of that platform that was able to change the individuals’ behavior. Finally, in
accounting according to [3], where the authors indicate that Benford analysis can be used in
order to examine if there are patterns in huge number of data that show clues of manipulation.

After introducing some general background about this law, BL can be defined as follows:

#3 = #;>610(1 +
1
3
)

where # is the number of data points and #3 is the number of observations of the integer
3 = (1, 2, ..., 9). Often the law fails to be satisfied if there is human manipulation or flaws in
the given data [16]. Therefore, BL has been used to identify fraudulent or manipulated data
of different nature. BL can be potentially used in order to examine if a specific country has
given false or manipulated COVID-19 data presented to the public. Since the spread of virus
exhibits exponential growth and changes in terms of magnitude, the law can be applied to these
types of data. It has to do with the fact that Benford distribution of the leading digits appears
naturally for such exponential events with changes in the magnitude [6].

1.2 Aim and Purpose
This study is carried out with the purpose of analyzing the BL from the scratch, as well

as its derivation, generalizations and limitations. Deficiencies and improvements will also
be discussed. Finally, this thesis attempts to further clarify and add knowledge to previous
research by implementing the law on five countries’ COVID-19 data and examine if this specific
data is trustworthy. The study will be held in the context of Greece, Serbia, Sweden, Belarus
and Azerbaĳan. This way the study will provide important information to the public, as well
as government and demographic planning bodies, insurance companies etc, who greatly rely
on trustworthiness of this data in their work. Moreover, the academic community will be
enriched with additional statistical experiments. Our hope is that, during the course of the
project, future research ideas will arise which can be suggested to the research community for
further investigation.

1.3 Methodology
It is crucial to study and understand BL in order to attain better background knowledge

about the topic. In addition, Chapter 2 will consist of the proof, generalizations and limitations
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of the law. Further, we will use quantitative secondary data taken from Center for Systems
Science and Engineering of John Hopkin’s University [5] or any other trustworthy source for
the COVID-19 cases. The data will be taken from countries that, according to the authors’
knowledge, are not investigated in any other research. We intend to use a programming
language such as R andMatLab in order to show any false reporting from the chosen countries,
by illustrating our results using graphs and tables. Furthermore, we may use programming
codes that are already mentioned in previous research.
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Chapter 2

Theoretical Consideration

2.1 Generalization (Statement of Benford’s Law)
In order to better understand the Benford’s law and the way it performs, we have written

down relevant definitions and such that are based on [13], [24], [21], and [25].

2.1.1 The distribution of the first significant digit
Definition 2.1.1 (Benford’s Law for the first significant digit). We say the data set satis-
fies Benford’s Law for the Leading digit if the probability of observing a first digit of d is
approximately

%(�1 = 31) = log
3 + 1
3

, (2.1)

for d = 1,2,...,9.

It is hard to say what approximately might mean in this case. By conducting a statistical
test, such as the most commonly used in this case Chi-square, it often rejects the null hypo-
thesis with large data sets if there is a small deviation from the distribution. Thus, besides the
results of the null hypothesis testing, we shall consider a good visual fit to describe the word
"approximately" in our study. In addition, for a better understanding, Fig. 2.1 reveals the ratio
of each of the 9 digits from 1 to 9 that follow the Benford’s law.

Despite determining the probability of the first significant digit, it is possible to find the
probability of the entire significand, meaning that we can find the probability of observing a
significand between 1 and 2, or between 4 and c. This is referred as the Strong Benford’s Law.

Definition 2.1.2 (Strong Benford’s Law for the Leading Digits). The data satisfying the Strong
Benford’s Law would be if the probability of observing a significand in [1,s) is log B.

The under-performance of this law for certain types of data sets has lead to an establishment
of certain criteria that should be met so that the data would obey the law. These include:

• Relatively uniform data span over several magnitudes.
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Figure 2.1: Benford’s Law for the first signifinact digit

• The mean should be greater than the median, and have a positive skew.

• The data under testing should be of a natural occurrence, the result of multiplicative
variation, and not modified by any human involvement.

2.1.2 The distribution of significant digits
Definition 2.1.3 (The general significant-digit law). For all positive integers c, all 31 ∈
{1,2,...,9} and all 3 9 ∈ {0,1,...,9} where 9 = 2, ..., 2 , it follows that

%(�1 = 31, ..., �2 = 32) = log

[
1 + (

2∑
8=1

38 × 102−8)−1

]
. (2.2)

By using the above definition, the probabilities for the first and for the second significant
digits are presented in the Table 2.1.

Table 2.1: Probabilities for the first and second significant digits under Benford’s Law
Digit 0 1 2 3 4 5 6 7 8 9
First - 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

Second 12.0% 11.4% 10.9% 10.4% 10.0% 9.7% 9.3% 9.0% 8.8% 8.5%

The author of [24] mentions that the significant digits are dependent, meaning that the
unconditional probabilities of the 9 Cℎ significant digits differ from the conditional probabilities
when the 9 Cℎ − 1 significant digit is given.
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2.1.3 Mantissa (significand) distribution
From Definition 2.1.3 we can generalize the mantissa distribution as follows [13]:

Lemma 2.1.1. The logarithmic density in Definition 2.1.3 can be generalized in a continuous
way for the mantissa " in the following form:

%(" ≤ <) = log(<), (2.3)

where < ∈ [1,10).

Proof.

• First, we consider the case where < = 31, i.e. < has only one significant digit:

%(" ≤ <) =
{

0 if 31 ≤ 1 (%(" = 1) = 0) in a continuous case)
%(�1 ≤ 31 − 1) = log(31) = log(<) if 1 < 31 < 10.

