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Astrid, parents, and siblings, without you, we would not have made it this far. Thank you for your
invaluable support!

i



Björklund and Hjorth Computer Vision in Aviation

Abstract
Research conducted in the aviation industry includes two major areas, increased safety and a reduc-
tion of the environmental footprint. This thesis investigates the possibilities of increased situation
awareness with computer vision in avionics systems. Image fusion methods are evaluated with ap-
propriate pre-processing of three image sensors, one in the visual spectrum and two in the infra-red
spectrum. The sensor setup is chosen to cope with the different weather and operational conditions
of an aircraft, with a focus on the final approach and landing phases. Extensive image quality
assessment metrics derived from a systematic review is applied to provide a precise evaluation
of the image quality of the fusion methods. A total of four image fusion methods are evaluated,
where two are convolutional network-based, using the networks for feature extraction in the detailed
layers. Other approaches with visual saliency maps and sparse representation are also evaluated.
With methods implemented in MATLAB, results show that a conventional method implementing a
rolling guidance filter for layer separation and visual saliency map provides the best results. The
results are further confirmed with a subjective ranking test, where the image quality of the fusion
methods is evaluated further.

Keywords— Aviation, Image Fusion, Image Registration, Image Quality Assessment
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1 Introduction
Lack of visual representation of the surroundings due to poor visibility is a significant contributor
to fatal accidents within the civil aviation industry [1]. A well known civil aviation disaster is
the ”Tenerife airport disaster” which took place on the Island of Tenerife, Spain, in 1977. Two
Boeing 747 passenger jets collided on the runway resulting in 583 fatalities. According to the
official Report (Subsecretaria de aviacion civil), the primary factor leading to the accident is that
the captain of KLM Flight 4805 decided to take-off after he heard the Air Traffic Control (ATC)-
Clearance on the radio despite the presence of Pan Am Flight 4805 still taxiing on the runway. It
was speculated that his decision was a result of stress as the airplane was forced to land at Tenerife
and not on Gran Canaria as scheduled. Earlier that day, a bomb detonated at the airport of Las
Palmas, resulting in a higher amount of traffic to the Los Rodeos Airport, Tenerife. That day,
there was severe fog present in the area, neither airplanes nor control tower had a visual perception
of the runway. Hence, the pilots in each respective aircraft were not able to locate each other [2].
With today’s computer vision technologies and systems, this accident could have been prevented
or limited.

According to Boeing [3], between 2009 and 2018, 49% of all fatal accidents occurred during
the final approach and landing phases compared to 12% during takeoff and initial climb. Sensors
capable of sensing the environment in dense fog, rain, and reduced lighting conditions are examined
within this thesis. The sensors are capable of capturing different wavelengths of the electromagnetic
spectrum to provide a more complete understanding of the environment. Furthermore, the ability
of combining data gathered from these sensors into one unified output is evaluated. The work
performed in this thesis aims to increase Situation Awareness (SA) within aircraft operations
according to Endsley’s definition for SA [4] and focuses on the final approach and landing phases.

Four image fusion techniques are explored, through Image Quality Assessment (IQA) and to
some extent performance. Image fusion aims to combine salient features from different sensors to
increase information contained in the output. Fusion methods can be divided into subcategories
depending on underlying theories. In this thesis, methods including neural network-, Sparse Repre-
sentation (SR)-, multi-scale transform- and saliency-based methods are implemented and assessed.
However, methods tend to combine different theories in various stages of the fusion process [5].
Difficulties occur trying to fuse multiple images such as differences in resolution, wavelengths of
captured electromagnetic radiation and sensor placement [6]. Sensors evaluated in this thesis have
different characteristics and are pre-processed with image registration before applying image fu-
sion. Assessing the performance and quality of the systems mentioned above requires extensive
metrics and evaluation. For this thesis, models regarding No Reference Image Quality Assessment
(NR-IQA) are used in combination with subjective perception to compare and evaluate computer
vision configurations and fusion methods.

1.1 Industry-Academia Collaboration
This thesis is a collaboration with SAAB Avionics Systems Business Unit which is part of SAAB’s
global aircraft and defense group [7]. The department develops electronic components, mechanical
components, and software to be used in airplanes, helicopters, and other demanding applications.
Therefore, the safety-critical applications of these systems require a high degree of reliability. Clean
Sky 2 is a partnership between the European Commission and the aviation industry within the
European Union. The Clean Sky 2 research programme aim to develop innovative, cutting-edge
technology aimed at reducing CO2, gas emissions and noise levels produced by aircraft [8]. SAAB
is part of the Clean Sky 2 program, contributing to the Large Passenger Aircraft Programme as
well as the Systems Programme for Avionics Extended Cockpit. This work provides a knowledge
base for SAABs work in Clean Sky 2 with the aims to reduce unnecessary time in air with increased
SA.
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2 Background
When maneuvering an airplane, pilots have several aids at their disposal [9]. These aids ensure
that the pilot has a correct perception of the airplane’s surroundings and the correctness of data fed
to the pilot is of high importance. Aids available to pilots are used as a way to increase safety by
informing pilots of possible collisions and includes information about other aircraft, the elevation of
the terrain, or the position of aerial or ground-based objects. Automatic Dependent Surveillance-
Broadcast (ADS-B), Traffic Alert and Collision Avoidance System (TCAS) and Terrain Awareness
and Warning System (TAWS) are examples of aids available to pilots an example illustrating these
systems can be seen in Figure 1.

2.1 Supporting Systems
One of the pilot aids available, ADS-B is a safety system used to improve the SA for Air Traf-
fic Control (ATC) and avoid collisions. ADS-B is designed to operate in environments without
radar coverage. ADS-B includes two major parts, ADS-B OUT and ADS-B IN. ADS-B OUT is
the broadcasting part of ADS-B and is responsible for sending messages in a periodic manner.
Messages sent by ADS-B OUT is received by ATC and other aircraft ADS-B IN systems. The
messages contain information about the horizontal and vertical position of aircraft along with
aircraft identification [10].

