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Abstract — This This paper is focused on the 
autonomous detection of the vacant frequency channels 
in the wide observation band of 60MHz. Vacant channel 
detection has been modeled as a binary hypothesis 
testing problem. Three signal detection algorithms 
including energy detection, wavelets, and cyclostationary 
have been tested and evaluated in terms of accuracy. 
Testing has been performed offline on the data samples 
collected during the controlled experiment. Data samples 
consisting of AWGN noise and FSK, BPSK, QPSK 
modulated signals have been generated using the 
hardware signal generator and received on our target 
application's receiver (AD9364) front end as a time-
domain complex signal. The optimal threshold value has 
been determined as an optimal value between the hit 
rate and the false positive rate. The highest accuracy of 
91.0% has been reached the wavelet transform feature 
extraction, energy detection has shown 86.4% accuracy. 
Cyclostationary detection has shown no distinguishable 
difference in the spectrum correlation values calculated 
for the AWGN noise sample and samples containing 
BPSK and 2FSK modulated signals captured with -20 
dB power.  
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I. INTRODUCTION  

The number of mobile devices and gadgets actively using 
the radio frequency (RF) spectrum is constantly growing 
worldwide. The traditional spectrum utilization policies 
based on rigid licensed bands allocation over large, 
geographically defined regions have been reformed in recent 
years to cope with the growing data traffic demand,  with 
the objective to allow the unlicensed secondary users to 
access licensed bands without causing interference to the 
licensed primary users.[1] Cognitive Radio is a highly agile, 
environmentally aware communication paradigm that 

 

Figure1.Target application BitSDR and its schematics.   

has a potential to improve spectrum occupancy by 
opportunistically identifying and reusing the available 
spectrum resources without causing harmful interference.  
The most common example of the dynamic spectrum access 
(DSA) is the reuse of the TV white spaces:  the spectrum 
allocated to TV broadcasters is reused for other wireless 
communication applications, eliminating harmful 
interference to the incumbent TV receivers [1], [2].  Since 
the fundamental requirement for spectrum reuse, is to avoid 
interference to potential primary users in their vicinity, one 
of the challenges in a cognitive radio system is the detection 
of vacant frequency channels. From the spectrum reuse 
perspective RF spectrum could be classified into black 
spaces, gray spaces, and white spaces [3], [4]. Black spaces 
are occupied by high power local interfere and unlicensed 
users should avoid those spaces at that time. Gray spaces are 
partially occupied by low power interference, but they are 
still candidates for secondary use. White spaces are free 
from the RF interference except for the ambient noise made 
up of natural and artificial noise including the thermal noise, 
transient reflection, and impulsive noise [3],[4]. White 
spaces are obvious candidates for secondary reuse. 

This paper is focused on autonomous, also referred to as 
non-cooperative or blind methods for vacant frequency 
channels detection suitable for the reuse. Autonomous 
methods are defined as methods that do not require any prior 
knowledge about primary users and transmitted signals. The 
main motivation for this work is the performance evaluation 
of the wavelet feature extractor, energy detection and 
cyclostationary feature extraction algorithms for vacant 
channels detection in our target application BitSDR: a 
software-defined radio-based network consisting of the 
digital cognitive radio nodes. The radio part is based on 
Analog Devices AD9364 transceiver. It has Zynq 7020 
FPGA and dual-core ARM Cortex A9 CPU with embedded 
Linux OS. Figure 1 presents the photo of our target 
application and its schematics. Nodes are operating in the 
noncooperative communication environment within the  

 

 



 

 

 
 
spectrum band of 70 MHz-6GHz. Cognitive waveforms are 
generated by supporting multiple modulations including 
both linear: QPSK, BPSK, QAM, and non-linear: FSK and 
three symbol rates: 10, 100, and 1000 KSymbol/second. To 
meet the real-time operation requirements the observation of 
the radio scene must be performed within 500 microseconds 
or less. The experimental data set consists of signal samples 
generated using the signal generator and collected as a 
received signal by our target application hardware. The 
radio scene observation band has been performed in the 
wide band of 60 MHz, where 56MHz is usable, due to the 
maximum receiver sensitivity limit. The observation band 
has been divided into 60 channels: 1 MHz each. The 
processing of the data samples and classification itself has 
been performed off-line in Matlab environment using 
energy detection, wavelet transform and cylostationary.  