(2.4)

• Then we suppose < = 31, 32, ..., 32 in decimal notation, i.e. < =
∑2
8−1 10−(8−1)38, with

31 > 1, 32 > 0, ..., 32 > 0:

%(" ≤ <) = %(�1 ≤ 31 − 1)+
+ %(�1 = 31, �2 ≤ 32 − 1)+
+ ...+
+ %(�1 = 31, �2 = 32, ..., �2−1 = 32−1, �2 ≤ 32 − 1)

= %(�1 ≤ 31 − 1)+
+

∑
0≤3 ′2≤32−1

%(�1 = 31, �2 = 3
′
2)+

+ ...+
+

∑
0≤3 ′2≤32−1

%(�1 = 31, �2 = 32 − 1, ..., �2 = 3
′
2)

= log(31)+

+
∑

0≤3 ′2≤32−1
log

(
1 + 1

1031 + 3′2

)
+ ...+

+
∑

0≤3 ′2≤32−1
log ©«1 +

(
2−1∑
8=1

102−838 + 3′2

)−1ª®¬ .

(2.5)
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By analogy with the derivation of the first digit distribution:

%(� ≤ 3) =
∑

1≤3 ′≤3
%(� = 3′) =

∑
1≤3 ′≤3

log
(
1 + 1

3′

)
= log

( ∏
1≤3 ′≤3

(
1 + 1

3′

))
= log

((
1 + 1

1

) (
1 + 1

2

)
...

(
1

1
3

))
= log

(
2
1
× 3

2
× ... × 3 + 1

3

)
= log(3 + 1),

(2.6)

where 3 ∈ {1, ..., 9}, we find:

%(" ≤ <) = log(31) + log
(
1031 + 32

1031

)
+ ... + log

(∑2
8=1 102−138∑2−1
8=1 102−838

)
= log

(∑2
8=1 102−838

102−1

)
= log

(
2∑
8=1

10−(8−1)38

)
= log(<).

(2.7)

• In case that any of the 3 9 ’s ( 9 > 1) are null, the above still holds.
For example, if < = 3132...3 9−103 9+1...32, then there is no 9 Cℎ term in the sum, which
leads to the followng expression:

%(" ≤ <) = log(31) + ...

+ log

( ∑ 9−8
8=1 10 9−1−838∑ 9−2
8=1 10 9−1−838

)
+ 0 + log

(∑ 9+1
8=1 10 9+1−838∑ 9

8=1 10 9+1−838

)
+ ...

+ log

( ∑2
8=1 102−838∑2−1
8=1 102−838

)
= log

(
1

10 9−2 ×
∑ 9−1
8=1 10 9−1−838∑ 9

8=1 10 9+1−838
× 1

102− 9−1 ×
2∑
8=1

102−838

)
= log

(
1

10 9−2 ×
1

102 ×
1

102− 9−1 ×
2∑
8=1

102−838

)
= log(<).

(2.8)

This can be easiliy extended to the case where several 3 9 ’s are null or if 31 = 1.

�
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2.1.4 The significand f-algebra
It is noticeable that the definitions of the significant digit’s laws are probabilities, thus, it

is important to assign the right probability space, hence the correct f-algebra. Here, [21] and
[24] define it as follows:

Definition 2.1.4. The significand f-algebra (, denoted byℳ and will be called the (decimal)
mantissa f-algebra, is the f-algebra on R+ generated by the significand function (, i.e.,
( = R+ ∩ f((). It is a subfield of Borels defined by:

ℳ =

∞⋃
==−∞

B × 10= (2.9)

for some Borel B ⊆ [1, 10).

Lemma 2.1.2. Main properties of the mantissa algebra are:

i. Every non-empty set inℳ is infinite with accumulation points at 0 and +∞,

ii. ℳ is closed under scalar multiplication (B > 0, ( ∈ℳ ⇒ B( ∈ℳ),

iii. ℳ is closed under integral roots (< ∈ N, ( ∈ℳ ⇒ (1/< ∈ℳ), but not powers,

iv. ℳ is self-similar in the sense that if ( ∈ℳ, then 10<( = ( for every integer <.

While properties i, ii, and iv follow easily the definition [24], a closer inspection to the
property iii can be done.

Proof. Proof of property iii
The square root of a set in ℳ may consist of a few parts, and the same goes for higher roots.
For instance, if

( = {�1 = 1} =
∞⋃

==−∞
[1, 2) × 10=, (2.10)

then

(1/2 =
∞⋃

==−∞
[1,
√

2) × 10= ∪
∞⋃

==−∞
[
√

10,
√

20) ∈ℳ, (2.11)

but

(2 =

∞⋃
==−∞
[1, 4) × 102= ∉ℳ, (2.12)

because of the great gaps that prevent writing it down in terms of {�1, �2, ...}. �

From the above properties it is worth mentioning that ii is key to the hypothesis of scale
invariance and iv is key to the base hypothesis.
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2.1.5 Scale and base invariance
Considering the "universality" of the BL, one of the first hypothesis that one may think of

is it’s scale invariance. The idea that natural data sets would follow the law independent of the
chosen unit system means that converting the data by multiplying it with whatever constant
will not change the probability measures. Furthermore, it is of interest if the BL is affected by
the change of the base, meaning that if an observed data set is in base 10, then the BL would be
observed even if the base would be changed. In both of his articles, [24] and [25], the author
explains in more detail the theorems behind these properties, from where we can write down
the following definitions for each case.
Definition 2.1.5. A probability measure % on (R+,ℳ) is scale invariant if %(() = %(B() for
all B > 0 and all ( ∈ℳ.
Definition 2.1.6. A probability measure % on (R+,ℳ) is base invariant if %(() = %((1/=) for
all positive integers n and all ( ∈ℳ.

However, there still exist questions concerning scale invariance, such as Furstenberg’s
25-year-old conjecture that the uniform distribution on [0, 1) is the only atomless probability
distribution invariant under both 2G(mod 1) and 3G(mod1) [24].

