
Mälardalen University
School of Innovation Design and Engineering

Väster̊as, Sweden

Thesis for the Degree of Bachelor of Science in Engineering -
Computer Network Engineering 15 credits

IMPROVING SECURITY IN
EMBEDDED SYSTEMS WITH IEEE

802.1X

Marcus Karlsson
mkn14012@student.mdh.se

Oscar Zaja
oza16001@student.mdh.se

Examiner: Mats Björkman
Mälardalen University, Väster̊as, Sweden

Supervisors: Johan Åkerberg, Maryam Vahabi
Mälardalen University, Väster̊as, Sweden

February 4, 2021

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

Abstract

Embedded systems is a rapidly growing branch in IT. OT networks, where embedded systems are
used, are converging with IT networks as data sharing becomes more common. With the increased
internet connectivity among embedded systems, an increased security threat occurs. These embed-
ded systems often have lesser processing power than personal computers, and are therefore more
prone to security breaches. This thesis examines and evaluates methods that limit the risk of se-
curity breaches linked to authentication. Higher security is achieved with the use of EAP-methods,
commonly used authentication protocols and the IEEE 802.1X framework. In this thesis, the EAP-
methods and authentication protocols are measured in time to authenticate and CPU usage while
authenticating, on the supplicant side. The complexity of deployment and security is presented,
as well as a theoretical scalability scenario. The experimental setup contains three Raspberry Pi
4 model B and an IEEE 802.1X capable Ubiquiti US-8 Switch. The authentication methods used
in this thesis includes PEAP-MSCHAPv2, PEAP-GTC, TTLS-MSCHAPv2, TTLS-GTC, TLS,
and MD5. With the measurement data and literature studies as foundation, we present recommen-
dations of authentication methods suitable for different OT-networks where the embedded systems
have a varying level of processing power. The use of port based security such as IEEE 802.1X,
hardens the network and reduces the risk of malicious attacks such as Man-in-the-middle attacks
to be successfully executed.

i

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

Table of Contents

1. Introduction 1

2. Background 1
2.1 IEEE 802.1X . 1

2.1.1 Supplicant . 2
2.1.2 Authenticator . 2
2.1.3 Authentication Server . 2
2.1.4 Pre Shared Key & Public Key Infrastructure 3

2.2 Extensible Authentication Protocol . 3
2.2.1 Protected Extensible Authentication Protocol 3
2.2.2 Transport Layer Security . 3
2.2.3 Tunneled Transport Layer Security . 3
2.2.4 Microsoft Challenge Handshake Authentication Protocol version 2 4
2.2.5 Generic Token Card . 4
2.2.6 Message Digest 5 . 4
2.2.7 Linux WPA Supplicant . 4

2.3 RADIUS . 4
2.3.1 FreeRADIUS . 5

2.4 Digital Certificate . 5
2.4.1 Certificate Authority . 5

2.5 Unix software . 5

3. Related work 6

4. Problem formulation 8

5. Method 9

6. Ethical and Societal Considerations 10

7. Experimental setup 11
7.1 Topology . 11
7.2 Switch configuration . 12
7.3 RADIUS configuration . 12
7.4 Supplicant configuration . 12
7.5 Making a certificate . 12
7.6 Measurement . 13
7.7 The authentication process . 14

8. Results 15
8.1 Authentication time . 15
8.2 CPU usage while authenticating . 17

9. Discussion 20

10.Conclusions and future work 23

References 25

Appendix A Bash code used to measure authentication time and CPU usage 26

Appendix B Complete authentication data spreadsheet 27

ii

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

1. Introduction

Information Technology (IT) and Operational Technology (OT) are converging rapidly. In fact, the
convergence has started recently, and it will continue to increase as technologies are integrating
into different areas. This trend will optimize the production tasks and offer a greater range of
functional services for the future industrial sector. Besides all the benefits that the new technology
brings, convergence exposes the industrial control systems (ICS) to a plethora of risks from cy-
ber threats. Cyber risks will increase the probability of disruptive or dangerous events, including
plant shutdown, loss of income, employee injuries, toxic releases, and environmental damages, to
mention a few. These events can severely impact an organization, shareholders, employees, and
communities.

To minimize the attack surfaces and threat vectors, there has been some strategies which ex-
ploit the implementation of the multi-layered defense-in-depth method to stop the cyber threat
as quickly as possible [1][2]. One of the fundamental solutions to achieve network security is to
manage the network access control. The IEEE 802.1X protocol has been designed for port-based
network access control in LANs. It is often used for gaining access to large networks with a variety
of users, such as a university network or a community network. This authentication protocol can
be used on both wireless and wired networks, IEEE 802.11i specifies its use for WLANs [3]. With
IEEE 802.1X, the client node and the WLAN access point first run the Extensible Authentica-
tion Protocol (EAP)[4]. The access point allows network access to the client node only after it
has successfully authenticated itself to the network. The network stores user account information
typically on a Remote Access Dial-in User Server (RADIUS) [5, p.45].

This thesis work will aim at enabling IEEE 802.1X protocol on Internet of Things (IoT) devices
in order to manage authentication at IoT networks. We will investigate and analyze which au-
thentication methods we find suitable for a certain type of network. These types of network may
be: networks with a low-, to a high number of end devices, networks with resource constrained
end devices or different levels of network security. Aspects we will take into account when evaluat-
ing the different authentication methods is: complexity when implementing and managing certain
amounts of end devices, and if the network demands a high, moderate, or a lower level of security.

2. Background

This section describes the different protocols and software that will be used, their elements, their
key purpose, and how they function in relation to each other.

2.1 IEEE 802.1X

IEEE 802.1X is a port-based Network Access Control (PNAC) and its purpose is to provide an
authentication mechanism for devices that are requesting to join a LAN or WLAN[5]. The protocol
was primarily developed to be used within wired networks, but was later modified with the ability
to be implemented in wireless networks. The general topology for this protocol involves a sup-
plicant, an authenticator and an Authentication Server(AS). IEEE 802.1X AS uses the RADIUS
AAA-protocol, which purpose is to examine the credentials of a supplicant and apply different
policies depending on the credentials of that specific device or user. When an organization authen-
ticates a users identity and allows it to access the network, it is the IEEE 802.1X-protocol that
manages opening or closing ports to the network.