Another safety system is TCAS. This system collects information from other aircraft ATC
transponders to identify potential threats and hazards, in essence, collision threats. The system
creates a safe zone (volume), based on bearing, altitude and response times between aircraft, in
the airspace.

TCAS provides two types of advisories with appropriate aural and visual warnings. Traffic
Advisories (TA) indicates the relative position of an aircraft intruding the safe zone. This advisory
activates when an aircraft is approximately 20 - 48 seconds from a collision. TA, requires an op-
erational Mode S transponder, capable of transmitting aircraft addresses in a 24-bit format or an
ATCRBS transponder to identify an aircraft. Resolution Advisory (RA) require Mode S or Mode
C paired with mode A transponders to provide warnings. The Mode C transponder is capable
of transmitting pressure altitude of the aircraft and when paired with Mode A transmits altitude
and identification messages. RA activates when an intruder is approximately 15-35 seconds from
a collision and provides computer calculated vertical maneuvers to increase separation to prevent
the collision [11]. Both TA and RA is issued by the TCAS computer. When RA is activated, the
pilot is required to immediately respond to the commands from RA and disregard commands from
the ATC controller. Lastly, aircraft are often equipped with TAWS, a broad term in civil aviation
including the Ground Proximity Warning System (GPWS) and the Enhanced Ground Proximity
Warning System (EGPWS). The fundamental purpose of the system is to alert when the aircraft is
close to terrain. GPWS collects direct measurements from sensors, commonly a radio-altimeter, to
determine height above ground. With height data and aircraft speed, different warnings are trig-
gered. EGPWS utilizes the GPWS sensors together with information from databases to determine
risks with controlled flight into terrain along with advanced terrain mapping on visual displays
[12]. The improvement in such supporting systems is an ongoing process where development is
performed continuously. This paper will evaluate vision sensor technologies to be used as a method
to increase pilot awareness.

2
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Figure 1: The figure illustrates a subset of the standard systems of large passenger aircraft. TAWS
responsible for terrain awareness, TCAS accountable for checking the airspace for other aircraft as
well as ADS-B sending informational messages.

2.2 Vision Technologies in Aviation
New technologies made available from other industries may be of interest to airplane manufacturers.
However, a strict development process of avionics systems may prove that such technologies are
impossible to implement. The stringent development process in the aircraft industry is imposed
by the Federal Aviation Administration (FAA), European Union Aviation Safety Agency (EASA),
and manufacturers. If computer vision technologies are to be implemented within aircraft, a
rigorous process of testing and evaluation is needed to prove whether new technologies are suitable.
Autonomous vehicles are an example of a growing market where new technologies, such as sensor
fusion, are researched and developed [13].

By merging outputs from multiple vision sensors, an improved view of the surroundings may be
created. According to the work of Luo and Kay [14], the primary purpose of fusing data from dif-
ferent sensors is to enable different systems operational applications in unregulated environments,
without the need for complete human interaction. A system may not have complete knowledge
of it’s surrounding, due to the environment containing non-static objects, and fusing data from
multiple sensors may improve the environmental information available. Before the fusion of data
from multiple sensors is possible, registration between the different sensors is required, to ensure
that all sensor data matches spatially. In an example with two vision sensors, images taken from
both sources need to be captured at the same point in time, and the placement of features in one
image needs to match features of the other image. When implementing multiple sensors, redun-
dant information from the sensors will be captured, the redundant information refers to the same
information captured by both sensors. The redundant information may be used to decrease the
error of the multisensor system, or allow the system to operate in a degraded mode if one sensor
fails. As multiple sensors capture the same information, the accuracy of the system may increase.
Data captured from sensors that are not redundant is complementary data, which is data that one
sensor can capture but not the other sensors in the system. When fusing data gathered from the
sensors, the complementary data is often added directly to the corresponding part of the output.
The redundant data is instead fused by adding all sensory data to depict a correct view of the
surroundings. An example of a vision based fusion process can be seen in Figure 2 - 4. The images
used in the example is based on a dataset provided by SAAB showing final approach and landing

3
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of an aircraft.

(a) Sensor 1. (b) Sensor 2.

Figure 2: Input images for Figure 3 and 4 where 2a is captured using a SWIR sensor and 2b is
captured using a sensor in the visual spectrum.

(a) Details from sensor 1. (b) Details from sensor 2. (c) Details merged.

Figure 3: An example of extracted details from Sensor 1 (2a) and Sensor 2 (2b), and all extracted
details fused, to be used as input to 4.

Figure 4: Illustration of a fused output image, using low frequency data from 2 and details seen
in 3c, added together to create a fused output.

According to Drajic and Cvejic [15], there are two advantages to using vision sensor fusion.

4
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Fused images are better suited for both human and machine perception, and the amount of trans-
ferred data is decreased compared to transferring all data from the source sensors. As an example
Taehwan et al. [16], fuse an Infrared (IR) sensor and a radar to achieve object detection, at both
day and night, as well as different weather conditions. Another example from Krotosky et al. [17]
shows that fusing an IR-camera and a visual range camera may be used in surveillance systems,
to detect the presence of moving persons. The benefit of implementing the IR sensor, is the sen-
sors capability of providing structural information regardless of light conditions. Enhanced Vision
System (EVS) is the terminology for vision-based systems in the aviation domain.

