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 

Abstract— Process control is an important part of any 

industrial system. In a wastewater reuse system this remains 

true. Process monitoring and fault detection (FD) are 

important to ensure that the control system has access to 

reliable data which can be used in making decisions about the 

operation of the process. The reuse scenario being considered 

in this work is that of utilizing the nutrients from the 

wastewater as fertilizer to agricultural soil along with using the 

water for irrigation purposes. This paper identifies variables 

that are important to the control of the process and should be a 

focus of monitoring and FD. In wastewater treatment these 

variables include temperatures, pressures, liquid levels, flow 

rates, pH, conductivity, biomass content, suspended solids 

concentration, dissolved oxygen content, total organic carbon, 

and the concentrations of nitrate and ammonium. The 

variables of interest in the reuse of nutrients and water for 

agriculture include soil moisture, ambient conditions, plant 

height, biomass content, photosynthetic activity of the crop, leaf 

area and leaf water content, as well as the concentrations of 

several ions both in the soil and in the plant. Challenges 

associated with process monitoring and FD specific to the two 

processes are also discussed, examples of these are the high 

dimensionality of the problem, the harsh conditions that 

sensors must operate in and the non-linear relationships 

between variables. This information will be used in future work 

when comparing specific FD methods to ensure that methods 

chosen are capable of overcoming the commonly encountered 

problems. 

I. INTRODUCTION 

One of the UN’s sustainable development goals is clean 
water and sanitation. It states that everyone on the planet 
should have access to safe drinking water. However, 
according to Mekonnen & Hoekstra [1], a large part of the 
global population (66%) live under conditions of severe 
water scarcity at least 1 month every year. In Europe by 2014 
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at least 11% of the population had been affected by water 
scarcity [2]. The areas that have high water scarcity levels are 
typically areas with high population density or areas that 
have agriculture that use a lot of water for irrigation [1]. One 
way to reduce the pressure on freshwater resources is to use 
reclaimed water for irrigation of agricultural fields and 
industrial need and save the freshwater for use as drinking 
water. Wastewater is already reused in many countries 
around the world, for example the US and Australia [3] and 
several of the European countries [4]. Apart from water 
scarcity another challenge is nutrient scarcity. The amount of 
phosphorous is finite and today most of the phosphorous used 
for fertilizer is produced through mining phosphate rock. Use 
of reclaimed water makes it possible to reclaim nutrients 
from the wastewater streams that otherwise might be lost. In 
addition, it is important to use phosphorous efficiently since 
it can pollute water streams and cause unwanted algae growth 
[5]. Nitrogen, which is of great importance in fertilizer and 
can also be reclaimed from wastewater, can be particularly 
hazardous if an excess is allowed to build up in the soil. The 
risk of N2O emissions, surface and ground water 
contamination, eutrophication of water sources, are all 
possibilities that should be avoided [6]. 

Ideally a system for reuse of treated wastewater would 
include a wastewater treatment plant (WWTP) that tailors the 
quality of the water to the need of the agricultural fields that 
it delivers reclaimed water to. Such a system would not only 
include process monitoring and control of the WWTP but 
also monitoring and control of the crop growth and crop 
quality and the system as a whole. For process monitoring 
and control it is important to have reliable data to base 
decisions upon. In this context fault detection (FD) becomes 
very important. 

The aim of this work is to outline the importance of 
process monitoring specific to FD in the wastewater 
treatment (WWT) and reuse process. 

II. PROCESS MONITORING 

Process monitoring is an important part of the supervisory 
control system in industrial processes. All process outputs 
are required to be within quality and safety standards, and 
process monitoring systems are necessary to allow for 
counteraction when disturbances occur which can negatively 
affect the process [7]. Modern processes are collecting more 
data as technology allows for the measurement of more 
process variables (for example, improvements in sensors that 
can measure nutrient concentrations [8]) and it is becoming 
increasingly important to develop systems that can extract 
information from these large amounts of data as operators 
cannot manually extract sufficient information [9]. An 
additional reason for the rise in process monitoring is the 
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increased focus on model-based process control [10]. Often 
the models require measured on-line data as inputs. This 
makes it necessary to monitor more variables with regularity 
and reliability.  