IEEE 802.1X should be used when an organization needs a secure method of transporting sensitive
information[5, pp. 33-36]. Earlier the protocol was used in bigger companies and universities,
though because of an increase in the number of cyber threats, it is becoming more popular in
smaller businesses. The IEEE 802.1X is a highly secure protocol for network authentication, the
protocol can prevent credential threat attacks such as Evil Twin proxies and Man-in-the-middle
attacks. IEEE 802.1X also includes Wifi Protected Access (WPA) for personal networks and runs

1

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

RC4-based Temporal Key Integrity Protocol (TKIP) encryption. In Business networks the IEEE
802.1X WPA2 with Advanced Encryption Standard (AES) is a more common implementation.
Figure 1 shows a setup of IEEE 802.1X topology together with the authentication process.

Figure 1: IEEE 802.1X Topology [5, p.44].

2.1.1 Supplicant

If a node is capable of using IEEE 802.1X it can be a supplicant, it does however need software
installed in the network stack[5, p. 39]. If the client does not have this software, the Extensible
Authentication Protocol (EAP) frames from the authenticator will be ignored and the client will be
ignored. The role of the supplicant is to request to be part of the network by sending information
about itself to the authenticator. The connection between the nodes is an EAP over LAN (EAPOL)
connection which operates in layer 2 and because of that no IP-address is required. EAPOL handles
the authentication data when the supplicant is authenticated and authorized to the network.

2.1.2 Authenticator

The authenticator is the intermediate device between the supplicant and the AS. The authenticator
controls the supplicants access to the network, based on decisions made by the AS [5, p.39]. The
authenticator can be a router, switch or an access point. The supplicant sends its credentials
to the authenticator which forwards the credentials to the AS, which either accepts or rejects the
supplicants query. In a wired network the authenticator will either open or close its ports depending
on the response from the AS. Where in a wireless network, the authenticator accepts or ignores
the supplicants queries, depending on the response from the AS. It is important to note that the
supplicant only communicates with the authenticator, and further the authenticator communicates
with the AS. The supplicant will not have any network access until the authentication is classified
as successful. It is the authenticator that starts the exchange phase by sending an EAPOL-start
packet to the supplicant.

2.1.3 Authentication Server

The AS determines if the supplicant is allowed to connect to the network[5, p. 40]. The AS will
determine if the credentials sent by the supplicant is valid before the supplicant is granted or
rejected access to the network. The AS receives the supplicants credentials from the authenticator,
in a RADIUS language. The received credentials are compared to the credentials saved in the
RADIUS database, and the AS determines if the supplicant will be granted or rejected access. If
the AS accepts the client it sends a packet to the authenticator, which will be forwarded to the
supplicant. The packet includes information on how the switch connects the device to the network.
It will also include User Based Policy Assignment that includes information on what type of VLAN
the client will use or other sets of policies. If the client is an unknown device it can be redirected
to a guest VLAN whereas a trusted device is allowed access to the desired VLAN.

2

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

2.1.4 Pre Shared Key & Public Key Infrastructure

Pre Shared Key (PSK) is a string shared between two entities, used as a credential for mutual
authentication [6]. This PSK can use different types of encryption to prevent the key from being
exposed. Public Key Infrastructure (PKI) includes asymmetric key pairs and digital certificates
[7]. In a Certificate Authority-to-supplicant-connection both entities proves its identity using a
digital certificate. The public key at the sending entity encrypts the data, and the private key at
the receiving entity decrypts the data.

2.2 Extensible Authentication Protocol

EAP is an authentication protocol used in IEEE 802.1X [8]. The EAP authentication contains
two steps; the authentication scheme, where the authentication method is negotiated, and the
authentication itself. An advantage in using EAP is that different authentication methods can
be used, therefore EAP is considered a flexible protocol where the authentication method can be
updated, while the overall EAP structure stays the same. EAP can be used with a wide vari-
ety of authentication mechanisms, including Transport Layer Security (TLS), which uses digital
certificates, Message Digest 5 (MD5), which uses a password and a MD5 hash, and Protected
Extensible Authentication Protocol (PEAP), which generally uses a password, a digital certificate,
and a secure tunnel. Primarily, EAP was designed for Point-to-Point networks over serial link,
which now is considered legacy. The solution for using EAP in LANs, is the EAPOL-protocol,
which encapsulates and transports EAP frames as data.

2.2.1 Protected Extensible Authentication Protocol

PEAP was co-developed by Cisco Systems, Microsoft, and RSA Security LLC[9]. PEAP itself
is not an authentication protocol, yet a combination of two protocols and can be viewed as a
framework for authentication. The authentication is divided into two phases, where the first
phase includes the authenticator sending an EAP-Request/Identity message, and the supplicant
responds with an anonymous identity. The next step in phase one consists of a TLS-tunnel being
set up, where the AS authenticates itself to the supplicant with a digital certificate. Phase two
(optionally) starts with the AS sending an EAP-Request/Identity message to the supplicant. The
supplicant responds with an EAP-Response/Identity message containing its identity/user-id. Next,
the AS decides which authentication method will be used. PEAP supports the use of EAP-MD5,
-MSCHAPv2, -GTC, -OTP and -TLS. An EAP-negotiation occurs and if the AS and supplicant
find a matching authentication method, the supplicant sends its credentials. The AS matches
the supplicants credentials to its database entries and sends a protected EAP-success or EAP-fail
packet, depending on if the credentials match or not.

2.2.2 Transport Layer Security

TLS is one of the most secure authentication method because of its use of digital certificates and
encrypted authentication session [5, pp.110-112]. TLS consists of three parties; a supplicant, an AS
and a Certificate Authority (CA) in a PKI. The AS and CA can be implemented on separate servers
for each purpose, or be collapsed into a combined AS/CA-server. In the TLS protocol both suppli-
cant and AS prove their identity towards each other by using unique digital certificates provided by
the CA. The TLS-authentication begins with the authenticator sending an EAP-request/Identity
message to the supplicant. The supplicant responds with an EAP-Response/Identity message which
the authenticator relays to the AS. The AS sends a TLS-Start message to the supplicant, and the
supplicant responds with an EAP-Response message containing TLS-records for the TLS-tunnel.