According to Spitzer et al. [18] EVS systems mitigates the following situations:

• ”Loss of vertical and lateral spatial awareness with respect to flight path”

• ”Loss of terrain and traffic awareness during terminal area operations”

• ”Unclear escape or go-around path even after recognition of problem”

• ”Loss of attitude awareness in cases where there is no visible horizon”

• ”Loss of situation awareness relation to the runway operations”

• ”Unclear path guidance on the airport surface” [18]

The image is typically displayed on a head-up display to enable monitoring of the system
and preserve a direct visual perception of the situation. This configuration is approved by the
FAA as ”Enhanced Flight Vision System (EFVS), and are systems with the purpose of meeting
requirements of enhanced flight visibility. Enhanced flight visibility is defined by FAA (14 CFR §
1.1) as: ”The average forward horizontal distance, from the cockpit of an aircraft in flight, at which
prominent topographical objects may be clearly distinguished and identified by day or night by a
pilot using an enhanced flight vision system” [18]. Object detection requires feature-rich imagery
data leading to demanding requirements of an EVS system. Using vision sensor fusion in EVS
systems is explored in this thesis as a means to improve SA. If the output from a fusion process
is of such low quality, that it’s impossible to interpret, there would be no possibility of improving
the SA.

2.3 Image Quality
As stated by Keelan [19], personal preferences may impact the quality grading of an image. An
example of this would be a person grading the quality of an image depicting an old family member
giving a high score, disregarding image degradations such as noise. It’s further explained that
personal preferences come into place as either first-party or second-party assessments. Where
first-party-assessment implies the person who has taken the picture, and second-party-assessment
implies the subject of the picture. If professional photographers perform the first-party assessment,
their opinions may fit well into quantifiable image quality criteria. Whereas the second party, on
the other hand, taking a more subjective route regarding the depiction of the subject in the image,
may not fit well at all.

Several challenges exist to measure image quality. The quality is often measured by human
visual perception. However, models for objective image quality measurements exist and are an
ongoing topic in the research community. Evaluation of different sensors and fusion methods
performance concerning object detection is difficult to quantify due to the lack of a clearly defined
baseline regarding parameters that impact the object detection capacity.
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3 Related Work
According to ICAO [20], visibility is defined as:

a) ”the greatest distance at which a black object of suitable dimensions, situated near the ground,
can be seen and recognized when observed against a bright background;”

b) ”the greatest distance at which lights in the vicinity of 1 000 candelas can be seen and identified
against an unlit background.”

Airspace visibility depends on the opacity and illumination of the atmosphere. At the right con-
ditions, the environment can be observed within the 400-700 nanometer electromagnetic spectrum
(visual range). As pointed out in the introduction section 1, accidents may occur if aircraft op-
erates in bad visibility. Fog decreases the ability to observe the environment within the visual
range and occurs when the air’s relative humidity reaches 100% resulting in water vapor [21]. Fog
negatively impacts electromagnetic radiation in the atmosphere for waves with a wavelength of
less than 1 cm. In conditions where fog is present, scattering occurs due to micro-physical struc-
tures (aerosols). Beier and Gemperlein [21] conducts an experiment to improve visibility in fog
conditions, by simulating IR-cameras within the spectrum of 3-5 µm and 8-12 µm. According to
the simulation IR-cameras improve the range of visibility for all types of aerosols in conditions for
Clear Air Turbulence (CAT) I and CAT II. However, at extreme conditions with dense fog, there
is no improvement utilizing IR cameras with the 3-5 µm and 8-12 µm range [21].

3.1 Image Fusion Theories
This section introduces the fundamental concepts and state-of-the-art practices regarding image
fusion evaluated in this thesis. Amongst the field of research, the steps conducted in an image
fusion process can be divided and categorized into some fundamental theories. The theories include
but are not limited to, decomposition of input source images, where details are extracted from the
source image. Representation of the source image is conducted in SR to enhance the performance
of the fusion method. A set of rules on how the fusion of separated data shall be reconstructed
by selecting what feature or sensor is dominant in some parts of the output. Feature extraction
and fusion may also be conducted using Neural networks, and such solutions may increase the
performance of the fusion method.

3.1.1 Transform Based Multi-scale Decomposition

Multi-Scale Decomposition (MSD) is a method for separating the source images into layers often
represented with a pyramid structure. The most common pyramid is the Laplacian pyramid. This
method is proven successful and can be divided into four stages: Low-pass filtering, sub-sampling,
interpolation, and differencing [22]. Another approach to MSD is the wavelet transform. For
example, the discrete wavelet transform decomposes the source image with filtering to obtain high-
and low-frequency sub-images. The drawback of a discrete wavelet transform is the occurrence
of oscillations, aliasing, and shift variance. In addition to discrete wavelet transform, several
other wavelet transform-based methods for decomposition exists, e.g., lifting wavelet transform
and spectral graph wavelet transform. Edge preserving filter is a MSD method that separates the
source image to a base layer and a detailed layer. The significant contribution of this method is the
spatial preservation capabilities and reduction of artifacts around edges. The base layer composes
of a smoothed image and the detailed layer containing several sub-layers of different scales. This
method is widely adopted in other methods, e.g. bilateral filter, mean filter, and weighted least
square filter [5].

