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Abstract —This paper is focused on the blind symbol rate 
estimation for the digital FSK modulated signals. 
Symbol rate estimation is based on the classification 
between three symbol rate classes: 10, 100 and 1000 
KSymbol/second using the scalogram images obtained 
from time-frequency analysis performed using the 
continuous wavelet transform with Morse wavelet. 
Pretrained deep learning AlexNet has been transfer 
learned to classify between symbol rate classes. Training, 
testing and validation data sets have been composed 
from the artificial data generated using Bernoulli binary 
random signal generator modulated into FSK signal 
corrupted by additive white Gaussian noise (AWGN) 
noise with SNR ranging from 1 to 30 dB. The average 
classification accuracy during validation has reached 
99.7% and during testing 100 % and  96.3 % for the 
data sets with SNR 25-30 dB and 20-25 dB respectively. 
Proposed algorithm has been compared with 
cyclostationary and has shown improved classification 
accuracy especially in conditions of low SNR. Central 
frequency estimation has been performed using a 
modified periodogram estimate of the power spectral 
density with a rectangular window. 
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I. INTRODUCTION  

Cognitive radio (CR) is actively addressing the efficient 
utilization of the electromagnetic spectrum [1]. Spectrum 
sharing and dynamic spectrum access are techniques used in 
CR to optimize the use of the electromagnetic spectrum. 
Spectrum sharing enables interference free access to the 
same frequency bands between multiple users’ categories. 
Dynamic spectrum access enables sensing of the free 
channels and allows devices to communicate in underused 
parts of the spectrum.  Intelligent signal processing and 
decision-making is used to dynamically select spectrum 
band, time diversity, spatial diversity options and generate a 
cognitive waveform [2]. Waveform information of the active 
transmitting users including both: symbol rate and 
modulation type is necessary to employ autonomous 
spectrum sharing scenario, i.e., to identify the spectrum reuse 
opportunities in conditions where no information about 
primary users and signals is available. Once the waveforms 
of the transmitting signals is known, it is possible to reuse 
underutilized white and gray spaces of the spectrum.  

There are various methods for blind symbol rate 
estimation described in the literature including non-linear 
energy operator [3], cyclostationary [4-13], Inverse Fast 
Fourier Transform and baseband shape based [14], [15]; 
Monte Carlo based [16], [17]; Wavelet Transform based [18-
23] and Maximum Likelihood [24], [25]. Most of the symbol 
rate estimation methods are applicable for the certain 
modulation types. For example, for the linear modulations 
cyclostationary methods and wavelet transform.  Gardner’s 
method also based on signal cyclo-stationarity [26] was 
intended for BPSK and QPSK [27]. Non-linear modulations 
including FSK, however, received significantly less attention 
in the literature. Wavelet transform has been listed by 
Hatoum et al. in [23] as a high capacity method to detect 
discontinuity structures and zoom on the signal abrupt 
changes. While the traditional symbol rate estimation 
methods, such as the cyclostationary and the envelope 
spectrum method, show a dramatic decline of performance in 
low SNR, the wavelet transform based algorithm proposed 
by Yang et al. has demonstrated high performance at low 
SNR for FSK modulated signals [28]. 

The main objective of this work is performance evaluation of 
the wavelet feature extractor and AlexNet convolutional 
neural network (CNN) classifier for symbol rate estimation 
in our target application in various SNR conditions. The 
symbol rate classes, and boundary conditions are predefined 
by our target application.  It is a software-defined radio-
based network consisting of the digital cognitive radio nodes. 
The radio part is based on Analog Devices AD9361 
transceiver. It has Zynq 7020 FPGA and dual-core ARM 
Cortex A9 CPU with embedded Linux OS. Nodes are 
operating in the non-cooperative communication 
environment within 70 MHz - 6GHz frequency band. 
Cognitive waveforms are generated by supporting multiple 
modulations including both linear: QPSK, BPSK, QAM and 
non-linear: FSK and three studied symbol rate classes: 10, 
100 and 1000 KSymbol/second. Artificial data set has been 
generated using Bernoulli binary random signal generator 
modulated into FSK signal with three studied symbol rate 
classes. AWGN has been added to the signal as a distortion 
to generate the signal with different SNR values within the 
range from 30 to 1 dB with step size 1dB. Carrier frequency 
estimation has been performed in the frequency domain 
using a modified periodogram estimate of the power spectral 
density with a rectangular window. Generated data samples 
have been preprocessed into the time domain scalogram 
images by applying Morse wavelet transform. Classification 
has been performed by AlexNet deep network trained using 
the transfer learning. Even though the use of the deep 
network classifier could be a questionable choice for the 



 

 

portable embedded application, Véstias et al. [29] have 
demonstrated successful launch of the optimized AlexNet 
on ZYNQ7045 FPGA. The inference execution times of 
CNNs in low density FPGAs has been improved using 
fixed-point arithmetic, zero-skipping and weight pruning. 
The proposed algorithm has been also compared with the 
cyclostationary symbol rate estimation in terms of 
classification accuracy.  