2.2.3 Tunneled Transport Layer Security

Tunneled Transport Layer Security (TTLS) derived from TLS[5, p. 112]. TTLS-authentication
consists of two phases. In the first phase, called the TLS-handshake, the AS authenticates itself
to the supplicant using a digital certificate, and creates a secure tunnel to the supplicant. If the

3

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

supplicant has a digital certificate derived from the AS, the supplicant authenticates itself to the AS
using this certificate. During phase two, Attribute Value Pairs (AVPs) can be sent from supplicant
to AS, intended for RADIUS, Diameter or other AVP compatible application. If the supplicant
has not authenticated to the AS during the TLS-handshake, a legacy authentication method may
be used. These can be EAP-MD5, -MSCHAPv2, -GTC, -OTP, PAP or CHAP.

2.2.4 Microsoft Challenge Handshake Authentication Protocol version 2

Microsoft Challenge Handshake Authentication Protocol version 2 (MSCHAPv2) is Microsofts ver-
sion of the Challenge Handshake Authentication Protocol (CHAP)[10]. MSCHAPv2 is a username-
and password based phase two authentication protocol typically combined with PEAP or TTLS as
EAP-method. The reason why MSCHAPv2 is not used as a standalone EAP-method is because the
method is susceptible to dictionary attacks, hence it should be used in an encrypted environment
which PEAP and TTLS provides.

2.2.5 Generic Token Card

Generic Token Card (GTC) is an authentication protocol based on a challenge-response authenti-
cation type[8]. GTC is used as a phase two authentication protocol, which is typically combined
with PEAP or TTLS as EAP-method. It is recommended to not use GTC as a phase one authen-
tication method since the attribute is generally sent in ASCII cleartext and can be intercepted
by eavesdroppers. GTC is analogous to Password Authentication Protocol (PAP) which does not
support encryption on its own[11].

2.2.6 Message Digest 5

MD5 is a legacy hashing algorithm, which utilizes a username and password to authenticate a
supplicant[12]. MD5 is an authentication challenge protocol and is similar to the PPP CHAP
protocol. The AS sends a challenge message to the client. The client hashes the password and the
challenge message, sends it to the the authentication server, which compares it to the entries in its
database. The supplicant sends a hashed version of the password for authentication.

2.2.7 Linux WPA Supplicant

WPA Supplicant is a program developed for supplicants to be able to connect to networks with cer-
tain authentication policies[13]. The program is designed as a daemon, which means it runs in the
background while controlling and managing network connections. The program is fully configurable
through Command Line Interface (CLI) and Graphical User Interface (GUI). WPA Supplicant
provides support for most up-to-date EAP-authentication methods used with IEEE 802.1X.

2.3 RADIUS

RADIUS is an access server authentication, authorization and accounting protocol[5, p. 49]. RA-
DIUS server uses a database to authenticate remote users. RADIUS is used commonly for its
AAA capabilities; Authentication, Authorization, and Accounting. The communication between
the Network Access Server (NAS) and RADIUS server is based on UDP. With the use of UDP,
RADIUS can have different timing requirements compared to using TCP, and has an easier imple-
mentation. The most common use cases for RADIUS include:

• Passing user information

• Wait until a response is returned.

• Managing user connection requests.

• Authenticating and providing all the necessary configuration information required for autho-
rization.

• Recording accounting events.

4

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

RADIUS was designed for dial-in users, but has been redesigned to become compatible with Virtual
Private Networks (VPN) and wireless Access Points (AP) in LANs.

2.3.1 FreeRADIUS

FreeRADIUS is a widely used open source RADIUS server software[14, p. 54]. FreeRADIUS has
support for most commonly used authentication protocols, including the ones used in this thesis.

2.4 Digital Certificate

A digital certificate, public key or an identity certificate is a way to prove that the device is part of
a public key infrastructure[7]. The digital certificate is a way to prove information about the key
and the owner, also called subject. The certificate also contains a digital signature of an issuer,
which purpose is to verify certificates. Without the technical aspect, a certificate can be seen as a
password that a user or organization can use to exchange information securely over the internet.
The certificate states that the sending device is the one it says it is and will help the receiver to
identify the sender. Digital certificates can be either a binary file or an ASCII file. There are also
different files for different purposes, the digital certificates used in this thesis are:

• ca.pem

• server.key

• server.pem

• client.p12

The ca.pem contains the CA’s root certificate[7]. The server.key contains the AS’s encrypted pri-
vate key. The server.pem contains the root certificate, an encrypted private key and attributes for
the server and CA, such as local key id, locality and company name. The client.p12 is a client.pem
file in binary format and contains a certificate, an encrypted private key and the corresponding
attributes for the client, and the CA.

2.4.1 Certificate Authority

Certificate authority (CA) is the entity responsible for creating, updating and revoking digital
certificates in a domain[7]. A domain can contain several CAs where one is the root CA, which
is the CA with the highest trust level. In a IEEE 802.1X-domain, the CA provides the AS with
a public key, a CA-certificate, and a server certificate. If the CA is a private CA, the supplicant
is provided a client certificate, a public key, and a public CA-certificate. The client credentials
provided by the private CA must be implemented to the supplicant manually. If the CA is a known
public CA, the supplicant has CA-certificates preinstalled, which means the supplicant trusts the
public CA.

2.5 Unix software

Time in a Unix system follows the Unix Time Epoch, which means that it measures time in seconds
since the first of January 1970[15, pp. 113-114]. Every day has 86400 seconds and leap seconds
are ignored, meaning that it is not an exact representation of Coordinated Universal Time(UTC).
Unix time has 2 different layers of encoding: the first one represents a point in time since 00:00:00
UTC 1, January 1970 in seconds as scalar real number. The second layer encodes the scalar real
number to bits or decimal.

Mpstat is a Linux tool used to display information about the workload of a system[16]. Mpstat
displays information such as CPU usage, CPU idle time, and logical CPU processor id. In this
thesis, Mpstat is used to measure the CPU usage at the moment of authentication.

5

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

3. Related work

This section contains comparisons between articles that have previously been published, and our
own thesis work. These articles have been reviewed and we find that they contribute to our work
in terms of information, whereas their aim and motivation is related to some part of what we seek
to accomplish in our thesis.