3.1.2 Transform Based Sparse representation

Sparse Representation (SR) methods are similar to MSD based methods in the sense that SR
methods also belong to the transform domain-based approaches. However, some key differences
exist between the techniques, one being that SR represents the source images from a dictionary,
based on training images. The dictionary tends to be domain-independent, providing a reasonable
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interpretation of the source images. Second, SR operates over patches distinctive to MSD operating
over different decomposition levels, where patches refer to the source image divided into blocks
(patches). Patches, in combination with a sliding window approach, provide a more reliable result,
when compared to MSD to image misregistration. The theory behind SR is that image signals
can be represented as a linear combination of some bits of a dictionary. First, the source image is
segmented as patches represented as a vector. SR is performed on the patches with a dictionary.
The next step is to combine the representations with a fusion rule. Finally, the fused image is
reconstructed from the sparse coefficients. The dictionary and quality of such a dictionary are
crucial for a satisfying output. There are several methods for constructing a dictionary [23]. For
example, Yang and Li [24] creates a dictionary based on a set of functions containing Discrete
Cosine Transform (DCT). Other approaches exist as well e.g. short-time Fourier transform CVT.
A dictionary contains prototype signals named atoms. For each image signal, there is a linear
combination of atoms in the dictionary that approximates to the real signal. This approach is
an NP-hard problem; however, there exist attempts to minimize the computational overhead with
sliding window approaches.

3.1.3 Fusion Rules

There are several fusion rules, with the coefficient combination method being the most common
one. The coefficient combination method includes two major strategies, choose-max and weighted
average. Authors adopting the choose-max strategy have different coefficients of interest depending
on the implementation. For example, Chai et al. [25] implement the choose-max strategy with
coefficients based on contrast and energy for applications in the medical domain. Furthermore,
the weighted strategy combines the image layers based on a weight map. The weight maps can be
generated using several approaches, with saliency analysis being a state-of-art practice [5]. Apart
from coefficient combination methods operating on pixel-level additional region-based fusion rules
exist. For example, the salient region rule implemented by Li et al. [26] constructs a saliency map
based on a 31 by 31 window applied with laplacian filtering and local average.

3.1.4 Neural Network Based Fusion

The field of image fusion has adopted methods based on neural networks, the most common one
being Convolutional Neural Network (CNN). CNN’s, in combination with other techniques such
as MSD, has been proven successful. Research shows that conventional methods for image fusion
mentioned above have difficulties in pursuing state-of-the-art results compared to deep-learning
methods. However, deep-learning methods also encounter challenges in the field. Mainly the
absence of a large and specific dataset for training, and the challenge of constructing a network
to handle a specific fusion task. A popular method for deep-learning image fusion is supervised
aimed to learn a multistage feature representation [27].

3.2 Computer Vision
In a paper by Vygolov [1], an implementation that combines three optical-electronic sensors to
capture the visual range of light, short-wave IR, and long-wave IR is presented. The purpose of
the short-wave IR sensor is to provide visibility of essential features and light at night as well as bad
weather, whereas the long-wave IR sensor increase sensitivity when fog is present. Enhancement
of the image is performed with Multiscale Retinex before image fusion to obtain multiscale bright-
ness. The approach for image fusion in the paper is Pytiev’s morphological approach. Histogram
segmentation is used to extract morphological shapes from the short-wave IR sensor. The visual
sensor and long-wave IR sensor are projected to the short-wave IR picture by calculating the mean
of a corresponding area and weigh the sum of the projections [1].

In the millimeter-regime the result produced by the sensor depends on the operating frequency.
Transmission losses occur when the radio-wave frequency matches the resonant frequencies of
molecules in the atmosphere. At 35, 94, 140, and 220GHz, the attenuation is relatively modest
and objects reflecting the down-well radiation will provide high contrast to, for example, a human
body. The reflection and emission of an object in the millimeter-regime are determined by the
emissivity ε. For an ideal radiator (absorber) ε = 1 and an ideal reflector (nonabsorbent) ε = 0.
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The emissivity can be expressed as a function of surface roughness, angle of observation and the
materials dielectric properties. The image of a PMMW sensor consists of the observed radiometric
temperature of a scene. The observations are based on the emissions of objects, the reflection of
the sky’s radiation, and atmospheric emissions between object and sensor [28].

As Song et al. describe [29], PMMW imaging systems are used for the detection of metallic
objects. As the sensing system is entirely passive, no emission occurs, while the detection of the
environment is still possible because of the high reflection of background radiation on metallic
objects. The authors further explain that PMMW in itself is not good at spatial resolution or
details, and therefore propose a method fusing PMMW images with images in the visible range.
The fusion of the two technologies is proposed as a solution to the PMMW sensor’s inability to
capture details by adding details from the visual range. By finding an ultimate fusion of the two
captured images, a ”true scene” is expected.

As different vision-sensors are developed for specific wavelengths, the use-cases for each vision-
sensor differ slightly. There are multiple ways to achieve a fusion of collected data. As explained
by Xia et al. [30], data fusion may occur at the signal, pixel, or feature level. Where signal level
fusion is based on row data, pixel fusion is based on pixel-to-pixel matching, and feature level is
based on features extracted from sensors.

A significant challenge regarding image fusion is the concept of image registration. In essence,
the image alignment, differences in resolution, the field of view, and distortion significantly com-
plicates the image fusion process, particularly in real-time applications. According to Zitova et
al. [31], the image registration process consists of four steps. The first step is feature detection,
where features are detected in both images. The features consist of lines, corners, and other dis-
tinct points of interest. The second step is matching the detected features in both images. Both
steps may be conducted either manually or automatically. The third step is to estimate the trans-
form model and aligning the moving and reference images. The final step is where the actual
transformation of the image occurs. Putz et al. [32] test both fusion and image registration in a
multi-modal configuration. The test is conducted on a Field Programmable Gate Array (FPGA)
for real-time applications, and data shows that the Laplacian pyramid and Fast and Adaptive
Bi-dimensional Mode Decomposition (FABEMD)) methods provide better results when compared
to Shift Invariant Discrete Wavelet Transform (SIDWT) and simple mean method.