II. LITERATURE REVIEW 

In the literature, the signal detection problem is often 
modeled as a binary hypothesis testing problem [2]. There 
are two possible hypotheses: H0 and H1: 

                               (1) 

Where H0 is used to describe a frequency channel as vacant 
[2], [3] if the filtered radio signal within this channel is only 
composed of noise. In the occupied channel H1, this signal 
consists of an unknown nonzero number of 
telecommunication signals in addition to the noise. Prior to 
the hypothesis testing the received signal is processed to 
extract the significant features. This literature study is 
focused mainly on the feature extraction algorithms that do 
not require demodulation, such as energy detection, 
wavelets, and cyclostationary.  
 
Table 1. Data samples  

 
 
Digital communication signals are associated with sine 
wave carriers, pulse trains, repeating spreading, hopping 
sequences, or cyclic prefixes that contain built-in 
periodicity. Even though the data is a stationary random 
process since statistics of these modulated signals exhibit 
periodicity they are characterized as cyclostationary.  If the 
mean of a signal shows periodicity, it is said to show the 
first-order periodicity. Other first-order periodicity 
statistical characteristics include variance, standard 
deviation, skewness, kurtosis, root mean square, entropy, 
and median. If the autocorrelation of a signal is periodic, the 
signal is second-order cyclostationary. This periodicity is 
typically introduced intentionally in the signal format so that 
a receiver can exploit it for parameter estimation such as 
carrier phase, pulse timing, or direction of arrival. Signal 
analysis in the cyclic spectrum domain preserves phase and 
frequency information related to the timing parameters in 
modulated signals [5]. Therefore, features overlapping in the 
power spectrum density are non-overlapping features in the 
cyclic spectrum and therefore different types of modulated 
signals that have identical power spectral density functions 
can have highly distinct spectral correlation functions. 
Furthermore, stationary noise and interference exhibit no 
spectral correlation. The key advantage of the 
cyclostationary feature detection techniques is their 
compatible performance in low SNR. Main disadvantages 
are: 1. they perform worse than the energy detectors in 
conditions of the stationary noise; 2. they may be 
completely lost due to channel fading [6], [7]; 3. They are 
known to be vulnerable to sampling clock offsets [8] [3]; 
4.They are more computationally complex compared to 
energy detection methods. 
Energy detection. The received signal is integrated over a  
 
 
 

Figure 2. Experiment set up for data set generation. Flow chart of data collection and processing. 



 

 

 
certain time period to obtain the average power at the filter’s 
center frequency. The signals can be detected based on a 
decision threshold. i.e. power levels above this threshold are 
identified as signals. J. Zheng et al [5] have summarized 
multiple ways to determine the decision threshold 1. 
Empirical analysis of data [9], [10]; 2. Computation from 
system properties such as noise floor [11], [9]; 3. Using a 
priori knowledge of statistics of noise [12], [13], and 4. 
Estimation of threshold directly from the data [5]. 
T. Yucek and H. Arslan in [3] have classified energy 
detection as the least computationally demanding and at the 
same time worst in terms of classification accuracy compare 
to cyclostationary, waveform-based, matched filtering and 
radio identification methods.  The main disadvantages of 
threshold estimation techniques are as follows: 1. The 
threshold estimated is specific to the receiver, and hence 
they fail to detect the presence of signals that occur below 
the receiver’s noise floor; 2. They require a priori 
knowledge of the noise statistics, and they show significant 
performance deterioration in the presence of noise power 
that varies throughout the frequency band of interest [8], [3]; 
4. poor performance under low SNR conditions because at 
low SNR noise variance is not accurately known [14]; 5. 
Cannot Distinguish Users Sharing the Same Channel;  6. 
baseband filter effects and spurious tones [15].  
Wavelet Detection. By employing a wavelet transform of 
the power spectral density (PSD) of the observed signal, the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