In a study by Kothaluru and Mecca[17] different authentication methods are examined and eval-
uated in multiple technical aspects. The authors evaluates the time it takes for a supplicant to
be authenticated using different authentication methods, and the time it takes to process these
authentication methods at each network node. The evaluation is made in both wired and wireless
networks, where the authors seek which authentication method has the fastest processing time,
and authentication time. The authors evaluated the following EAP-authentication methods:

• MD5

• TLS

• TTLS-PAP

• TTLS-CHAP

• TTLS-MSCHAP

• TTLS-MSCHAPv2

• PEAP-MD5

• PEAP-MSCHAPv2

The overall security brought by these authentication methods are also mentioned, as the least secure
method also is the method that has the shortest time in both processing time and authentication
time. The authors also made an experimental test about how certain authentication methods
affected the authentication-, and processing time when 10 supplicants continuously were authen-
ticated, disconnected, and re-authenticated. Which shows if the authenticator and authentication
server is affected by the higher workload. According to this article, EAP-TLS is considered to be
the most secure authentication method, even though it is not the fastest one. PEAP-MSCHAPv2
is the most commonly used authentication method among the companies they contacted, which in
contrast to EAP-TLS, is less complex to implement, and is the default option for Windows Servers.

A thesis made by Chiornita, Gheorghe and Rosner[18] made an Analysis of a few EAP Methods
were they measured the authentication time, delay, reconnection time and packet loss with a test
bed of what seems to be a server with a separate network card. One of their most interesting dis-
coveries was that the authentication time was about five times smaller for the MD5 EAP-method
compared to the certified methods EAP-TLS and PEAP. The software used to measure the au-
thentication time was not mentioned in their thesis. For future work they suggested to find the
performance difference between the additional EAP-methods.

Kim and Han[19] identifies wireless IoT devices as units with insufficient security and processing
power. Their suggestion is to implement a new key-exchange mechanism derived from the IEEE
802.1X authentication mechanism, where they propose an authentication server which handles the
major part of the processing power required in an authentication. Their solution is also claimed
to scale well in larger networks and reduce the overall network cost.

6

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

The cited previous works have used more powerful hardware with the exception of Kim and Han[19]
where IoT devices were used. As Kim and Han have noted in their future works it would be
interesting to see how less powerful hardware and different software would effect the performance
in authentication time and CPU usage. A key difference in this thesis is that we used log files
and timestamps to measure the authentication time, and previous works used Wireshark for this
purpose. Another key difference from our thesis, though we cannot say which is more accurate, is
that we measure the CPU usage in percentage, whereas previous works have used the time it takes
for the CPU to process the authentication. We believe that our scenario will give a more realistic
perspective as to how the supplicants CPU is encumbered while authenticating.

7

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

4. Problem formulation

In general, IoT devices have limited security considerations that make them more prone to security
attacks than computationally stronger devices, such as servers and personal computers. In the IT
domain, there are many different security solutions and best practices that could be integrated
when converging IT and OT networks. One of the fundamental solutions is to have port-based
authorization and authentication before granting network access. The work will be focused on the
challenges of how to integrate embedded systems in IT networks with respect to the IEEE 802.1X
standard. The main problem is to identify suitable authentication methods for networks with dif-
ferent requirements, based of practical experiments and literature studies. Which authentication
method is most suitable in a network where:

• Short authentication time is required?

• Low CPU usage is required?

• Scalability is essential?

• Low implementation complexity is essential?

• High security is the main priority?

8

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

5. Method

The work is based on literature review to gain information about EAP-methods and associated
authentication mechanisms, the IEEE 802.1X protocol and what role every key component has
when a computational device is authenticated to a Local Area Network. An experiment will be
executed to extract and analyze authentication data. Different existing EAP-methods will be used
to perform authentications on Raspberry Pi’s. While the area of embedded systems paired with
IEEE 802.1X is limited, our work will be to explore and evaluate which authentication method is
suitable for an OT network. We will make implementations with different authentication methods,
which may suit embedded systems in an OT network with varying levels of processing power. One
embedded system may not have sufficient processing power for the most demanding EAP-methods
to be authenticated at a fast rate. The authentication methods will be measured in CPU usage,
the time it takes to authenticate, and will be evaluated in deployment complexity. From literature
review, we will conclude which authentication method is the least secure, and which authentication
method is the most secure. The test bed consists of: 1) A Raspberry Pi to act as an embedded
system-supplicant, 2) a network switch which supports IEEE 802.1X authentication, 3) a second
Raspberry Pi which will be the authentication server running RADIUS. The test bed will be ex-
panded with an additional Raspberry Pi supplicant. The dual supplicant test bed will be used to
simulate a theoretical scaling network scenario.

Figure 2 depicts a flowchart on how we handle the workflow in this thesis. The work starts with
a literature study to get a better understanding of the different methods and how they can be
configured on a Raspberry Pi. It is important to make sure that the authentication methods is
working properly before the measurement begins so the analyzed data is correct. Obstacles during
the thesis will be handled by restarting the workflow from literature study.

Figure 2: Flowchart describing the methodic workflow.

9

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

6. Ethical and Societal Considerations

Security in the IT-field is made to protect valuable or critical information. Encryption and hashes
are used so that information cannot be leaked and to protect the data so that no person without
the right authority can access it.
Security can be a double edged sword, it can be used for both good and bad. In Cyber security
corporate, security personnel can be hired to secure the authentication implementation, though
they can also sabotage these implementations. Personnel with malicious intents have the potential
to cause dangerous events were injuries or economic loss are at risk. A problematic scenario could
be to determine if a security breach is a malicious attack or an accidental security flaw, and to
determine who will be held accountable.

10

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

7. Experimental setup

In the following section we give an overview of the topology, how each network node is implemented,
and how we have measured the different protocols to achieve the results.

7.1 Topology

The minimum requirements are two Raspberry Pi model 4 and one Ubiquiti switch with IEEE
802.1X support, see figure 3 and table 1 for the single supplicant setup. One of the Raspberry
Pi’s is the supplicant and the second is the Authentication Server, RADIUS-server and Certificate
Authority. Between these devices there is an authenticator, the Ubiquiti switch. For the dual
setup there is one additional supplicant, see figure 4. The software used can be seen in table 2.

Figure 3: Network Topology.

Figure 4: Network Topology for dual supplicant setup.

Hardware Firmware CPU RAM
Ubiquiti Unifi US-8 5.43.18 ARM Cortex-A9 400MHz 256MB

Raspberry Pi 4 Raspbian Buster: 2020.08.20 Quad core ARM Cortex-A72 1.5GHz 4GB

Table 1: The hardware and firmware used in the experimental setup.