2.2 Proof
The successfulness of the BL was quite a mystery for many years as it was unclear whether

the law was relevant because of some sort of mechanism present in the nature or that it was a
result of human system of numbers. This has changed with the general derivation of the law
from application of the Laplace transform, where the law is derived in its strict form that is
composed of the Benford term that explains the generality of the law, and an error term that
leads to deviations from the law. We will present the proof that the authors in [17] have shown,
which shows to be very neat and understandable. Although the authors have derived a proof
for all the significant digits, we will present the proof for the first digit only as it is our main
point of interest in this thesis, and will leave the reference for the reader.

Let � (G) be our probability density function on the set of all real positive numbers R+.
(Note that we are using � instead of the lower case as used in Laplace). It might happen that
G could be a negative number as well, but this could be fixed by taking the absolute value of G
and using it in the probability density function, and thus keep the results unchanged.

The probability %3 on the decimal system whose value is 3 is the sum of the probabilities
on the interval [3 · 10=, (3 + 1) · 10=) for all integers =, thus %3 can be written as:

%3 =

∞∑
==−∞

∫ (3+1)·10=

3·10=
� (G)3G, (2.13)

which can be rewritten as:
%3 =

∫ ∞

0
� (G)63 (G)3G, (2.14)
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where 63 (G) will be a new density function whose role will be explained from now on. By
adopting the Heaviside step function,

[(G) =
{

1, if G ≥ 0,
0, if G < 0,

(2.15)

we can write 63 (G) as

63 (G) =
∞∑

==−∞
[[(G − 3 · 10=) − [(G − (3 + 1) · 10=)] . (2.16)

We can explain from above that in the decimal system, numbers favor to smaller first digits,
opposed to the thought that each of the numbers from 0 to 9 have the same probabilities. Figure
2.2 will be more helpful to understand why this happens. The density functions 61(G) and
62(G) are presented on the interval [1,30).

Figure 2.2: Images of 61(G) and 62(G) functions showing their distribution

We now prove that if the PDF has an inverse Laplace, it satisfies BL. Let 5 (C) be the inverse
Laplace transform of � (G), and � (C) be the Laplace transform of 6(G), i.e.

� (G) =
∫ ∞

0
5 (C)3−CG3C, (2.17)

� (C) =
∫ ∞

0
6(G)3−CG3G. (2.18)
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The Laplace transform’s properties are the following:∫ ∞

0
� (G)6(G)3G =

∫ ∞

0
3G6(G)

∫ ∞

0
5 (C)4−CG3C

=

∫ ∞

0
3C 5 (C)

∫ ∞

0
6(G)4−CG3G

=

∫ ∞

0
5 (C)� (C)3C,

(2.19)

meaning that Laplace may act on either 5 or 6 with the above integral without changing the
results.
To calculate the left-hand side, for convenience the righ-hand sidewill be calculated. Beginning
with Laplace transform of 63 (G), it gives:

�3 (C) =
∫ ∞

0
63 (G)4−CG3G

=

∞∑
==−∞

∫ (3+1)·10=

3·10=
4−CG3G

=
1
C

∞∑
==−∞
(4−C3·10= − 4−C (3+1)·10=),

(2.20)

which can be treated as a function of variables 3 and C. Although 3 is defined on the decimal
digit set 1,2,...,9, it can be extended to the whole real axis and thus �3 (C) is continuous for
both 3 and C. To evaluate �3 (C), the partial derivative will be calculated with respect to 3, and
integrate the partial derivative that results in

m�3 (C)
m3

=

∞∑
==−∞
(−10=4−C3·10= + 10=4−C (3+1)·10=)

≈
∫ ∞

−∞
(−10G4−C3·10G + 10G4−C (3+1)·10G )3G

=
1

ln 10

∫ ∞

0
(−4−C3H + 4−C (3+1)H)3H

=
1

ln 10

(
− 1
C3
+ 1
C (3 + 1)

)
.

(2.21)

Because �3 (C) → 0 when 3 →∞,

�3 (C) ≈
1
C

log10(1 +
1
3
) (2.22)
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and thus:
%3 =

∫ ∞

0
� (G)63 (G)3G

=

∫ ∞

0
�3 (C) 5 (C)3C

≈
∫ ∞

0

5 (C)
C

log10(1 +
1
3
)3C

= log10(1 +
1
3
)
∫ ∞

0

5 (C)
C
3C

= log10(1 +
1
3
),

(2.23)

where the following normalization condition of 5 (C) has been used:

1 =
∫ ∞

0
� (G)3G

=

∫ ∞

0
3G

∫ ∞

0
5 (C)4−CG3C

=

∫ ∞

0
3C 5 (C)

∫ ∞

0
4−CG3G

=

∫ ∞

0

5 (C)
C
3C.

(2.24)

2.3 Limitations
AlthoughBernford’s law is largely adopted for data checking in various fields, in some cases

though this method performs poorly in indicating a deviation that can suspect a fraud in the
data. An obvious limitation would be a really small data set. The law can be observed only over
a big collection of data. Furthermore, the authors of [3] explained the most notable limitations
for this method. Themethod can detect deviation in proportion in case that some data has either
been added or removed, which in result will break the chain of natural occurrence. However,
if the data has not been added at all, it cannot violate the occurrence, and here this method
shows a significant downside. Another case of poor performance of this method is when the
data has a limited magnitude in it’s values, for instance if an input of data requires the number
to be within a specific region (e.g. from 20 to 500). The leading digits in this case would not
follow the law merely because the data will omit lower or higher entries, breaking the natural
proportion. Prices that are assigned by humans are not compatible with this law either, as well
as assigned numbers to e.g. accounts, transactions etc., and firm specific numbers.

2.4 Distributions
Before reaching to Chi-square test couple of concepts are crucial to be indicated in this

thesis for a better understanding. In order to explain Chi-square test there is a need for Chi-
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square distribution to be stated. However, Chi-square distribution is a special case of Gamma
distribution which means that this concept should also be indicated [20]. Finally, in the end
some subsections may have a small numerical example representing how the aforementioned
concepts can be applied.