The FABEMD algorithm is based on image decomposition into oscillatory sub-signals and a
series of zero-mean Bi-dimensional Intrinsic Mode Function (BIMF), a simplified version of Bi-
dimensional Empirical Mode Decomposition (BEMD). The algorithms start with a decomposition
of both initial images, followed by combining the values of two BIMFs for each decomposition level.
The third step is to combine two residues, and lastly, sum all combined components to a fused
image. Laplacian pyramid algorithm is based on pyramid generation, the algorithm process the
image through a low-pass filter and apply sub-sampling by a factor of two. The filter is often a 5x5
window with Gaussian coefficients. The result is a pyramid of sub-sampled images with a reduced
spectral band. The fused image is calculated from the input pyramids with the selection of pixels
with a higher intensity. This method preserves the contrast ratio of the final image [33]. In the
work of Antoniewicz [33], the above algorithms are implemented in an FPGA to meet critical time
requirements. Implementing image fusion on an FPGA reduces the processing time significantly
due to the parallel and pipelined capabilities compared to a traditional Central Processing Unit
(CPU). The images are sent from an image codec to the Double Data Rate (DDR) memory, the
FPGA then processes one frame at the time with implemented fusion algorithms.

3.3 Image Fusion Quality Assessment
Complications arise when assessing fused images. In an example by Qu et al. [34] there are
applications where no ideal fused image exists, thus making it impossible to implement an error
based assessment. As a means to objectively measure image quality on images processed by image
fusion, several methods exist. For instance, the method by Qu et al. [34] compares a fused
output image with input images by calculating the mutual information contained in the fused
image. The amount of information carried over in the fusion process is determined and used as a
measure of image fusion performance. However, the method doesn’t take into consideration what
information is considered essential. In order to increase speed-performance Haghighat and Razian
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[35] propose another method, Fast Feature Mutual Information (Fast-FMI) which show similar
results to other Feature Mutal Information (FMI) methods. The proposed Fast-FMI method
divides the full image into smaller squares, which helps reduce complexity. Furthermore, the
method calculates an average of all the mutual information obtained from the smaller windows,
which is summed and seen as the mutual information of the entire image. In a method proposed
by Xydeas and Petrović [36], edge information is seen as valuable information. Edge information
still present in the fused image is calculated as an indication of the fusion process. It should be
noted that this method only pertains to pixel-level fusion methods.

3.4 Image Restoration
In recent years, deep learning has emerged as a solution for image denoising. For instance Liu et
al. propose several methods in [37, 38, 39]. According to a survey by Tian et al. [40], the most
significant disadvantage for conventional methods of denoising [41, 42, 43] is manually tuning of
parameters and complex optimization problem, resulting in high computational costs. Current
deep learning models face challenges of noise that are deviating from Additive White Gaussian
Noise (AWGN), resulting in problems with real noise e.g., low light.

D. Park and H. Ko. propose a method for the restoration of fog-degraded images. With
an atmospheric scattering model together with a depth estimation, the Red Green Blue (RGB)
channels and contrast can be restored. The method reads RGB values for each pixel and estimates
the depth d, an opening and closing reconstruction is performed and a β is estimated to find
maximum entropy [44].

The movement of a sensor when capturing an image, cause image blur. Image blur is a phe-
nomenon that depends on the motion of the sensor relative to the scene during the exposure time
of the sensor. In a paper by Li et al. [45], several methods are compared for image restoration of
blurred images. The results show that the Wiener filter and Blind restoration provides the most
accurate restoration. However, it is stated that the image quality is degraded after restoration.

3.5 Summary Of Related Work
Concerning the extreme environments of aircraft operations, sensors suitable in other domains
may prove unsuitable in the aircraft domain. If similar systems are implemented in an aircraft,
the reliability and robustness of the system’s operation are of high importance.

As an aircraft operates in a broad spectrum of weather conditions, sensors used are required to
deliver an adequate perception of the environment in all phases of operation. Research shows that
fog drastically decreases the performance of a vision sensor in the visual range and that IR sensors
can sense the environment in moderate fog conditions [32]. Other research projects experiment
with sensor fusion in a variety of techniques and algorithms. The experiments are proven successful,
however, not tested in the aircraft domain [33].
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4 Problem Formulation
Decision-making systems are critical systems demanding high reliability. The importance of correct
data gathered from sensors is crucial. As an example, the automotive industry has implemented
vision-based sensors, fusing images obtained by cameras and other sensors [13]. The aviation
industry is moving towards an automated future and the ability to identify hazards in crucial
operations, for instance, landings are of importance. Today, well-proven systems can detect other
aircraft with the utilization of transponders and radars together with human visual perception.
As an example, aircraft operating unmanned airports require the ability to detect obstacles not
equipped with transponders or not discovered by radar. To increase detection capacity, at differing
weather conditions, vision sensor fusion will be evaluated using appropriate sensors. Both CNN
based methods and more traditional methods will be tested.

This thesis aims to explore the possibilities of utilizing vision sensor technologies in the aircraft
domain to enable object detection and increase safety. As sensors are to be evaluated for a specific
purpose, quality criteria need to be determined. The assessment of image quality is a broad
topic, where both subjective and objective measurements may be implemented in multiple ways.
Furthermore, assessment techniques of fused images are problematic as no perfect fused image
exists in this specific sensor configuration. Therefore an adequate fusion performance method
needs to be obtained and used as a measure of this specific implementation.

4.1 Hypotheses
The work in this thesis is based on the following hypothesis. The hypothesis is acquired from
research conducted in the related literature.

With consistent vision sensor acquisition the imagery output can be used for object
detection in the aviation domain, regardless of environmental conditions.

4.2 Research Questions (RQ):
To test the hypothesis stated in section 4.1, the following research questions have been formulated.

RQ1) What image quality assessment techniques are required to determine the output quality of
evaluated image processing methods?

RQ2) What are the similarities and differences between state-of-the-art vision based fusion meth-
ods?