11

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

Software Build
Mpstat 12.0.3

Wpa supplicant 2.8
FreeRADIUS 3.0.17

Table 2: The software and build number used in the experimental setup.

7.2 Switch configuration

Mainly, IEEE 802.1X must be enabled on the switchports where the supplicants are connected,
and the switchport where the RADIUS-server is connected does not require IEEE 802.1X authen-
tication. The switch requires an IP-address and port 1812 is used for authentication by default in
RADIUS. A shared secret needs to be configured on both the switch and the AS, to confirm that
these devices can establish a trusted connection.

7.3 RADIUS configuration

When the server has access to the network, the RADIUS-software needs to be installed. In this
thesis FreeRADIUS is used on a Linux system, due to the popularity and easily obtained informa-
tion in guides and internet communities. For installation of FreeRADIUS, open the terminal and
download the software. On a Raspberry Pi the CLI command is:

sudo apt-get install Freeradius -y

This will download and install the software from the Linux repository to the device. FreeRADIUS
can be launched in regular mode using the following command:

Service Freeradius start

Or launch it in debug mode using:

Freeradius -X

The RADIUS-server is up and running and needs to make the switch its authenticator. This can
be done in the clients.conf file. In the clients.conf file it is important to specify the switch’s
IP-address. The secret which was implemented in the switch earlier needs to match the secret in
the clients.conf file. Now that the authenticator and RADIUS-server is configured, the supplicant
remains.

7.4 Supplicant configuration

For the supplicant to gain access to the network, it needs to authenticate with the FreeRADIUS-
server. Authentication can be done by using the graphical user interface and then authenticate by
username and password. However, if the server requires more credentials like a digital certificate,
further configuration is required. For authentication with digital certificates, the supplicant must
receive certificates from the server. The full path to the certificates must be implemented in the
/etc/wpa supplicant/wpa supplicant.conf -file and further credentials required for authentication
must be added.

7.5 Making a certificate

Inside the /etc/Freeradius/3.0/certs folder there are configuration files for generating digital cer-
tificates and keys for the CA, AS and supplicant. The ”make” command generates these digital
certificates and keys. In our case, the necessary certificates are: a ca.pem, ca.p12, server.pem and
client.p12. The following list shows the parameters that are mandatory to implement.

12

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

• distinguished name

• input password

• output password

• countryName

• stateOrProvinceName

• organizationName

• emailAdress

• commonName

7.6 Measurement

To be able to measure the authentication time and CPU usage, the RADIUS-server needs to be
up and running, preferably in debug mode. All of the settings must be finished and RADIUS must
be able to accept the certificate that is going to be measured. In the supplicant all of the settings
and certificates in /etc/wpa supplicant/wpa supplicant.conf needs to be set.

The measurement is based on the execution of the following command:

Sudo wpa_supplicant -c /etc/wpa_supplicant/wpa_supplicant.conf -D wired -i eth0 -t

The -c flag specifies the path to the file that contains the authentication credentials, the -D flag
runs the driver for the wired connection, the -i flag specifies which interface is used, and the -t
flag will display timestamps for every output, in Unix epoch. When wpa supplicant is running, it
displays information about the authentication process to the user. This information is forwarded
to a numbered text document. Inside this document we can analyze the data and use the epoch
time as our way to measure how much time it took for the device to authenticate.

The calculating of authentication time is done by using the timestamp for when the authentication
is completed and subtract it by the timestamp when wpa supplicant initiates the authentication.
The authentication time is measured on the supplicant.

The CPU usage is measured using a program called Mpstat. When the Mpstat command is ex-
ecuted, it provides the user with the average CPU usage of all available cores, at that moment.
The Mpstat-values are forwarded to a numbered text document which is created at each authen-
tication. The CPU usage is measured in percents. When the supplicant has been authenticated
to the network it is powered off and the power supply is physically switched off for one minute to
make sure that the supplicant is completely drained of power. The physical shutdown is done to
make sure that all temporary authentication data is cleared and the supplicant does not have any
saved cache for the next authentication.

In dual supplicant setup, the average authentication time and average CPU usage is a combination
of S1 and S2’s authentications. The minimum value is the lowest value recorded, and the maximum
value is the highest value recorded, regardless if it is S1 or S2’s value. The authentication fails are
presented individually. The reason to this presentation of data in the dual supplicant setup is to
highlight the behavior of supplicants in a theoretically scaling network. This thesis does not aim
to compare the supplicants mutual authentication data.

13

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

7.7 The authentication process

From this practical implementation we learned how the process of authentication is done. If both
the supplicant and the RADIUS-server has multiple EAP-implementations available, the server de-
cides which EAP-method is used due to a specified default eap type field in /etc/Freeradius/3.0/mods-
enabled/eap. The server will always try to negotiate the default EAP-method, for example MD5-
challenge if MD5 is the default EAP-method. If the supplicant does not support the proposed
EAP-method, it will respond to the RADIUS-server with an acknowledge of the EAP-method the
supplicant does support. If the RADIUS-server supports this EAP-method, the authentication
will proceed.

14

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

8. Results

This section contains the collected data of how the different authentication methods perform in
terms of authentication time, CPU usage and number of fails occurring for each authentication
method. Every authentication method is tested 20 times in single supplicant setup, and 20 times
for each supplicant in the dual supplicant setup.

8.1 Authentication time

Figure 5 depicts a box plot chart with the authentication time registered for each authentication
method. MD5 is clearly the fastest authentication protocol to authenticate, where all other pro-
tocols are more even. Table 3 contains peak and bottom values which would make the box plot
chart less comprehensible.

Figure 5: Authentication time for each authentication method (Single
supplicant setup).

Table 3 shows that EAP-MD5 was the fastest authentication method in all three categories;
Average-, Minimum-, and Maximum authentication time. PEAP-MSCHAPv2 and PEAP-GTC
performed similarly in average time to authenticate, as the former had the longest authentication
time in this test. EAP-MD5 varied the most, while PEAP-GTC was the most consistent protocol
with the least variation, in terms of authentication time.

15

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

Average (ms) Min (ms) Max (ms)
PEAP-MSCHAPv2 2237 1579 2329
PEAP-GTC 2236 1992 2297
TTLS-MSCHAPv2 2163 615 2295
TTLS-GTC 2162 954 2296
TLS 2200 1021 2322
MD5 2039 333 2172

Table 3: Authentication time (Single supplicant setup).