There are several components that contribute to process 
monitoring: detection, isolation, and interpretation being the 
main ones of interest. Detection (fault detection) involves 
recognizing that the process is not operating in the normal 
operational state of the plant, while isolation and 
interpretation (combined known as fault diagnosis) relate to 
identifying which variables are responsible for the change in 
operating state, as well as finding the physical cause of the 
problem [9]. 

As mentioned, in a system that reuses treated wastewater 
in agriculture process monitoring is crucial. The two 
components of the system, the WWTP and the agricultural 
fields containing crops, are fundamentally very different and 
will rely on different processes and principles for their 
respective process monitoring. It is important to understand 
the challenges that are inherent to the respective processes in 
order to design better and more reliable monitoring systems. 

A.  Process Monitoring in WWT Processes 

As with other industrial processes WWT processes also 
have requirements placed on the process output, where the 
output is the effluent in the case of a WWT process. The 
requirements are perhaps even more stringent and the 
consequences of failing to meet them higher. Additionally, as 
the global awareness of the need for sustainability increases 
the demand on the quality of effluent becomes stricter. This 
makes it even more relevant to have adequate process 
monitoring systems in place in order to meet the demands. 

There are several factors which make WWT processes 
unique and make efficient process monitoring all the more 
important. Perhaps the most noticeable is the influent. WWT 
processes are required to accept all influent, regardless of the 
quality, and to process it to the same standard of effluent 
[11]. As the influent is highly variable it is the source of 
many disturbances to the WWT process which must be 
detected and compensated for. In a WWT process the 
disturbances can have a large effect on the process, in the 
past plants have been designed with large volumes to act as a 
damper and reduce the impact that the disturbances have 
[12]. This requires a large capital investment and is hardly a 
reliable system.  

In addition to the influent flow rate and quality, some of 
the most common variables that are monitored in WWT 
systems are temperature, pressure, liquid level, flow rate, pH, 
conductivity, biomass content, suspended solids, NO3

-, NH4
+, 

DO, and total organic carbon (TOC) [10, 13, 14]. These 
variables are relevant to several common control strategies 
(aeration phase length, nitrate recirculation, sludge recycle, 
and chemical precipitation [12]) and are important to 
ensuring the effluent is of sufficient quality. 

Sensors in WWT Processes 
As stated previously, advances in monitoring technology 

has made it possible to measure more variables and to do so 
more accurately. However, the sensors and technologies are 
not designed specifically for the WWT environment which 

leads to several difficulties. Li et al. [15] state that for 
systems dealing with wastewater, sensors should be capable 
of withstanding the hostile environment for a significant 
amount of time, they should have designs that minimize 
blockage by solid particles and discourage surface 
contamination and biofouling, as well as being self-contained 
and requiring no reagent or continuous calibration.  

The types of sensors that are commonly used vary 
greatly. Temperature can be measured with thermistors, 
liquid level with floats, differential pressure transducers, 
capacitance measurements, and ultrasonic level detection, 
flow rates are measured with electromagnetic sensors or 
rotameters depending on the state of the stream, pH with 
glass electrodes, biomass and suspended solids with optical 
measurements or ultrasound, [10] and DO with membrane 
electrochemical or optical fluorescent techniques [16]. 

All of these sensors have failings, for example ultrasonic 
level sensing being sensitive to foaming, or air bubbles 
causing interference with optical sensors [10]. However, 
contamination and biofouling are of particular concern in the 
WWT process, with conductivity sensors, suspended solids 
probes, fluorosensors, and dissolved oxygen (DO) probes 
being particularly susceptible to biofouling [10]. Samuelsson 
et al. [16] demonstrated that unless sensors are manually 
cleaned or faults are well detected it is most probable that the 
DO probes will report incorrect values due to the biofouling. 

Aside from WWT specific problems, all sensor signals 
are susceptible to errors such as noise, drift, catastrophic 
failure, power outages, and transmission problems. These 
errors can be identified by looking for signals that are outside 
the 4 to 20 mA range, by finding constant signals (constant 
signals are unexpected in a wastewater treatment plant and 
can be indicative of malfunctioning, dirty, or offline sensors), 
and by identifying sudden changes in the signals which can 
suggest unreliable measurements or sensor failure [17]. 
Sensor signals must also often be filtered due to the high 
frequency parts caused by electrical interference or 
measurement noise. 