2.4.1 The Gamma Distribution
Definition 2.4.1 (Gamma Distribution). A random variable (r.v.) - will have a Gamma
distribution with the following parameters U > 0 and V > 0 if and only if the density function
of - is

5 (G) =


GU−14

− G
V

VUΓ(U) , for 0 ≤ G < ∞,

0 x<0
(2.25)

where
Γ(U) =

∫ ∞

0
GU−14−G3G. (2.26)

The integral is the well known gamma function. Further, Fig. 2.3 indicates that for different
values of U and V the shape of the gamma density changes according to U. Consequently, that
is parameter U is called shape parameter. Whilst, parameter V is known under the name scale
parameter since when someone multiplies a gamma-distributed r.v. by a positive constant the
result will be again an r.v. following a gamma distribution. The only difference is that V will be
revised but U stays the same. In addition, there is the inverse scale parameter or rate parameter
\ = 1

V
which is going to help us simplify the density function later.

Figure 2.3: Γ density functions with different U
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The following example sheds light upon on how to use the concept of Gamma Distribution
in the real world in order to predict a certain probability.

Example 2.4.1. Themagnitude of earthquakes that were recorded in a region of Greece follows
a gamma distribution with U = 0.6 and V = 2.3. What is the probability that the magnitude of
an earthquake striking that region will exceed the 4.5 on the Richter scale?

Let - be the magnitude of an earthquake which strikes in a region measured by the
Richter scale - ∼ Γ(U, V) = Γ(0.6, 2.3) which means that - follows a Γ distribution with the
corresponding U and V.

Here it is enough to use an applet or the table of Γ distribution and find the corresponding
probability which is %(- > 4.5) ≈ 0.06305. We decided to use a software in order to find the
probability that the magnitude will be greater than 4.5 on the Richter scale [8].

2.4.2 Chi-square Distribution
In order to prove the latter Chi-square distribution’s definition, it is essential to refer to a

gamma distribution’s theorem.

Theorem 2.4.1. If X has a gamma distribution with parameters U and V, then

` = � (-) = UV and f2 = + (-) = UV2, (2.27)

where ` is the mean, � (-) is the expected value of the r.v. - , f2 and + (-) are the variance
of the r.v - .

Proof. Now it is important to prove these two equalities. It is known that the expected value
is equal to

� (-) =
∫ ∞

−∞
G 5 (G)3G. (2.28)

It is already known that 5 (G) is equal to eq. (2.25). Thus,

� (-) =
∫ ∞

0
G

(
GU−14

−G
V

VUΓ(U)

)
3G. (2.29)

The integral’s limits are different due to the two cases in eq. (2.25). Additionally, we know that
the gamma density function integrates to 1 and we need this mathematical concept in order to
further proceed with our proof of expected value. Consequently, substituting the inverse scale
parameter \ = 1

V
follows that:∫ ∞

−∞
5 (G)3G =

∫ ∞

0

\UGU−14−G\

Γ(U) 3G =
1

Γ(U) \
U

∫ ∞

0
GU−14−G\3G. (2.30)

For now leave the constant part out and analyze the integral part. Let C = \G, then 3G = 1
\
3C

and
1
\

∫ ∞

0

(
C

\

)U−1
4−C3C =

1
\U

∫ ∞

0
CU−14−C3C. (2.31)
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The part inside the integral looks familiar and it is actually Γ(U) according to eq. (2.26),

1
\U
Γ(U). (2.32)

In addition refer back and get the constant that was left out before. Thus,

\U

Γ(U)
Γ(U)
\U

= 1. (2.33)

Since we proved that the gamma density function is equal to 1, it can be used to prove
Theorem 2.4.1. Thus, ∫ ∞

0

GU−14−
G
V

VUΓ(U) 3G = 1. (2.34)

Consequently, ∫ ∞

0
GU−14−

G
V 3G = VUΓ(U), (2.35)

and

� (-) =
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0
G

(
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−G
V

VUΓ(U)

)
3G
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1

VUΓ(U)

∫ ∞

0
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VUΓ(U) 3G
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VUΓ(U) [V
0+1Γ(U + 1)],

(2.36)

and using exponential rules
� (-) = UV. (2.37)

The Γ(1) vanishes because it is equal to 1 by direct integration. Now, for the second part we
need to find the variance and to do that we need to recall that + (-) = � [-2] − [� (-)]2. It is
clear now that the [� (-)]2 is the key in order to finish the proof. So following the same steps

� (-2) =
∫ ∞

0
G2

(
GU−14

−G
V

VUΓ(U)

)
3G

=
1

VUΓ(U)

∫ ∞

0

GU+14
−G
V

VUΓ(U) 3G,

=
1

VUΓ(U) [V
0+2Γ(U + 2)]

= U(U + 1)V2.

(2.38)

The last step is to plug in the two findings in the variance’s equation which gives us the
following:

+ (-) = U(U + 1)V2 − (UV)2 = 012. (2.39)

�
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Now, a new definition of the Chi-square distribution can be given.

Definition 2.4.2 (Chi-square Distribution). If a random variable - follows a Γ distribution
with parameters U = :

2 and V = 2 then - is a Chi-squared distributed random variable with :
degrees of freedom [8].

Fig. 2.4 illustrates the importance of : degrees of freedom. Different : leads the density
function’s curve to fluctuate.