Figure 6 shows that the authentication time with dual supplicant setup provides similar values for
S1 and S2 when using the same authentication method, though some variations are visible. Figure
6 and Table 4 show that the average authentication time for PEAP-GTC and TTLS-GTC was
shorter in a dual supplicant setup, while all other authentication methods had longer authentica-
tion times. PEAP-GTC and TLS had faster minimum authentication times in the dual supplicant
setup, while the other authentication methods had longer authentication times. TTLS-MSCHAPv2
was the most consistent authentication method, closely followed by PEAP-MSCHAPv2, while TLS
was the least consistent authentication method.

Figure 6: Authentication time for each authentication method (Dual
supplicant setup).

16

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

Average (ms) Min (ms) Max (ms)
PEAP-MSCHAPv2 2262 2199 2346
PEAP-GTC 2210 851 2304
TTLS-MSCHAPv2 2249 2192 2322
TTLS-GTC 2217 1521 2307
TLS 2206 729 2329
MD5 2099 910 2196

Table 4: Authentication time (Dual supplicant setup).

8.2 CPU usage while authenticating

Figure 7 shows the CPU usage for each authentication method. PEAP-GTC is, as earlier stated,
the most consistent protocol in terms of CPU usage. The least consistent protocol was TTLS-
MSCHAPv2 which in some instances was the protocol needing the least amount, and some times
the second highest amount of processing power. The consistency between PEAP-MSCHAPv2,
TTLS-GTC, TLS and MD5 was similar.

Figure 7: CPU usage for each authentication method (Single
supplicant setup).

Table 5 show that TTLS-MSCHAPv2 had the lowest minimum CPU usage and the lowest average
usage while authenticating. MD5 had the highest average CPU usage and the highest minimum
CPU usage. PEAP-GTC is the most consistent authentication method regarding CPU usage,
which can also be seen in figure 6. PEAP-MSCHAPv2 encountered the least amount of fails dur-

17

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

ing authentication, whereas TTLS-GTC encountered 14, the highest amount of fails.

Average usage (%) Min usage (%) Max usage (%) Auth. Fails
PEAP-MSCHAPv2 5,31 1,54 7,75 7
PEAP-GTC 6,02 2,49 8,23 10
TTLS-MSCHAPv2 5,93 0,94 9,12 11
TTLS-GTC 6,28 1,20 8,34 14
TLS 6,02 2,58 9,34 9
MD5 7,19 2,95 9,15 12

Table 5: CPU usage (Single supplicant setup).

Figure 8 and table 6 show how an increase of one supplicant affects every authentication method.
The average CPU usage on PEAP-MSCHAPv2, PEAP-GTC and TTLS-GTC was lower, and the
average CPU usage on TTLS-MSCHAPv2, TLS and MD5 was higher than in a single supplicant
setup. Compared to the single supplicant setup, the amount of authentication fails increased when
using TTLS-MSCHAPv2, TLS and MD5, and decreased using TTLS-MSCHAPv2, while PEAP-
MSCHAPv2 and TTLS-GTC encountered zero authentication fails.

Figure 8: CPU usage for each authentication method (Dual supplicant
setup).

18

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

Average usage (%) Min usage (%) Max usage (%) Auth. Fails
PEAP-MSCHAPv2 4,91 2,54 5,78 0
PEAP-GTC 4,72 1,71 5,89 4 + 2
TTLS-MSCHAPv2 7,54 4,74 9,83 13 + 13
TTLS-GTC 4,81 2,3 5,68 0
TLS 8,22 6,08 9,87 19 + 19
MD5 7,97 4,01 9,62 20 + 18

Table 6: CPU usage (Dual supplicant setup).

19

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

9. Discussion

While MD5 had the fastest authentication time, it is considered the least secure authentication
method[18]. The reason to the fast authentication with MD5 might be that it uses the least compli-
cated encryption technique among the tested EAP-methods. The high CPU usage with MD5 may
be due to its older encryption and poor optimization for today’s hardware. Our initial thoughts
was that PEAP and TTLS would perform similarly while using the same phase two authentication
method, since both EAP-methods uses a digital certificate to authenticate the AS to the suppli-
cant, and establishes an encrypted TLS-tunnel from the AS to the supplicant. Our research data
contradicts the research data in a former thesis [17] which shows that PEAP-MSCHAPv2 is slightly
faster than TTLS-MSCHAPv2 in terms of authentication time. The difference in performance may
depend on the use of different hardware and software in the reference research.

When authenticating with TLS, the second supplicant (S2) experienced an issue when it got au-
thenticated and then immediately got disconnected from the network. This issue did only occur
once and could be an occasional bug.

With MD5 being the least secure option of all the methods it is no surprise that it should not
be used in real world implementations, not only for the safety aspect but for the CPU usage as
well. MD5 is the easiest method to implement as it only requires a username and password to
authenticate to the network. MD5 can be used in a testing scenario when setting up the network
or to test the connectivity between the supplicant, authenticator and AS.

On the other side of the spectra is TLS with its use of digital certificates and encrypted keys. The
security achieved with TLS is considered to be very high, though as a tradeoff, the implementation
of a PKI is more demanding and time consuming than a PSK-scenario [18]. TLS is an authenti-
cation method that occasionally demands a lot of processing power. In the minimum CPU usage
genre, TLS used more processing power than all other authentication methods but MD5, and had
the highest maximum CPU usage of all authentication methods. When adding one supplicant to
the network, the CPU usage increased. Even if TLS consumes more processing power than other
authentication methods, TLS should be used due to its high security. This shows that TLS is a
strong contender for networks where the authentication is allowed to use more processing power,
high security is crucial, and a PKI is already implemented or is not considered a problem to im-
plement.

PEAP-MSCHAPv2 is one of the more consistent protocols regarding CPU usage, and one of the
slower protocols to authenticate with in both single and dual supplicant setup. The protocol is
also one of the most solid ones regarding the number of fails. It is also one of the less complicated
protocols to implement with username, password, and a CA-certificate. If a network is growing,
the supplicants have limited processing power, and if there are several embedded systems that need
authentication at the same time, PEAP-MSCHAPv2 could be a good alternative.