RQ3) What sensor fusion technique provides adequate results with respect to given quality metrics
from RQ1 in an aircraft environment?

RQ4) What correlation exists between the detection capacity of objects and image quality?

RQ5) What is the most correct way to assure that output from one sensor matches that of other
sensors in a sensor setup of two IR sensors and one visual spectrum sensor?

4.3 Overview
Table 1 aims to provide easier navigation in the thesis, displaying the corresponding sections to
each research question.

Table 1: Section Overview.

RQ Method Result Discussion Conclusion
1 5.2, 5.6.1, 5.7 7.1 8.1 9.1
2 5.6 7.3 8.3, 8.6, 8.7 9.2
3 5.6.1, 5.7 7.3, 7.4 8.3 9.3
4 5.8 7.5 8.5 9.4
5 5.5 7.2 8.2 9.5
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5 Method
A systematic review is conducted to answer RQ1 and provides a knowledge basis for the following
research. The systematic review follows a structured approach, where relations, patterns, and
identifications are identified in publications.

Proceeding the systematic review, RQ2, RQ3, RQ4 and RQ5 are answered with experimental
research. The experimental setup consists of two IR sensors and one sensor in the visual range.
During the registration process, the output from the IR sensors is treated as moving images and
fitted against the visual range sensor. After both IR images have been registered, all three images
are fused using one of the multiple fusion methods. The output from all of the proposed methods
is evaluated by applying multiple Image Quality Assessment (IQA) methods and subjective evalu-
ation. The subjective evaluation of the fused images is performed by people of varying expertise,
ranging from pilots or experienced in image processing to novice. The validity of the research is

Figure 5: Research flowchart.

discussed in the discussion section. However, the measures to increase validity is a continuous pro-
cess throughout the project. Validity can be divided into four main categories. Construct validity,
content validity, face validity, and criterion validity. For example,” Do the constructed tools and
experiment represent the measure of variables intended?”, ”Do the review and experiment cover
all aspects of the subject?” and ”What is the correlation between these papers results and other
literature?” [46]. According to Keelan [19], personal preference takes place while grading image
quality. To mitigate personal preference outside the scope of sensor evaluation, specific image
qualities are stated as image quality criteria in the subjective ranking of images. The work aims
to evaluate vision-based sensors in an aircraft operating environment, where the conclusions and
experiments made are not optimized for general purpose use.

5.1 Thesis Limitations
Regarding the limitations of this thesis, there are several factors to take into consideration. For
instance, the possibility of implementing Full Reference Image Quality Assessment (FR-IQA) or
Reduced Reference Image Quality Assessment (RR-IQA), as no known right image of the scene
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depicted exists for this sensor setup. NR-IQA is instead what is conducted, to assess the different
fusion methods. The personal preference impacting image grading is somewhat limited during
subjective tests by selecting subjects with some prior knowledge in associated areas. Another
example would be in what environmental conditions these methods are feasible to implement.
Possibility to enhance visibility in fog or low light, as well as right weather conditions such as
daylight and clear visibility, is explored. All other possible environmental conditions are explored
and are therefore placed outside the scope of this thesis. The idea of implementing object detection
in avionic systems is impressive, and this thesis can be seen as a step of improving the object
detection system’s ability to create a correct world view. This thesis tries to improve visibility for
these types of systems, or as a possible pilot aid. However, one way to show an increase in object
detection capabilities would be to implement real object detection, which is outside the scope of
this work. The fused output is tested using a pre-trained network, but it’s important to note that
the network is not trained on the output from this thesis fused images. Therefore an improvement
to image quality is instead used as an argument of object detection capabilities.

5.2 Systematic Review
A systematic review is an appropriate tool used to make conclusions based on a consensus in the
literature. As such, a systematic review is a sufficient tool to identify methods of IQA. During
the review, universal patterns and themes are identified, and publications are chosen based on a
number of criteria:

• The Main focus of the paper should include Objective IQA.

• Literature shall position their work to other research, by evaluating their method in compar-
ison to other methods.

• Literature should be published in an established journal or similar.

At the beginning of the review, publications with a large number of citations are selected to ensure
the quality of publications further. Analyzing patterns and themes in a set of literature requires a
systematic approach. A concept matrix provides an overview of the relationship between articles
and concepts, helps to identify common patterns and themes in the literature as well as gaps. The
review implements the following steps proposed by Webster and Watson [47]:

1) Review leading journals and conference proceedings with a reputation of high quality.

2) Review the citations of literature found in step 1. This helps to identify concepts leading to
the state-of-the-art.

3) Identify important literature, referencing the findings in step 2. This provides a broad view
of the research.

The primary source for references and data for the literature review is scientific articles and
papers. The literature is collected and searched for at the following databases:

• Google Scholar

• IEEE Explore

• Research Gate

5.2.1 Image Quality Assessment

A common theme amongst the literature reviewed is the difficulties concerning NR-IQA. Further-
more, it is stated that the human eye is an expert in this area [48, 49, 50, 51, 52]. Wang and Bovik
[48] describes the problem as ”mission impossible” to quantify the quality of an image without
a reference base-line. However, there exist good models for FR-IQA and RR-IQA as Wang and
Bovik states [48], not applicable in the scope of this thesis.

Figure 6 illustrates the progress of literature made by notable authors in this domain. This
map is the baseline for the literature review, achieving a systematic approach.
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Figure 6: Reference tree of the structured literature review.

During the earlier years of objective IQA, there were some setbacks, due to the fact of ob-
jective image assessment not correlating well with subjective image quality assessment. This is a
phenomenon that Eskicioglu and Fisher [53] tried to demonstrate by evaluating different objective
quality measures in a gray-scale. In order to evaluate their technique of evaluation, test subjects
with some prior image distortion knowledge were chosen. Correlation of the test subject’s perceived
image quality and IQA are later showed and varying results for different test images can be seen.
However, they concluded that evaluating techniques with differing implementations, needed more
parameters during evaluations.