Figure 2.4: Chi-square density function with different :

2.5 Statistical tests

2.5.1 The Chi-square test of goodness-of-fit
The Chi-square test is used in order to examine either independence among two categorical

variables or to show how good a sample fits to the distribution of a known population, in
other words known as goodness-of-fit. Many tests as well as Chi-square test use the Chi-
square distribution as the reference distribution in order to fit models [26]. Additionally, this
thesis will later analyze that the reference distribution of the population follows or not the
BL distribution. Since we have to do with a test, there is a null hypothesis �0 which is that
the observed or "true" distribution follows the BL distribution and an alternate hypothesis �0
which is the opposite of the null hypothesis. The most common test statistic formula for the
Chi-square test of goodness-of-fit for the BL distribution is the following:

j2 = =

9∑
3=1

( ℎ3
=
− 13)2

13
, (2.40)
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where = is the number of observations, ℎ3 is the observed different frequencies for the digits 1
to 9, 13 is the BL distribution for each leading digit [6]. The test statistic follows a Chi-square
distribution with 8 degrees of freedom under �0. In addition, in case that j2 > j0,8, where 0
is the significance level, the �0 will be rejected. The only disadvantage of this test seems to
be the sensitivity that has when it comes to large sample size. As the the data of BL reject the
�0, the Chi-square test may have a problem to be a good goodness-of-fit test instrument [23].

The following example illustrates how BL can be used to exploit fraud. By using the values
in the Table 2.2, someone can plug them into the corresponding parameters in eq. (2.40). That
way, they will be able to find out if there is any data manipulation or not.

Example 2.5.1. The leading digits from 1000 checks issued by seven companies were analyzed
by an investigator. The observed frequencies corresponding to the leading digits 1, 2, 3, 4, 5,
6, 7, 8, 9 are 290, 180, 112, 95, 85, 69, 60, 53 and 56 respectively. If the observed frequencies
are significantly different from the 13 , there is a possibility that the check amounts appear to
result a fraud. Using a significance level of 0 = 0.10 and : = 8 to test for goodness-of-fit with
Benford’s Law, will the result suggest a possibility of fraud?

First determine the �0 and �0:

• �0: The observed distribution follows a BL distribution.

• �0: At least one leading digit has a frequency that does not follow the BL distribution.

Table 2.2: Example’s given data
Leading Digit 1 2 3 4 5 6 7 8 9

Observed Frequencies or ℎ3 290 180 112 95 85 69 60 53 56
Benford’s Law: Distribution of Leading Digits or 13 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

The Table 2.2 is the key in order to solve the problem. Since there is enough information
for the parameters in the eq. (2.40), we can calculate that j2 ≈ 4.98. In addition, the table
of Appendix D in [27] can give the exact value of j0.1,8 = 13.362. We know that in order to
reject �0 the following must hold j2 > j0,8. However, this is not true since the inequality
will be reversed in our case. Thus, there is not sufficient evidence to conclude that the checks
suggest a fraud. In addition in the Fig. 2.5, it is clear how close the "true" distribution (orange
bars) is to the Benford’s Law distribution (green bars).

2.5.2 Distribution distance
An additional measure which we will use for testing the COVID-19 data sets uses as a base

the Euclidean distance between the Benford’s distribution and that of our data. This method
can be seen as free from hypothesis testing and compatible with any sample size. Many studies
have shown different approaches when using it, however, in our studies we chose the method
from [15]. Thus, let 3 = (∑9

8=1(13 −
ℎ3
=
)2) 1

2 be the Euclidean distance between the two sets.
Then the modified test statistic d* is as follows:
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Figure 2.5: Example 2.5.1 visual comparison

3∗ =
√
=

√√√ 9∑
3=1
(13 −

ℎ3

=
)2, (2.41)

where the variables have the same meaning as in the eq. (2.40) [6, 15]. Furthermore, the
rejection regions regarding the significance levels can be found in the Table 2.3 [15].

Table 2.3: Rejection regions
Significance level 0 = .10 0 = .05 0 = .01
Test statistic 3∗ 1.212 1.330 1.569

2.5.3 Mean Absolute Deviation
Mean Absolute Deviation (MAD) is a statistical test which ignores the number of records

and is really useful for large size samples when statistical tests like Chi-square, are impractical
for enormous real-world data. However, there is a problem when it comes to small samples.
One of BL’s problem is the false positives or in other words, data that are not biased do not
follow BL distribution and vice versa. Consequently, this thesis will not use the standard model
from [18] but an adjusted MADmodel of [12] that is more effective with smaller data samples.
In this study we use the MAD from [12], which is defined as follows:

"�� =
1
=

=∑
1
58 |G8 − Ḡ |, (2.42)
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where = is the sample size, which equals to 9 for the first digits, G8 is the sample value, in our
case this is the absolute value of the difference between the actual percentage and Benford’s
distribution of first digits, Ḡ is the mean or expected value, and 58 is the frequency, which is
always 1 for this model. Additionally, the absolute symbol means that someone is interested
only in the positive sign regardless if the deviation is positive or negative [4, 18, 1, 12].

There are not rejection regions as in the previous statistical tests, however, Nigrini presen-
ted some critical values for close conformity, acceptable conformity, marginally acceptable
conformity, and nonconformity. The Table 2.4 presents the range of such critical values and
the conclusions [18].

Table 2.4: Critical Values and conclusions for the MAD values
Digits Range Conclusion

First digits 0.000 to 0.006 Close conformity
0.006 to 0.012 Acceptable conformity
0.012 to 0.015 Marginally acceptable conformity
Above 0.015 Nonconformity
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Chapter 3

Methodology

3.1 The data
The COVID-19 quantitative secondary daily data that will be used in the methodology is

exclusively obtained from the Center for Systems Science and Engineering of John Hopkin’s
University [5]. In our research we have decided to include four different countries to test their
daily data reporting. These are Azerbaĳan, Belarus, Greece, Serbia. It is worth mentioning
that these countries have different ruling regimes. We took a close look at [10] for each of
the countries to determine their democracy index. Thus, we can categorize Azerbaĳan and
Belarus as the countries with authoritarian regimes, and Greece and Serbia as countries with
democratic regimes. The reason for choosing these countries that fall into these two categories
is to see if there is a difference in the way that they report COVID-19 daily data to the public,
with the help of BL. We will take a look at Sweden as well for contrast regarding data reporting
as a democratic country. Furthermore, Table 3.1 illustrates the data sample periods that are
going to be examined for each country daily.