B. Monitoring of Crop Growth 

One of the motivating factors for monitoring crop growth 
and nutrient content is to reduce the loss of water and 
nutrients to the environment [18]. Additionally, monitoring 
the growth of crops is important in order to ensure that the 
crops are healthy and producing as high a yield as possible. 
The growth of crops is often nonoptimal due to numerous 
factors such as insufficient nutrients, insufficient water, 
hostile ambient conditions (extreme cold and extreme heat), 
insects, and disease [19]. If these factors, along with the 
growth of the crops, are being monitored the cause of the 
problem can be identified and in some cases steps can be 
taken to reduce the stress on the crops. 

Some commonly monitored variables relevant to 
characterizing and predicting crop growth include light 
intensity, soil moisture, soil temperature, ambient 
temperature and humidity [20, 21], plant height [22], biomass 
content, photosynthetic activity, light interception by the 
crop, leaf area index, leaf water content, canopy cover, and 
water use [6, 18, 23]. To predict the fertilizer requirements 
concentrations of ions, in both the soil and in the crop, is 



  

beneficial, these include Na+, K+, Ca2+, NH4
+, Cl-, NO3

-, 
H2PO4

-, SO4
2- [18]. These parameters can be separated into 

three main categories: soil based, plant based, and weather 
based [24]. 

Sensors in Crop Monitoring 
While there are many variables that are important to 

monitor, not all are directly measured. Many are inferred 
from relationships that exist between the variables, for 
example Freeman et al. [22] showed that reflectance of near-
infrared (NIR) and red radiation combined with knowledge of 
the plant height can be used to determine nitrogen uptake by 
the plant.  

Spectroscopic techniques, such as NIR reflectance 
measurements, are commonly used in monitoring plant 
growth. Measurements of reflected and absorbed radiation 
can be used to estimate light interception, leaf area index 
[25], nitrogen content using the relationship between nitrogen 
and chlorophyll [6], and photosynthetic parameters by 
combining the spectroscopic techniques with chlorophyll-
fluorescence [18]. These measurements can even be taken 
using unmanned aircraft systems (UAS) [19].  

UAS have also been used to measure plant height [23], 
and to determine biomass content using photographic 
methods based on color analyses [26]. Methods such as 
terrestrial laser scanning are also used for measurements of 
plant height [27]. 

There are numerous complications and difficulties that are 

present in these monitoring systems. Some examples include 

the sensitivity of spectroscopic measurements to the 

illumination source which makes them easily influenced by 

cloud cover, the presence of excess water can obscure the 

nitrogen absorption band when measuring reflected radiation 

[6], and many methods are sensitive to excessive dust on the 

crop leaves as it can cause unusual absorption peaks and 

corrupt the colors. Additionally, soil moisture sensors, which 

are important for scheduling irrigation, most commonly 

operate using the capacitance method [28]. This method is 

sensitive to soil type and temperature, which means that a 

buildup of ions in the soil can result in erroneous moisture 

measurements. It is possible to use a soil moisture sensor 

which makes use of the heat-pulse principle in combination 

with a capacitance-based sensor in order to avoid some of 

the problems of soil dependency [28]. Soil moisture sensors 

using the heat-pulse method are robust and independent of 

soil type, however, they have slow sampling rates and so 

must be used as a complimentary sensor [28]. 

III. FAULT DETECTION 

Fault detection is an important part of process monitoring 
and must precede fault diagnosis; a fault cannot be diagnosed 
if it is not detected. A fault can be considered as the deviation 
of a parameter from a predetermined range of normal values. 
There are three main types of faults: process faults, structural 
faults, and sensor/actuator faults [29]. Process faults are 
generally due to disturbances in the process and structural 
faults are due to equipment failures [29]. These two types of 
faults, along with actuator malfunctions, directly influence 
the process dynamics which are monitored by the sensors. 

An important part of FD is proving reliability of data to 
avoid making poor decisions due to inaccurate information 
about the state of the process. As model-based process 
control becomes more widely used the accuracy of the data 
that is provided to the control system becomes more 
important [10, 17]. Variables used in common control 
strategies in WWT processes should then be variables of the 
highest importance in FD systems.  