TTLS-MSCHAPv2 authenticated slightly faster than its PEAP-counterpart, thus being the least
consistent protocol regarding CPU usage in both single and dual supplicant setup. It is obvious
that from a CPU usage perspective, TTLS-MSCHAPv2 is not adequate for multiple simultaneous
authenticating supplicants with its unpredictable and inconsistent CPU usage. As the protocol
seems to have an unpredictable CPU usage, our point of view is that it is not fast enough to
qualify as a worthy opponent to PEAP-MSCHAPv2. While PEAP-MSCHAPv2 performs better
than TTLS-MSCHAPv2 overall, it is our recommendation to always choose PEAP-MSCHAPv2
where both authentication protocols are applicable.

When authenticating with PEAP-GTC in a single supplicant setup, we recorded a generally con-
sistent CPU usage, an average amount of authentication fails, and the average authentication time
was close to that of TTLS-MSCHAPv2, TTLS-GTC and TLS. The CPU usage with PEAP-GTC is
the most consistent in dual supplicant setup, while the amount of authentication fails was compa-
rably low. The majority of the authentications used around 5% processing power, which together

20

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

with simple implementation, and fast authentications qualifies as a good alternative in growing
networks, in networks where the supplicants have limited processing power, and in networks where
several supplicants need authentication simultaneously.

TTLS-GTC, TTLS-MSCHAPv2 and PEAP-GTC perform generally equal regarding authentication
time , though TTLS-GTC had the second fastest average authentication time in single supplicant
setup, where only MD5 was faster to authenticate. When examining the CPU usage, TTLS-GTC
performed consistently, especially when a second supplicant was added. With no recorded au-
thentication fails, simple implementation, and consistent authentication times and CPU usage in
dual supplicant setup, TTLS-GTC is a good alternative in networks where PEAP-MSCHAPv2
and PEAP-GTC are considered suitable.

There are inconsistencies with a few authentications being a fair amount quicker, the cause of them
may have to do with when the CPU is directly available or already executes a process and queues
the authentication. Due to the fact that the traffic in the switch was not measured, it is possible
that there could have been more or less traffic traversing the switch at some situations. One other
possibility for the inconsistencies could derive from the boot up sequence; the authentication was
initiated 60 seconds after boot up and no priorities were set on the authentication, meaning that
other tasks than the actual authentication may have been executed first hand. One way to avoid
the authentication to be queued is to use an Operating System with real-time characteristics and
prioritize processes that are involved in the authentication.

The authentication time in single supplicant setup does not differentiate much in the average au-
thentication time section compared to dual supplicants. However, all authentication methods had
a longer maximum authentication times in dual than in single setup, though only by small margins.
When using a single supplicant setup, most authentication methods were less consistent as com-
pared to the dual supplicant setup, considering authentication time. TLS was the only protocol
to be less consistent in dual, although only one authentication was performed noticeably quicker
than the rest of the authentications using TLS. One reason for this behavior could be that at the
time the supplicant sends its response packet, a different process could be running in the back-
ground and delaying the authentication time. Another possibility is that when the two supplicants
authenticates, the supplicant that tries to authenticate first wakes up the RADIUS-server from a
sleep mode and therefore making it possible for the second supplicant to be authenticated at a
faster rate.
Our general opinion is to not use the authentication time as a standalone decisive factor when an
authentication method is evaluated for a network.

When examining the authentication data in dual supplicant setup, we noticed a possible correlation
between CPU usage and the amount of fails encountered in the authentication. The authentica-
tion methods that had the least amount of fails also had the lowest CPU usage in percentage,
in all three categories. PEAP-MSCHAPv2 and TTLS-GTC encountered zero fails, PEAP-GTC
encountered four fails on S1 and two fails on S2, which is considered low compared to the remain-
ing three. The prior mentioned authentication methods never exceeded 6% CPU usage, whereas
TTLS-MSCHAPv2, TLS and MD5 had an average CPU usage over 7,5%. The authentication fails
may have to do with the timing of when the authenticator sends an identity request packet. If the
identity request times out as the supplicant sends its identity response packet, the authenticator
restarts the authentication process by sending a new identity request packet, which records as an
authentication fail in the supplicants log files. The fact that TTLS-MSCHAPv2, TLS, and MD5
experiences a significantly higher amount of fails is intriguing, and we do not have a definitive
answer to why this occurs.

In the single supplicant point of view, all authentication methods encountered authentication fails,
though no correlation between high CPU usage and the amount of authentication fails is visible.

21

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

When configuring the RADIUS-server, multiple authentication methods should not be supported
if it is not absolutely unavoidable. The reason why multiple authentication methods should not
be implemented, is that it opens up an ”attack surface” which is doubled compared to when using
one specific EAP-method.

22

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

10. Conclusions and future work

This thesis goal was to measure the CPU usage and authentication time with different authenti-
cation methods and evaluate their performance when the amount of supplicants is doubled. From
the experiments and literature studies, we concluded the complexity levels, security level, and
scalability of the different authentication methods.

With the authentication data as support, the recommendation is to not use the authentication time
as a decisive factor when deciding on a authentication method. Due to the similar authentication
times among the different authentication methods, security should not be sacrificed for millisec-
onds of faster authentication. The CPU usage varies more between the authentication methods,
and supplicant hardware should therefore be thoroughly observed when evaluating authentication
methods.

The following authentication method(s) are recommended for networks where the decisive factor
is:

• Authentication time: PEAP-GTC, TTLS-GTC.

• Limited processing power: PEAP-MSCHAPv2, PEAP-GTC, TTLS-GTC.

• Security: TLS.

• Ease of implementation: PEAP-MSCHAPv2, PEAP-GTC, TTLS-GTC, TTLS-MSCHAPv2.

Even though EAP-MD5 is the fastest protocol to authenticate, its weak security makes it unfit for
real world implementations.

For future works, it would be interesting to measure and observe the effects and outcomes in a
scenario where additional supplicants are used with similar and less powerful hardware, compared
to the hardware used in this thesis. It would also be interesting to find an answer as to why
TTLS-MSCHAPv2, TLS, and MD5 experienced a significantly higher amount of authentication
fails.

The supplicant in this thesis was running Raspbian Buster without bootstrapping, for future work
we would recommend to use another operating system or have a more controlled environment when
it comes to background processes. Security is a broad topic, and this thesis was limited to the
practical aspects of deploying IEEE 802.1X for embedded systems. TTLS-TLS, PEAP-TLS and
algorithms optimized for mobile network connection has not been implemented nor evaluated and
should be tested in the future.