Pappas et al. [54] evaluate objective criteria based on human perception of image quality and
compares the objective techniques to Mean Squared Error (MSE). MSE technique, is a technique
where a reference image is used in order to calculate the error. The objective techniques, on
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the other hand, have an advantage as it determines quality based on different image distortions.
Compared to the MSE technique, which suffers while calculating errors induced by different types
of artifacts.

In order to mitigate the shortcomings of previous image quality measurement techniques such
as Peak Signal-to-Noise Ratio (PSNR) and MSE, Wang and Bovik [49] introduces a new index for
IQA. The new quality index value Quality (Q) is dependent on a combination of three parameters.
The first parameter measures loss of linear correlation between a point in two images. The second
parameter measures luminance distortion by comparing luminance intensity in points of the two
images. The last parameter measures similarities of contrast between points of the two images.
The index presented is supposed to be used as an independent method, applicable in multiple
types of image processing implementations. Results show that the quality index Q detects quality
degradation where MSE remains constant. Both Pappas et al. [54] as well as Wang and Bovik
[49] show that a new philosophy is needed to achieve an objective quality assessment, correlating
with perceived image quality. As pointed out by Wang et al. [50]: ”The best way to assess the
quality of an image is perhaps to look at it because human eyes are the ultimate receivers in most
image processing environments” which may explain why both Eskicioglu et al. [53] and Pappas
et al. [54] use human subjects as a reference in order to evaluate the assessed IQA techniques.
It is further explained that a subjective Mean Opinion Score is not a practical solution as it is
time consuming, inconvenient, and expensive. Wang et al. [50] proposes a new assessment method
where the structural information in an image should be used as an error estimation, as older error
estimation techniques calculate all types of distortions and may not correlate with perceived image
quality. The paper shows that the new quality estimation technique is useful, but states that more
research is needed in the field of structural information.

Wang et al. further investigate the usage of structural similarity [51], and shows how struc-
tural similarity compares to MSE by developing a technique that compares local patterns of pixel
intensities. Both MSE and the new methods are tested in a variety of image distortions. Results
show that MSE doesn’t perform well, as the results of the MSE technique differs while used in
different types of distortions. However, the new method developed shows good results with better
consistency while comparing both MSE and structural similarity to qualitative visual appearance.

In order to increase the flexibility of image assessment methods Wang et al. [55] also proposes
a new multi-scale structural similarity approach. The new approach shows that improvements can
be made regarding performance, and a comparison is made to both single-scale approaches as well
as other state of the art IQA methods if correct parameters have been chosen.

According to Hassen et al. [52] sharpness is one of the more important factors during the visual
objective assessment of image quality and therefore proposes a sharpness measuring method. It is
shown that the proposed method has correlations with subjective quality assessment. Furthermore,
it’s showed that by redefining blur as ”...the degradation of sharpness is identified as the loss of
local phase coherence.” image distortions other than sharpness may be evaluated by the method
as well.

Mittal et al. [56] state that NR-IQA methods require prior knowledge of distortions correlating
with human perception in order to asses image quality. As a means to create a new model of assess-
ment implementing measurable deviations occurring in images. The new model does not require
any training using human graded distortions. To evaluate the model, a correlation between human
perception is tested. The correlation between the new blind IQA method and human perception is
evaluated alongside other IQA models. Testing shows that the blind model outperforms FR-IQA
models while also performing similarly to other NR-IQA models.

Fang et al. [57] state in their paper, that contrast distortion often is a major contributor
to perceived image quality. The results of the proposed method is evaluated against other IQA
methods and comparisons are made based on the correlation of human visual perception. And
promising results can be seen, however, additional development is needed in order to increase the
performance.

According to Gu et al. [58] the main contributor to image quality, is the amount of informa-
tion contained in the image. The statement is based on human perception, and how a person
would determine quality. Therefore they propose an IQA, implementing information maximum by
computing information contained, locally as well as globally. The reasoning behind both global
and local information is explained as an image containing a large blue sky or area of green grass,
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which may not locally contain much information yet globally be important to the perceived image
quality. It is concluded that the developed NR-IQA method have better performance compared to
other FR-IQA models as well as NR-IQA models. Further, the experiments show that the method
has good capabilities at determining which image contains more contrast.

Recent studies as shown in Bosse et al. point towards a deep neural-network approach for IQA.
In the work of Bosse et al. [59] a CNN is constructed for FR-IQA evaluated towards the LIVE,
CISQ and TID2013 dataset. However, the authors claim that the proposed method can be used for
NR-IQA with minor modifications. With a network of ten convolutional layers, five pooling layers,
and two fully connected layers, the solution outperforms other state-of-the-art methods. On the
other hand, the performance of CNN is heavily dependent on the dataset.

5.2.2 Summary of the Systematic Review

State-of-the-art solutions for IQA seems to be moving towards implementing CNN’s to further
increase performance. However, the majority of the solutions evaluate performance by comparing
it to, among others, human subjective ranking. There also exist three major branches of IQA
where this thesis focuses on the most difficult to implement, NR-IQA. Based on the findings a
proposed method for evaluating image fusion is presented, see Figure 7.