Table 3.1: Data sample periods
First category Second category Third category

Countries Start End Start End Start End
Azerbaĳan † Mar 1, 2020 Mar 14, 2021 Mar 1, 2020 Mar 28, 2020 Mar 29, 2020 Mar 14, 2021
Belarus †† Feb 28, 2020 Mar 14, 2021 - - - -
Greece ∗ Feb 26, 2020 Mar 14, 2021 Feb 26, 2020 Mar 22, 2020 Mar 23, 2020 Mar 14, 2021
Serbia ∗∗ Mar 6, 2020 Mar 14, 2021 Mar 6, 2020 Mar 17, 2020 Mar 18, 2020 Mar 14, 2021

We decided to split the time frame into three categories according to [6] because it will
be easier for us to justify certain concepts. Firstly, the pandemic follows exponential growth
when it comes to the first reported cases, meaning that the Chi-square test should not reject
the null hypothesis. That way we are able to immediately show some evidence of false or

†Source: https://nk.gov.az/en/article/747/
††There is no source that indicates lockdowns.
∗Source: https://primeminister.gr/en/2020/03/22/23619

∗∗Source: https://www.srbĳa.gov.rs/vest/en/151641/
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non-false reporting. Secondly, after government involvement and new enforced restrictions in
each of our countries, we expect that here the data will have the most disturbance between the
true distribution and the BL distribution. Last but not least, we will look at the whole reported
data, where we expect it to act in the same way as the period with restrictions, since the period
sample before that is not that big. Thus, our categories are as follows:

• First category: the full time sample which consists of all the data, starting from the first
recorded case in each country.

• Second category: the period that takes into consideration the data until the first govern-
ment intervention that affected every citizen (i.e. curfew, national lockdown, mandatory
rules) which were implemented against the spread of COVID-19 in each country.

• Third category: the period taking the data after the first government intervention against
the spread of the virus.

We decide to analyze the daily data from all countries until 14th of March 2021. The time
period of the three categories were justified by using multiple website sources, listed in the
footnotes of the previous page. It is worth mentioning that we have not found any source that
would show that Belarus has implemented any restriction to reduce the spread of the virus,
thus we omit Belarus from second and third category analysis in this thesis. In addition, daily
data that has 0 recorded new daily cases are omitted from our analysis.

3.2 Testing thesis method
Before we proceed with our data analysis, we will look at the data that were given in [6]

and conduct our first tests on them. In this manner, we will test if our methodology conforms
to theirs by evaluating whether our results are in accordance with their findings.

We found through our testing that the results from [6] for China and the US differ from
ours. Although the sources that we used and the time intervals are the same, we can’t justify
the difference between the data that the authors gave in their study. Additionally, it is worth
mentioning that the addition of the pre-lockdown and post-lockdown periods should sum up
to the full sample. It is quite clear that these two periods that are given in [6] regarding China,
do not sum up to 705, but to 733. There is not any justification if this is intended or not in
the corresponding article. From the above mentioned comments, we can only assume that the
data sources used might have been updated, since their and our extraction periods differ from
each other.

When it comes to Italy, we validate the data with theirs by using the bulletins from
Dipartimento della Protezione Civile [7]. Thus, our results are in accordance with theirs. This
indicates that our method is accurate enough, but does raise questions about the data used for
the other two countries.

Consequently, in order to compare our findings to theirs, we need to define the following
variables that represent our findings: =< for sample size, j2

< for the Chi-square and 3∗< for
the distribution distance. Table 3.2 represents the dissimilarities between our and the authors’
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findings. These, however, cannot be fully explained. As we have mentioned above, one of the
reason for the differences could be due to updates in certain data cells after the extraction date
presented in [6] or possible differences in the methodology that was not fully described in their
paper.

Table 3.2: Comparison of results with those from [6]
Countries Time n, [6] j2, [6] 3∗, [6] =< j2

< 3∗<
China Full Sample 705 25.334 1.718 733 22.874 1.7397
China Pre-lockdown period 581 16.036 1.166 644 15.732 1.4178
China Post-lockdown period 145 23.785 1.891 89 9.6484 1.3111

Italy Full Sample 980 18.129 1.689 980 18.129 1.6899
Italy Pre-lockdown period 359 4.9964 0.65 359 4.9964 0.6503
Italy Post-lockdown period 621 39.613 2.312 621 39.613 2.3124

U.S Full Sample 5479 15.19 1.074 5541 16.739 1.1343
U.S Pre-lockdown period 1867 11.395 1.314 1803 5.0095 0.8049
U.S Post-lockdown period 3612 20.029 1.246 3738 18.745 1.2568

In addition, we conduct another test for the MAD by testing our method to the data’s
time period given in [1]. Given the same source as theirs, we conduct the test only for three
of the countries used in their paper, which are Albania, Belgium, and Turkey. There is no
specific reason why we chose those specific countries. Furthermore, we conclude that our
method gives a slightly numerical difference for Albania and Belgium but a higher numerical
difference when it comes to Turkey. There is not an absolute explanation for getting different
values, but this could be due to updates to certain data cells after their extraction date or
possible differences in the methodology. Furthermore, Table 4.2 indicates our results and their
dissimilarities compare to the authors’ results.

Table 3.3: Comparison of obtained MAD results
Countries MAD, [1] MAD
Albania 0.035 0.041
Belgium 0.019 0.0165
Turkey 0.067 0.045

3.3 Data Analysis
The data analysis carries through with the three chosen statistical tests, which are the Chi-

square test goodness-of-fit, the distance distribution test, and MAD. In this way we analyze
if the corresponding data follows a BL distribution or not, and to what extent. It is worth
mentioning that our hypothesis are:

• �0: The observed distribution follows a BL distribution.