II. DATA SET 

 Data Set Generation. Data set used for training, 
validation and testing has been generated using a virtual 
model presented on Figure 1. The input signal has been 
generated by Bernoulli binary random signal generator and 
modulated into FSK with given symbol rate, deviation and 
central frequency of 1.5 MHz. AWGN channel model has 
been selected to emulate the propagation environment with 
SNR ranging from 30 dB to 1 dB with the step size of 1 dB. 
Artificial data set has been composed from 900 FSK 
modulated signal samples with 300 samples for every studied 
class.  Data samples were initially presented in the form of 
power spectrum density plots. Figures 3 and 5 present signal 
samples. Data set samples have been randomly divided into 
two data sets used for training and validation. 

Training Dataset contained 70% of the FSK modulated 
data samples, what corresponds to 630 signal samples, 
including 210 samples for every studied class.  
Validation Dataset contained 30% of the FSK modulated 
data set, what corresponds to 270 samples including 90 
samples for every studied class. 
Testing Dataset has been composed from six groups of 
samples, according to SNR level with 90 test images of 
every class per group including 30 images for every class. 
The first group  contains signals with SNR ranging from 1 
dB  to 5 dB, the second with SNR from 6 to 10 dB, the third 
group: from 11 to 15 dB, the fourth group: from 16 to 20 
dB, the fifth group: from 21 to 25 dB and the sixth group: 
from 26 to 30 dB.     

III.  CENTRAL FREQUENCY ESTIMATION 

     Central frequency estimation has been performed using a 
modified periodogram estimate of the power spectral 
density with a rectangular window and integrating it [30]. 
The periodogram is the Fourier transform of the biased 
estimate of the autocorrelation sequence. For a signal, xn, 
sampled at fs samples per unit time, the periodogram is 
defined by Equation 1: 

21
2

0

( ) , 1/ 2 1/ 2
N

j fn
n

n

t
P f x e t f t

N








            (1) 

Where Δt is the sampling interval. For a one-sided 
periodogram, the values at all frequencies except 0 and the 
Nyquist, 1/2Δt, are multiplied by 2 to keep the value of the 

total power. The modified periodogram is obtained by 
multiplying the input time series by the window function - 
hn. This helps to alleviate the leakage in the periodogram. A 
suitable window function should be nonnegative, decaying 
to zero at the beginning and end points. If hn is a rectangular 
window function, the modified periodogram is defined by 
Equation 2.  
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where Δt is the sampling interval. The integral of the true 
PSD, P(f), over one period, 1/2Δt for cyclical frequency and 
2π for normalized frequency, is equal to  the variance of 
the wide-sense stationary random process defined by 
Equation 3: 
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IV. CYCLOSTATIONARY ESTIMATION 

The second order periodicity is defined as the existence of 
the non-zero correlation between some spectral components 
in the time series. Spectral correlation is a measure of the 
second order periodicity in the time-series [31]. It is 
described by Equation 4:  
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For all values the spectral location parameter: 
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And the spectral separation parameter: 
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is a frequency of the second order periodicity: cyclic 
frequency [31]. The mean value of the spectral correlation 
matrix has been computed for the studied cyclic frequencies. 
The symbol rate has been estimated as the cyclic frequency 
corresponding to the maximum value of the mean spectrum 
correlation. 

V. DATA PREPROCESSING AND AUGMENTATION  

      The preprocessing of training, validation and testing data 
sets have been performed. Primary, the Inverse Fourier 
transform with the window size of 216 has been applied to 
switch from the frequency to the time domain. Verification 
that selected window size resolves the signal in time domain 
successfully has been performed using Constant Overlap-
Add (COLA) Constraint and “iscola” Matlab function [32]. 

 
 
Figure 1. Data set Generation Model.   
                                                                             

 
 
Figure 2. Data Preprocessing. 



 

 

To perform time-frequency analysis the continuous wavelet 
transform Morse wavelet has been chosen, defined by time 
and frequency spread has been applied to the time domain 
signal. Scalogram images have been plotted based on the 
scales magnitudes data. The significant regions are found as 
the regions with the maximum magnitudes of the scales. 
Scalogram plots have been zoomed in into the significant 
regions for all of the three studied classes. Figure 7 presents 
the full size scalograms and zoomed in regions of interest 
for all three studied classes. The described above scalogram 

preprocessing have been applied to the training, validation 
and testing data sets. Examples of the preprocessed 
scalogram images are summarized by Figure 8.  

Data Augmentation. Both training and validation data sets 
have been augmented to obtain twice larger data set i.e 1800 
scalogram images in comparison to original size of 900 
samples. Random mirror reflection about X axis and random 
translation in both X and Y axis by pixel range [-256 256] 
have been applied to compose the augmented data set.

 
     Figure 6. Spectrum correlation and its mean value: 10, 100 and 1000 KSymbol/s, SNR =1 dB.    