local maximums of the PSD are detected and thus the vacant 
frequency bands can be found. The main advantage of 
wavelet-based signal detection listed in the literature is their 
good performance for the wideband signals. The main 
disadvantages: 1. does not work for spread spectrum signals; 
2. relatively high computational cost; 3. high sampling rates 
characterizing larger bandwidths. Based on this literature 
study of the spectrum sensing three algorithms including 
energy detection, cyclostationary and wavelet transform 
have been applied to identify the vacant bands in the data 
samples received by our proprietary hardware. Some of 
these algorithms could be potentially used complementary 
to each other in different noise conditions, for example.  
cyclostationary are performing well when the noise is non- 
stationary, while energy-based are starting to fail in the 
presence of noise power that varies  stochastically 
throughout the frequency.  The limitation also has been 
made regarding the use of these methods at low SNRs.  

III. DATA SET 

The testing data set have been generated by the signal 
generator and received by proprietary SDR hardware’s 
transceiver. Generated data samples contain both digital 
signals, modulated into FSK, BPSK and QPSK with various 
carrier frequencies, power, symbol rate, and AWGN noise.  
Experimental setup photo and schematics are presented in 
Figure 2. Each data sample has been observed and recorded 
during 500 microseconds or less. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Data samples: a) Data sample 1: white noise;  b) Data sample 3: Three signals  BPSK,2FSK, BPSK;  c) Data sample 7: Three signals QPSK, BPSK 
and 2FSK. 

Figure 6. Cylostationary-based vacant channels detection. 

Figure 5. Wavelet transform-based vacant channels detection. 

Figure 4. Energy detection-based vacant channels detection. 



 

 

Figure 9.Wavelet transform: a)Correctly classified occupied channel, channel 5, sample 7; b) Correctly classified vacant channel, channel 15, sample 7; c)missed 
detection, channel, sample 7. 

Figure 8. null hypothesis test for wavelet transform Data samples: a) Data sample 1: white noise;  b) Data sample 3: Three signals  BPSK,2FSK, BPSK;  c) 
Data sample 7: Three signals QPSK, BPSK and 2FSK. 

Figure 7.Signal energy calculated for every channel and null hypothesis test: a) Data sample 1: white noise;  b) Data sample 3: Three signals  BPSK, 2FSK, 
BPSK;  c) Data sample 7: Three signals QPSK, BPSK and 2FSK. 

 

Figure 3 presents examples of the data samples consisting of 
the in-phase and quadrature components of the complex 
received signal and their power spectrum density (PSD) 
plots. The main characteristics of the data samples are 
summarized in Table 1. Data sample 1 contains AWGN 
with no modulated signal, captured on the receiver front 
end. The captured noise data follows the Gaussian 
distribution: it has the mean value of -7.5×10-5 and the 
standard deviation of 0.0116, what lies within the 95% 
confidence interval. This allows us to conclude that the 
noise in the studied frequency band is AWGN noise.  

IV. ENERGY DETECTION  

Vacant frequency channels detection using energy detection 
feature extraction is performed by comparing the integrated 
energy value over each channel to the threshold value. Figure 
4 describes the energy detection workflow. 