In the previous sections some specific sensor faults and 
complications were discussed relating to commonly 
measured, and controlled, variables in the two systems. If 
sensor faults are not detected the information about the actual 
state of the process is not known to be reliable. Sensor faults 
can be detected through a variety of methods, some of which 
were mentioned in the previous section (looking for out of 
range signals, finding constant signals, or identifying sudden 
changes in signals). Other common methods to detect sensor 
faults include hardware redundancy like comparing the 
values of similar or correlated sensors as illustrated by 
Carlsson and Zambrano [30], or through the use of analytical 
redundancy using soft sensors to reconcile physical sensor 
measurements with predicted measurements as demonstrated 
by Karlsson et al. [31]. These soft sensors can be used for 
data reconciliation and fault isolation by using continuity 
equations connecting different signals [31]. Work done by 
Samuelsson et al. [32] showed that certain sensor faults can 
be detected using active fault detection which involves the 
sensor issuing a test signal which can be used specifically for 
FD. This is a promising technology to move FD away from 
the traditional methods and make use of improvements in 
sensor technology along with improvements in traditional FD 
methods. 

When considering an FD system there are several 
important characteristics that are desirable for the system to 
possess such as the ability to quickly detect faults, the ability 
to operate despite noise and uncertainties in the system data, 
and the ability to adapt to planned changes in process 
operating conditions. These are only some of the 
characteristics identified by Venkatasubramanian et al. [29], 
with the other characteristics being more specific to the 
diagnostic capability: quality of isolation, identification of 
novel faults, identification of multiple simultaneous faults, 
and adequate explanation about propagation of the fault. It is 
also important to avoid reporting “false faults” as this will 
confuse the operators and reduce their trust of the system. 

A. Classification of FD Methods 

When selecting a FD method process specific challenges 
must be taken into consideration, however, an additional 
factor to consider is what information is available to describe 
the process.  

Models based on physical definitions, such as mass 
balances and reaction kinetics, are commonly used to 
describe a process. Often these are coupled with parameters 
whose values have been obtained from observation data of 
the physical process. These are called grey-box models and 
are particularly useful due to the physical interpretation that 
exists of the different terms and parameters in the model [33]. 
Unfortunately, these models are also generally complicated 
and often not easy to implement in on-line operations. 
Another common representation of a process is black-box 



  

models. These have little to no physical interpretation, they 
are based on correlations between measured variables and are 
often simpler to implement due to their simplicity [33].  

Fault detection methods can be classified into three 
primary groups [29]: 

1. Quantitative model-based methods – which are based 
on mathematical models of the process (grey-box 
models). The faults are characterized as differences 
between observed and modelled behavior. These can 
be difficult to implement in on-line fault detection in 
WWT processes due to the complexity of the models. 

2. Qualitative model-based methods – which use 
knowledge of the process and the relationships 
between the variables. These are particularly useful 
when analytical models are not available or easy to 
implement. 

3. Process history-based methods – these make use of 
extensive amounts of process data to determine a 
normal operational state and characterize faulty states, 
the state of the plant is then compared to these pre-
determined states. 

It is logical that the fault detection technique which is 
used should be selected partially based on what information 
is available. 

The review conducted by Corominas et al. [11] found 

that process history-based methods are overwhelmingly the 

most commonly researched FD techniques for WWT 

processes. This is likely due to the complexity of the 

processes, the high levels of interactions between variables, 

and the amount of computation time required from models 

which make the first two types of fault detection less 

common. In new processes, such as the integration of 

wastewater treatment with irrigation and fertilization, where 

there is not a large amount of historical data, it will likely be 

necessary to make use of a combination of methods to 

achieve good detection performance without 

overcomplicating the system. 

B. FD Challenges in WWT Processes 

All processes have challenges when it comes to FD and 
diagnosis such as noise, missing data points, or extreme 
outliers. These problems can be addressed quite simply 
through digital filtering, extrapolation or interpolation 
depending on if the analysis is done on- or off-line, and with 
statistical analysis or the use of redundant sensors [33]. 
However, WWT processes present many additional 
difficulties due to the nature of the process [9]: 

1. The presence of collinear data in both the dependent 
and independent variables. 

2. A high dimensional problem due to the number of 
process variables that are measured. 

3. Poor data quality due to harsh environments for the 
sensors and measuring equipment. 

4. Non-linear relationships between many of the 
variables. 

5. Non-stationary behavior due to the diurnal and 
seasonal variations 

6. Dynamics with wide ranges of time constants (events 
occurring on scales of minutes like changes in 
dissolved oxygen content, and events occurring on 
scales of weeks like changes in microbial population). 