• �0: At least one leading digit has a frequency that does not follow the BL distribution.
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We have : = 8 df and a significance level of 0 = 0.1 for the Chi-square test. This results in
the rejection of the null hypothesis if j2 > j2

0.1,8 = 13.3616 [27]. We refer to Table 2.3 for
the 3∗’s rejection regions and to Table 2.4 for the valuation of MAD results. In addition, we
use certain software like MatLab, R and Excel for calculations, graphing and testing. For the
calculations of the j2 we use the benford.analysis package [2].
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Chapter 4

Results

As we have tested the data by using R and Excel, we obtained the results presented in Table
4.1 along with the Fig. 4.1. What was observed immediately are the odd results regarding
the countries with authoritarian regimes, which are Azerbaĳan and Belarus. Both of them
reject the null hypothesis of Chi-square test. Oddly, the Chi-square does not reject the null
hypothesis for Azerbaĳan in the First Category data, but this might attribute to the very low
amount of data, which is also observed for other countries in the first category. In addition, the
3∗ test has much larger values than for the other two democratic countries, Greece and Serbia,
and which exceeds any of the rejection regions presented in 2.5.2. The MAD results show
nonconformity for the BL for Azerbaĳan in the Second and Third Category analysis, however
it shows marginally acceptable conformity for the First Category analysis. Belarus on the other
hand does not conform with the BL according to MAD and the Chi-square goodness-of-fit test.
Moreover, by looking at Fig. 4.1, it is obvious that Belarus does not follow the BL distribution.

In addition, the countries with democratic regimes, which areGreece and Serbia, both reject
the null hypothesis of the Chi-square test as well, but do perform better than the authoritarian
countries when it comes to the 3∗ test. We found that for both countries the 3∗ shows that they
conform to the BL through the Second Category data analysis, while First and Third Category
data are in the rejection region. When looking at the MAD results, the performance is much
better for both countries in the First Category data analysis, however, Greece shows conformity
in both First and Third Category, while Serbia on the other hand does not conform in any
of the categories. In contrast with the authoritarian countries, Fig. 4.1 shows that the "true"
distribution of the data is really close to the BL distribution for both Greece and Serbia in the
First Category data.

The last democratic country that was considered in this analysis is Sweden. In addition,
there is only the First Category for Sweden since there was no lockdown period imposed.
According to Table 4.1, there is evidence that all of the tests reject the null hypothesis when it
comes to the First Category.
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Table 4.1: Chi-square test, data acquired from [5]
Countries Time n j2 3∗ MAD
Azerbaĳan First category 367 36.986 2.097 0.015
Azerbaĳan Second category 16 1.2119 0.412 0.018
Azerbaĳan Third category 351 38.031 2.119 0.016

Belarus First category 359 202.14 5.316 0.043

Greece First category 375 21.888 1.782 0.014
Greece Second category 25 16.297 0.80 0.022
Greece Third category 350 23.946 1.759 0.014

Serbia First category 366 22.763 1.842 0.017
Serbia Second category 9 15.927 1.09 0.057
Serbia Third category 357 22.221 1.904 0.019

Sweden First Category 293 44.78 2.396 0.022

Given the results that we have obtained for Sweden, we decided to inspect the data further,
since we are more familiar with the governmental sources of Sweden. Thus, we have done the
same analysis, but with the data published by Folkhälsomyndigheten (Public Health Agency of
Sweden) [11], which in result gives us more data, with detailed information of confirmed cases
through all of the 21 counties in Sweden. What was observed is that MAD showed acceptable
conformity, the best that we have observed during our testings (see Table 4.2). The 3∗ and j2

however are still high, but not larger than that of Belarus from Table 4.1. The reason of the high
value of the j2-test is explained by the large sample that we used, as this test is very sensitive
when it comes to large data samples. When looking at Fig. 4.2, the data conforms closely with
the BL, to much higher extent than in Fig. 4.1. Conclusions based on these obtained results,
as well as some ideas for future investigations, follow in Chapter 5.

Table 4.2: Chi-square test, data acquired from [11]
Countries Time n j2 3∗ MAD
Sweden First Category 7265 83.075 4.059 0.008
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Figure 4.1: Graph results comparing our data with BL for each country, data acquired from [5]
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Figure 4.2: Results for Sweden for data acquired from [11]
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Chapter 5

Conclusion

5.1 Thesis summary

In this thesis, we focus on the trustworthiness of the reporting of COVID-19 daily cases in
Azerbaĳan, Belarus, Greece, Serbia and Sweden. The BL is the main tool of this investigation
which is well known for its fraud detection properties [18] when it is used in the context
in other statistical tests. As a result, we use the three following statistical tests: Chi-square
goodness-of-fit, distribution distance andMAD. The aim of this study is to provide information
to the public about any inconsistency that might have occured between the "true distribution"
and the BL distribution for the data of the corresponding five countries.

In the first chapter, we gave an introduction about BL’s historical background and a reference
about the authors whowere behind this important law. Furthermore, the second chapter is about
the BL’s generalization, proof and limitations. It was essential to write some of the distributions
before explaining the Chi-square goodness-of-fit test for this study’s sake. Further, the chosen
three statistical tests of this thesis were conducted.

In Chapter 3, we introduced three different categories which correspond to three different
time intervals. We used different trustworthy sources, e.g. official government bodies, in order
to be as precise as possible with the starting and ending periods of each category. After this,
we conducted a test to check if our methodology was compatible with the methodology that
was used in [6]. However, when it comes to the results only Italy’s were identical to ours.
The results regarding China and the U.S were different. Consequently, this difference may be
due to potentially updates in the data cells of COVID-19 daily cases of [5] after the authors’
extraction date. Moreover, we applied our methodology to [1] for theMAD test. Consequently,
our results were appreciably similar to their results for Albania and Belgium, but not for Turkey.
Last but not least, Chapter 3 ends with the data analysis which consists of details about the
hypotheses, the rejection regions of the statistical tests, and the software used.