 

 

The input data samples collected as a complex time domain 
signal in the form of in-phase and quadrature components are 
converted to the frequency domain using fast Fourier 
transform. The 60 MHz observation band has been divided 
into 60 channels, 1 MHz each. The frequency domain signal 
has been integrated, to obtain the average power for every 
channel and compare it to the threshold value. The threshold 
has been determined empirically to achieve the optimal 
detection performance, defined as the highest hit rate for the 
smallest number of false positives. Three values of the 
threshold calculated as the mean value of the energy 
calculated for all 60 channels plus minimum signal power: 2, 
3 and 4dB have been compared.The optimal detection has 
been observed for the mean value of the energy calculated 
for all 60 channels plus minimum signal power 3 dB. The 
calculated energy value in the channel  above this threshold 
has been identified as signals; below the threshold - as vacant 
channels. 



 

 

Figure 10.Wavelet transform: a)False positive detection, channel 1, sample 1; b) False positive detection, channel 5, sample 1; c) Correctly classified vacant 
channel, channel 15, sample 1. 

Figure 11. Fourier transform with 5 MHz bandpass filter: a) Sample 1 AWGN, b) two signals BPSK and 2FSK signals, band pass filtered 15 -20 MHz; 
c) two signals BPSK and 2FSK signals, band pass filtered 0 -5 MHz. 

Figure 12. Spectrum correlation and mean value of spectrum correlation for the bandpass filtered signal samples:  a) Sample 1 AWGN band pass filtered 0 -5 
MHz; b) two signals BPSK and 2FSK signals, band pass filtered 15 -20 MHz; b) two signals BPSK and 2FSK signals, band pass filtered 0 -5 MHz. 

Relative cumulative energy plots for three signal samples 
described are described in Figure 7. The red line indicates 
the threshold value calculated as the mean value of energy 
for 60 channels plus 3dB. This method is showing some 
false positives since the threshold is calculated as a relative 
value based on the mean value of the energy in the studied 
frequency band. Figure 7a presents the data sample 1, 
containing AWGN noise with false positive detections for 
18 channels. 

V. CYCLOSTATIONARY  

The second order periodicity is defined as the presence of 
the non-zero correlation between some spectral components 
in the time series. Spectral correlation is a measure of the 
second order periodicity in the time-series[16]. Figure 12 
describes the spectrum correlation plots and its mean value 
for the data sample 1 containing the AWGN noise and data 
sample 4 containing two signals BPSK and 2FSK. The 
maximum values of the spectrum correlation and the 
maximum value of the mean spectrum correlation for the 
channels containing the signal have shown no 
distinguishable difference. This could be due to the 
cyclostationary activity in the studied noise sample.   
Therefore, the cyclostationary based detectors have not been 
further studied and tested in scope of this work. 

VI.  WAVELET TRANSFORM  

Wavelet transform of the PSD signal allows to detect the 
local maximums of the PSD, thus the vacant frequency 
bands can be also found.  Figure 5 describes the workflow 
used for the detection of vacant channels using wavelet 
transform feature extraction. To identify the vacant 
channelsin the wide band 60 MHz band has been divided 
into 60 channels, 1 MHz each. The bandpass filter has been 
applied. Then the wavelet transform using Morse wavelet 
has been applied to every channel. The local maximum has 
been calculated for every channel and compared to the 
average value calculated for all channels in the band. 
Figures 9 and 10 describe the local maximum detection. The 
threshold for the vacant channel has been set to the average 
value of the local maximum calculated for 60 channels plus 
25% of the average.   

VII. TESTING RESULTS 

The performance of both wavelet transform and energy 
detector has been evaluated in terms of classification 
accuracy, false positive rate, and missed detection rate. The 
accuracy has been calculated as the percentage of correctly 
classified channels in relation to the total number of tested 
channels.  
 