Some of these difficulties are easily addressed: 
collinearity can often compliment the reduction in 
dimensionality, WWT processes are not very time sensitive 
so the poor data quality can be dealt with by extensive pre-
filtering and processing before analysis, and non-linearities in 
WWT processes generally display smooth and monotonic 
behavior [9].  

However, some of the problems require additional work. 
Consider the 2nd and 6th points, for example: in order to deal 
with the high dimensionality, it is desirable to use dimension 
reduction methods such as principal component analysis 
(PCA) [33, 34]. These methods are usually static and so do 
not consider the dynamics. This means that the time lag 
between process and inputs and outputs is neglected and must 
be quantified using cross-covariance or the expression of the 
lag as a function of another measurable variable to represent 
the system with quasi-dynamics [33, 34]. Dimension 
reduction is important to extract information in a manner that 
can be represented easily to aid operators [9]. 

Many methods of FD are not well suited to processes with 
non-stationary behavior (see point 5) as they often assume 
the data has a constant mean [34]. These methods must be 
adapted appropriately using a moving time window to only 
view relevant data or have some recursive model calculation. 
Care should be taken so as not to allow the model to adapt to 
common disturbances and faults [34].  

Having a good understanding of these challenges will be 
critical when selecting an appropriate FD method for the 
WWT process. The method must be tailored to the process in 
order to produce optimal results. 

C. FD Challenges in Crop Monitoring 

As spectroscopic techniques are commonly used in 
monitoring crops, spectral resolution can be a challenge [35]. 
This is of concern with the soil; soil has many complex 
physical, biological, and chemical components, resolving the 
spectra to relate it to specific properties is not trivial. If the 
spectral resolution is too low the data cannot be used 
quantitatively and can only be used for qualitative analysis. 
The high level of interactions and non-linear correlations also 
adds difficulties to dealing with the data [35]. 

Another difficulty is the random nature of ambient 
conditions [24]. This further complicates the dynamics of the 
crop-soil system which are highly variable due to the growth 
rate, the disturbance of insects and disease, and the reliance 
on correct management in terms of irrigation and fertilization 
[24]. This can make the use of historical data, which is 
widely used in traditional FD, difficult.  

FD for process faults in crop monitoring (such as 

determining if the crop is not growing at the optimum rate or 

producing the highest possible yield) would likely need to be 

model based and highly adaptive which places additional 



  

stress on the ability to detect sensor faults. Unfortunately, 

models require extensive calibration based on the specific 

location and crop type. The data required for the desired 

accuracy is often not available [24]. 

IV. CONCLUSION 

The intention of this work was to outline the importance 
of process monitoring and FD with regards to a WWT and 
reuse system that tailors water quality to the need of the 
agricultural fields. It was observed that process monitoring is 
an important area of research in both processes, with 
emphasis being placed on improving sensor performance. In 
WWT processes specifically, the harsh conditions often result 
in unreliable sensor measurements, the ability to detect these 
unreliable measurements is necessary for effective process 
control.  

While many variables were identified as being important 
to monitor, further research should narrow down this list and 
highlight the variables that will provide the most useful 
information. Despite it becoming easier to measure more 
variables as technology improves, it is not always sensible to 
collect more data without considering what use it will have. 
This selection should consider what variables give accurate 
quality indicators, which are important for safety concerns, as 
well as looking for variables with quick response times to 
faults and disturbances. While on-line monitoring in WWTPs 
is a well-established field, effective on-line monitoring of 
plant growth in rural farming in combination with modelling 
must be developed comprehensively.  

Concerning FD it can be seen that the two systems, crop 
growth monitoring and the WWT process, face similar 
issues: high dimensionality due to the complexity of the 
systems, poor data due to difficult conditions when taking 
measurements and low resolution or high sensitivity on the 
sensors, non-linear relationships between variables, and a 
wide range of time constants in the dynamics. Unfortunately, 
the crop monitoring process does not have the luxury of large 
amounts of historical data with which to overcome many of 
these challenges. An approach to deal with the lack of 
historical data should also be a point of focus as many FD 
methods require that information. 

Future research will involve comparisons of different FD 

methods taking into consideration the challenges and criteria 

outlined here. While research has been done on FD methods 

for the individual systems and units within the systems, the 

additional complexity added by the integration of the two 

systems will add interesting challenges to the FD and 

diagnosis process.  
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