When it comes to the Results, we splat the five countries into two categories: countries
with democratic regimes (Greece, Serbia, Sweden) and countries with presidential republic
regimes (Azerbaĳan, Belarus). Our data were taken from the Center for Systems Science and
Engineering of JohnHopkin’s University [5]. We concluded that the results for Azerbaĳanwere
slightly concerning and may need further investigation since certain categories rejected the
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null hypothesis. When it comes to Belarus, all of the tests rejected the null hypothesis, which
makes Belarus a potential case of COVID-19 data misinformation. Additionally, Belarus’s j2

value was enormous which is odd since for the other three countries that almost had an identical
sample size, the value of j2 was not as extreme. Greece and Serbia gave problematic results
for certain categories but they are surely closer to the BL distribution than the authoritarian
countries, according to Fig. 4.1. However, further investigation may be required. Lastly,
Sweden rejected the null hypothesis for every possible statistical test. This made us realize that
there could be a problem with the given data for Sweden from the Center for Systems Science
and Engineering of John Hopkin’s University [5] since the sample size is small. Additional
test was done using the data taken from Folkhälsomyndigheten (Public Health Agency of
Sweden)[11] and gave results showing distribution almost identical to the BL one but with far
more observations (see Chapter 4).

5.2 Future work
Even though almost all of the countries rejected our tests for their corresponding categories,

we believe that Greece and Serbia were the countries with the best fitting to the BL. This
conclusion is based on graphically presents results (see Chapter 4), but also based on the
statistical test results of which many were close or inside the value intervals of the rejection
region. However, these two countries could act in a more sufficient way if there was a bigger
sample size. We cannot say the same for Azerbaĳan since the results were far away from the
rejection regions when it comes to the first and the third category. In addition, in our opinion,
Belarus needs some further investigation since most of the tests failed and there is evidence
which indicates potential misinformation to related to COVID-19 data provided to the public.
Thus, for future research, we propose several ideas that were not tested in this thesis:

• As it is clear that the enormous sample size of Sweden given by theFolkhälsomyndigheten
fits almost perfectly to theBLdistribution, itwill be better to test this paper’smethodology
in a larger sample size with far more observations.

• Someone can try to test more countries with presidential republic regimes and see if they
follow a similar pattern, as the two countries in this research.

• Lastly, there are more statistical tests out there that will prove to be crucial, to both be
applied and tested in a similar research. For example, the Kolmogorov–Smirnov test,
the Z test or similar.
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Chapter 6

Reflection of objectives in the thesis

A summary of the objectives achieved in this study will be presented in this chapter.

6.1 Objective 1: Knowledge and understanding
This study indicates that new knowledge was attained. It shows how applied mathematics

work in this sort of research. Some related concepts that helped to conduct this analysis, were
in the context of calculus and statistics. In Chapter 2, related concepts to calculus were studied
in order to prove BL, e.g. Laplace transform. In addition, in Chapter 2 and 3 statistics are used
in order to describe some distributions and to give an insight into the statistical tests used in the
research. Moreover, in Chapter 4 we showed and discussed our results. This has shown that
we gained a deep understanding of BL as well as of the three statistical tests used. In Section
5.2, we have proposed few future directions which has further showed our understanding of
the material covered in this thesis. Computer skills like programming language knowledge,
LATEX, Excel, etc. were demanded for a smooth outcome of the thesis.

6.2 Objective 2: Methodological knowledge
We presented the subject after giving some information about the theoretical background

first. A methodological knowledge is demonstrated by using various reliable references, tables,
figures and examples in order to make the reader feel more comfortable with the concepts of the
thesis. This was achieved by usingMATLAB for graphing and R and Excel for the calculations.

6.3 Objective 3: Critically andSystematically IntegrateKnow-
ledge

Information is taken from many different sources. Starting references provided by our
supervisor were built upon which ended up exploring many scientific articles and books
mainly referred to Benford’s Law for being able to further explain this specific concept.
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6.4 Objective 4: Independently and Creatively Identify and
Carry out Advanced Tasks

The very first step of the thesis was to find a research question but also to do a research on
the corresponding topic. We came to an agreement to include several important chapters: In-
troductionwhich gives details about the historical background, purpose, aim andmethodology.
Followed by the Theoretical Consideration, which includes information about BL, statistical
distributions and statistical tests. Methodology where we compared our methods to other au-
thors’ papers, and lastly Results and Conclusionwhere we presented our methodology’s results
for five countries and made correct conclusions based on these results. The guidance provided
by the supervisor helped tackling certain difficult parts of the thesis and led to a well-structured
project report.

6.5 Objective 5: Present andDiscussConclusions andKnow-
ledge

The thesis is not hard to be followed by people that are neither having a mathematical
background, nor a statistics background. For some of the concepts, the reader might need
to do some individual reading to attain a deeper understanding by using our sources in the
Bibliography section, but the general idea is easy to be followed in our opinion. A lot of
sources are used in order to explain the concepts in details as much as possible. Figures, tables
and some short numerical examples can be found in the thesis. Consequently, the reader will
be able to understand most of the topics even without having a deep knowledge of the concepts
that are used. An oral presentation of the work that has be done will take place in June 2021
when everyone is welcome to attend and ask questions regarding the concepts and results that
can be found in the thesis. Lastly, noteworthy is that we have been practising on how to present
our results both orally (discussing during meetings) and written (sending a draft before the
meeting) for each meeting with the supervisor.

6.6 Objective 6: Scientific, Social and Ethical Aspects
All of the sources used in the thesis are properly cited in the study. In addition, the data

and R package used can be found in the Bibliography. When it comes to ethics, the work is
done with caution and avoiding direct accusations. Lastly, everyone that helped us to achieve
our goals and to complete this thesis will be mentioned in the Acknowledgements.
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