 
 

 

 
 

 
 
 

 
 
 
 
 
 
 
 

 



 

 

Figure 14. Data samples 6, its FFT Energy detection and wavelet transform null hypothesis test   
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False positive detection is described as the vacant channel 
being classified as occupied. Missed detection vice versa: an 
occupied channel described as vacant.  Wavelet transform-
based detection of vacant bands has shown the accuracy of 
91.0% for the studied signal samples what is higher than the 
accuracy of 86.4% observed for the energy detection 
method for the optimal value of the threshold. Also, wavelet 
transform based detection has shown a lower false positive 
rate of 5.5% compared to 8.2% demonstrated by energy 
detection. Wavelet transform has demonstrated also lower 
missed detection rate of 3.5% vs. 5.2% demonstrated by 
energy detection. The threshold values for both algorithms 
have been varied to identify the optimal value of the 
threshold. Figure 13 presents the ROC (receiver operational 
characteristics) curve describing the hit rate vs false positive 
rate for both energy detector and wavelet transform. Hit rate 
has been calculated as the ratio of the number of hits to the 
number of hits plus missed.  
The optimal performance of the energy detection has been 
observed for the threshold value set to mean energy in the 
60 MHz band plus 3 dB. Lower and higher threshold values 
have been studied, however lower threshold corresponding 
to mean energy in the 60 MHz band plus 2 dB resulted 
in significantly higher 0.17, i.e 17% false positive 
detections, and higher threshold, calculated as  mean plus 4 
dB resulted in a higher rate of missed detections. The 
optimal performance for the wavelet-based detection has 
been observed for the threshold value set to mean value of 
the local maximum calculated for 60 channels plus 25% of 
this mean value. 
 

 

Also, lower and higher values of the threshold have 
been  studied: increase in threshold up to mean plus 30% 
resulted in an increase in the hit rate and in number of false 
positives, while decrease to mean plus 20% resulted in 
decreased hit rate and increased number of missed 
detections. Thresholding approach and null hypothesis 
testing, however, will always show some false positives 
even in the vacant channels, since the threshold is relative 
and based on the mean value of the energy in the band. 
Figures 7 and 8 present null hypothesis test for data sample 
1 containing the AWGN captured on the receiver front end, 
however, 18 out of 60 channels have been misclassified as 
not vacant using energy detection and 9 channels 
misclassified as non-vacant using wavelets.   

VIII. CONCLUSIONS 

In the scope of this work, three algorithms: energy detector, 
wavelets, and cyclostationary have been tested for vacant 
frequency channels detection. Test data samples have been 
generated during the controlled experiment by the hardware 
signal generator and received by proprietary hardware based 
on AD9461 Analog Devices transceiver. The highest 
accuracy of 91% has been demonstrated by the wavelet 
transform detector. Energy detection has shown 86.4% 
accuracy. The maximum values of the spectrum correlation 
and the maximum value of the mean spectrum correlation 
for the channels containing the signal have shown no 
distinguishable difference from the channels containing 
AWGN noise, therefore the cyclostationary based detection 
has not been further studied and tested in scope of this work.  

IX. DISCUSSION 

Both methods have demonstrated the lowest accuracy and 
highest false positive detection rate for the data sample 6. 
Figures 14 and 15 present the null hypothesis testing together 
with wavelet transform and energy detection. False positive 
detections in this sample are caused by the relatively high 
level of noise for the channels 1-20. The thresholding 
approach and null hypothesis testing, however, will always 
show some false positives even in the vacant channels, since 
the threshold is relative and based on the mean value of the 
energy in the channel or the local maximum value. 
 
  

Figure 13. ROC for energy detection and wavelets 
 



 

 

Figure 15. Wavelet transform, data sample 6: a)Channel 44, correctly classified; b)  channel 34 correctly classified as occupied; c)channel 50, correctly 
classified as vacant; d) Channel 2, empty false positive detection. 

In this case, 18 channels containing data samples with 
AWGN noise have been misclassified as not vacant using 
energy detection. For the bands with high occupancy, there 
could be a risk of misclassification of occupied channels as 
vacant when the decision is based on relative threshold 
values. There could be potential to improve the detection 
accuracy by testing other wavelet families. In the scope of 
this work only Morse wavelets have been tested. The testing 
results in study are also limited to the radio hardware used 
for the data set collection: transceiver AD9364. 
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