23

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

References

[1] I. R. Jenkins, “Defense in depth of resource-constrained devices,” 2020.

[2] R. S. D. Horváth, “Driving forces and barriers of industry 4.0: Do multinational and small
and medium-sized companies have equal opportunities?” Technological Forecasting and Social
Change, pp. 119–132, 2019.

[3] W. A. R. Hously, “Security problems in 802.11-based networks,” vol. Communications of the
ACM 46, no. no.5, pp. 31–34, 2003.

[4] L. J. Blunk and J. R. Vollbrecht, “Ppp extensible authentication protocol (eap),” Internet
Requests for Comments, RFC Editor, RFC 2284, March 1998, http://www.rfc-editor.org/
rfc/rfc2284.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2284.txt

[5] J. Geier and J. T. Geier, Implementing 802. 1X Security Solutions for Wired and Wireless
Networks. John Wiley Sons, Inc., 2008.

[6] D. Harkins, “Secure pre-shared key (psk) authentication for the internet key exchange protocol
(ike),” Internet Requests for Comments, RFC Editor, RFC 6617, June 2012.

[7] C. Adams and S. Farrell, “Internet x.509 public key infrastructure certificate management
protocols,” Internet Requests for Comments, RFC Editor, RFC 2510, March 1999,
http://www.rfc-editor.org/rfc/rfc2510.txt. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc2510.txt

[8] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, “Extensible
authentication protocol (eap),” Internet Requests for Comments, RFC Editor, RFC
3748, June 2004, http://www.rfc-editor.org/rfc/rfc3748.txt. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc3748.txt

[9] J. Z. H. Z. G. Z. S. J. A. Palekar, D Simon, Network Working Group, vol. Protected EAP
Protocol (PEAP) Version 2., no. 10, 2004.

[10] Microsoft, “Ms-chap overview,” 2019.02.14. [Online]. Available: https://docs.microsoft.com/
en-us/openspecs/windows protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438

[11] NetworkRADIUS, “The freeradius implementation guide,” 2014, accessed: December 12, 2020.
[Online]. Available: https://networkradius.com/doc/FreeRADIUS-Implementation-Ch6.pdf

[12] R. L. Rivest, “The md5 message-digest algorithm,” Internet Requests for Comments, RFC
Editor, RFC 1321, April 1992, http://www.rfc-editor.org/rfc/rfc1321.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1321.txt

[13] J. Malinen, “Linux wpa/wpa2/ieee 802.1x supplicant,” 2013, accessed: December 12, 2020.
[Online]. Available: https://w1.fi/wpa supplicant/

[14] D. van der Walt, FreeRADIUS Beginner’s Guide, 1st ed. Olton: Packt Publishing, Limited,
2011.

[15] “Ieee standard for information technology—portable operating system interface (posix(tm))
base specifications, issue 7,” IEEE Std 1003.1, 2016 Edition (incorporates IEEE Std 1003.1-
2008, IEEE Std 1003.1-2008/Cor 1-2013, and IEEE Std 1003.1-2008/Cor 2-2016), pp. 113–
114, 2016.

[16] K. Milberg, Driving the Power of AIX Performance Tuning on IBM Power. MC Press, 2009.

[17] M. M. T. Kothaluru, “Evaluation of eap authentication methods in wired and wireless net-
works,” 2012.

[18] A. Chiornită, L. Gheorghe, and D. Rosner, “A practical analysis of eap authentication meth-
ods,” in 9th RoEduNet IEEE International Conference, 2010, pp. 31–35.

24

http://www.rfc-editor.org/rfc/rfc2284.txt
http://www.rfc-editor.org/rfc/rfc2284.txt
http://www.rfc-editor.org/rfc/rfc2284.txt
http://www.rfc-editor.org/rfc/rfc2510.txt
http://www.rfc-editor.org/rfc/rfc2510.txt
http://www.rfc-editor.org/rfc/rfc2510.txt
http://www.rfc-editor.org/rfc/rfc3748.txt
http://www.rfc-editor.org/rfc/rfc3748.txt
http://www.rfc-editor.org/rfc/rfc3748.txt
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438
https://networkradius.com/doc/FreeRADIUS-Implementation-Ch6.pdf
http://www.rfc-editor.org/rfc/rfc1321.txt
http://www.rfc-editor.org/rfc/rfc1321.txt
https://w1.fi/wpa_supplicant/

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

[19] S. M. K. Kim, Y. Han, “An authentication and key management mechanism for resource
constrained devices in ieee 802.11-based iot access networks,” Sensors, oct 2017.

25

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

A Bash code used to measure authentication time and CPU
usage

#!/bin/bash

trynumber=1

while true

do

FILE=/home/pi/try$trynumber.txt

if [-f "$FILE"]; then

echo "$FILE exists."

let "trynumber +=1"

else

echo "$FILE does not exist."

touch try$trynumber.txt

break

fi

done

sleep 60

echo "enter the filename"

echo "Trying to authenticate to network."

bash temp.bash & sudo wpa_supplicant -c /etc/wpa_supplicant/wpa_supplicant.conf -D wired -i eth0

-t -f /home/pi/try$trynumber.txt & bash temp.bash

cat usage.txt >> usage$trynumber.txt

rm usage.txt

rm tmptemp.txt

sleep 10

grep -Fn "Successfully" try$trynumber.txt | cut -d ":" -f2 >> tmp.txt

grep -Fn "CTRL-EVENT-CONNECTED" try$trynumber.txt | cut -d ":" -f2 >> tmp.txt

a=`awk '{if(NR==1) print $0}' tmp.txt`

b=`awk '{if(NR==2) print $0}' tmp.txt`

d=`date -d @$a '+%m%d%Y%H%M%S%3N'`

e=`date -d @$b '+%m%d%Y%H%M%S%3N'`

c="$(($e-$d))"

echo $c >> resultat.txt

rm tmp.txt

rm -r temptry*

cat resultat.txt

FILE=/home/pi/try20.txt

if [-f "$FILE"]; then

echo "$FILE exists."

else

echo "$FILE does not exist."

shutdown now

fi

26

Marcus Karlsson & Oscar Zaja IEEE 802.1X for embedded systems

B Complete authentication data spreadsheet

Figure 9: Single supplicant authentication time, fails, and CPU usage

Figure 10: Dual supplicant authentication time, fails, and CPU usage

27