Figure 3. Data Samples PSD plots: 10, 100 and 1 MSymbol/s, SNR =30 dB   

Figure 4. Spectrum correlation and its mean value: 10, 100 and 1000 KSymbol/s, SNR =30 dB.     

Figure 5. Data Samples PSD plots: 10, 100 and 1000 KSymbol/s, SNR =1 dB.   



 

 

 
Figure 7. Data set samples. Full scalogram plots and zoomed in regions of interest.  
 

Figure 8. Data set samples. Scalogram plot, zoomed-in regions of interest.

          

a)   a)   10 KSymbol/s. SNR =1dB  b) b)   10 KSymbol/s. SNR =30dB 
  

 

 

c) c)    100 KSymbol/s. SNR =1dB  d)                 d)   100 KSymbol/s. SNR =30 dB 

e)  e)   1000 KSymbol/s. SNR =1dB                         f)                f)   1000 KSymbol/s. SNR =30dB                         



 

 

 

Figure 9. AlexNet transfer learning process. 
 
 
 
 
 
 
 
Figure 10. AlexNet transfer learning loss function. 

VI. DEEP LEARNING NETWORK  

       The pretrained AlexNet: a CNN [33] has been selected 
as a classifier due to both: relatively less complex for the 
deep network architecture and possibility to take an 
advantage of transfer learning:  fine-tuning is usually much 
faster and easier than training a network with randomly 
initialized weights from scratch. Also, to transfer learn 
features to classify new object could be done using a smaller 
data set. AlexNet has learned rich feature representations: it 
has been pre-trained on over one million images to classify 
images into 1000 classes [33], such as keyboard, coffee 
mug, pencil, and many animals.  AlexNet consists of 25 
layers, including five convolution layers, three fully 
connected and six reLU layers. The network takes an image 
as input and outputs a label for the object in the image 
together with the probabilities for each of the object 
categories. The network structure has been modified to 
accomplish symbol rate classification via adjustment of the 
output layer size. The modified AlexNet was trained using 
the training data set composed of scalogram images. 

VII. TRAINING AND VALIDATION  

Pretrained AlexNet has been transfer learned to classify the 
symbol rate based on the FSK modulated data samples 
preprocessed as scalogram images. The transfer learning 
network training has been performed in 6 epochs with 74 
iterations per epoch, i.e 444 iterations in total. An epoch is 
defined as a full pass through the entire data set. Figures 9 
and 10 summarize the training process and the loss function 
respectively. Validation has been performed with the 
frequency of three iterations on the entire validation set, has  
reached 99.69% accuracy on each individual mini-batch and 
smoothed training accuracy is its denoised version obtained 
by applying a smoothing filter. Training loss is defined as 
the loss on each mini batch. Smoothed training loss is the 
smoothed version of the training loss and validation loss is 
the loss on the validation data set. The loss function is the 
cross-entropy loss since the output layer is a classification 
layer.  

VIII. TESTING RESULTS  

      Testing has been performed on the testing data set 
consisting of six SNR testing groups. The testing images  

Figure 11. Average classification accuracy during testing. 
 
have been sampled in the randomized order. Around 30 
testing images have been used for each class within each 
SNR group. The average classification accuracy has been 
calculated as a mean value of the classification accuracy 
observed for every SNR testing group. Figure 11 presents 
the average classification accuracy observed during the 
testing for every SNR group for both proposed algorithm 
and cyclostationary estimation.  

IX. CONCLUSIONS 

      The classification of the symbol rate based on the 
scalograms obtained from the Morse wavelet transform of 
the time domain FSK modulated signals has been 
performed. Pre-trained deep learning network AlexNet has 
been used as a classifier. The validation accuracy of the 
symbol rate classification has reached 99.7%. During the 
testing the highest average classification accuracy of 100% 
has been observed for the signals with SNR levels 25-30 dB, 
while for signals with SNR 20-25 dB it was 96.3%. No 
significant effect of SNR value on the average classification 
accuracy has been observed. Wavelet transform could be 
suggested as a feature extraction method for the signals with 
low SNR.   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Misclassified Samples:  Cyclostationary: 10 and 1000 
Ksymbol/s; Scalograms: 10 and 100 KSymbol/s. 



 

 

X. DISCUSSION 

The combination of wavelet feature extractor and AlexNet 
classifier has shown up to 100% classification accuracy in 
testing and 97% accuracy at the low SNR. 
The wavelet feature extractor has shown the potential 
interest to be tested in combination with the less 
computationally demanding classification algorithms in the 
scope of the future work. The visual analysis of the 
misclassified samples by the proposed algorithm has shown 
several scalograms of 10 and 100 KSymbol/second with 
very alike significant regions. The misclassification in the 
baseline cyclostationary algorithm has been caused mostly 
by the random noise peaks that at low SNR were exceeding 
the maximum regions of spectral correlation. 
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