Figure 7: Proposed quality assessment method, with the Edge Preservation Quality Index
(QAB/F), Fast Feature Mutual Information, Natural Image Quality Evaluator (NIQE) and grading
criteria for human ranking, according to the grey boxes.
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5.3 Experimental Setup
Data from three sensors are used as input to the experiment, together with four different fusion
techniques. Two of the three sensors is selected as moving images for the image registration part of
the processing. The last sensor is used as a reference. As the visual sensor in this setup has a higher
resolution than both IR sensors, the visual sensor is selected as the reference. Two transformation
matrices are needed, one for each of the moving images. The two matrices are created by matching
a set of points in the moving and reference pictures. The matching of points is done for both
moving images, together with the reference visual spectrum image. The transformation of the two
images results in empty areas when placed on top of the reference picture. Therefore cropping is
necessary to ensure that the final image only consists of areas including all three sensors. Crop-
ping coordinates are also pre-calculated and used together with the two previously constructed
transformation matrices, and added to the experimental setup.

The process flow can be seen in Figure 8 and consists of two main parts, image registration, and
image fusion. In the first step, image registration, the transform matrices transform the moving
images and crops all three images. The output from the image registration part is then used as
input to the image fusion, in the image fusion part, all three images are fused using one of the four
suggested fusion methods.

Figure 8: Image process flow, shown from captured sensor images to fused output of 3 sensors.
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5.4 Sensor Configuration
This section explains the sensor setup used to collect imagery data for evaluation purposes in this
thesis. The main setup is a concept rig with ”off-the-shelf” sensors provided by SAAB. All data
were collected in a series of test flights conducted at a Swedish airfield in a controlled environment.
The sensors were placed in a customized nose cone of the aircraft rigged to the frame, see Figure
9. During testing, a marshall CV 342-CSB [60] is used as a visual range sensor. The sensor uses
both different resolution and framerate compared to the two other IR-sensors used. As the sensor
can capture high detail images in the right weather conditions, it is a sufficient choice to use in the
visible spectrum. The Rufus 640 Analog [61], on the other hand, is a Short-wavelength infrared
(SWIR) sensor that has claims of working well in low-light and fog conditions. This thesis aims to
enhance visibility in these conditions, and the Rufus 640 Analog is a good fit for this experiment. A
complementary Long-wavelength infrared (LWIR), the Raven 640 Analog [62] is added to capture
thermal properties regardless of weather and light conditions.

Figure 9: CAD drawing of the sensor setup used to collect imagery. As seen in the CAD drawing,
sensors are rigged to the airframe.

5.5 Image Registration
As all data is pre-recorded, frames are collected and matched from each sensor by extracting frames
at given time-intervals, resulting in an equal number of matching snapshots from each sensor.

5.5.1 Feature Detection and Matching

As seen in section 3.2, precise image registration is crucial for a successful fusion of multi-modal
images. This process aligns the images acquired from different sources to a unified view, in essence,
the alignment of one image to a fixed image [31]. In this thesis, the sensors implemented in the test
rig have differences in resolution, lenses, and placement relative to each other. Feature selection
is conducted both manually and automatically. In the manual selection method, points are placed
by hand, in both the moving image and the reference image. An image with distinct features,
both close and further away in the image, is selected to assure that the image matching is efficient
across the entire image. The automatic selection and matching method tested is Speeded-Up
Robust Features (SURF) [63]. The SURF method implements a detector and a descriptor. Where
the detector is based on the Hessian matrix and the descriptor creates sub-sectors of the image by
dividing the original image into 4x4 squares. Each sub-sector of the image is processed to calculate
image intensity patterns.
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5.5.2 Image Transformation

After the feature matching is completed, geometric transformation matrices are generated as ei-
ther projective or affine. A geometric transformation refers to a set of operations that maps the
source image to a new coordinate system. Affine transform preserves parallelism but manipulates
translation see Equation (1), shear see Equation (2), rotation see Equation (3) and scale see Equa-
tion (4). Projective transform has the same capabilities as Affine transform but does not preserve
parallelism see Equation (5) [64]. Translation Transform: 1 0 0

0 1 0
tx ty 1

 (1)

Shear Transform:  1 shy 0
shx 1 0
0 0 1

 (2)

Rotation Transform:  cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (3)

Scale Transform: sx 0 0
0 sy 0
0 0 1

 (4)

Tilt Transform: 1 0 tx
0 1 ty
0 0 1

 (5)

(a) No transform. (b) Translation (c) Shear

(d) Rotation (e) Scale (f) Tilt

Figure 10: Example of transformed images.
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5.5.3 Image Crop

As there are differences in resolution, and the sensor placement differs between all sensors, images
were matched in a way where only one sensor was present in some parts of the images. As a
consequence of areas in the image only containing data from one sensor cropping was performed
on all images. Images were cropped in such a way that only areas where data from all sensors are
present in the image were preserved.

5.6 Image Fusion
In this section, implementations for image fusion methods are presented. For the aims of this
thesis, MATLAB [65] is used to implement fusion techniques and quality measures, see Appendix
A. Furthermore, a test framework is developed to provide traceability of the conducted experiments
with continuous logging of data, see Table 2.

Table 2: Example table of evaluation of fusion methods.

Time Stamp Method Elapsed Time Time/ Pixel Fast-FMI Q(̂AB/F) NIQE

5.6.1 Subjective Test for Fusion Evaluation

The subjective ranking of fusion algorithms follows Petrovic [66] method. Testing is conducted
in a controlled environment, minimizing the risk of uncontrollable parameters affecting results. A
custom graphical user interface is developed for subjective tests, see Appendix B. The user interface
enables consistency when all subjects are faced with the same experience. The interface displays
four images in a 2-by-2 matrix containing two source images on the top row and two fused images
on the bottom row. The subject selects the preferred fused image by clicking on the image. The
fused alternatives are randomly displayed on the bottom row, minimizing the risk of the subject
being biased and repeatable selecting the same image in the matrix. The test generates a file
containing data about the preferred fused algorithm and the time taken for the subject to choose.
The subjects selected one of the preferred fused images based on the criteria shown in Figure 7.
An option of not selecting any of the fused images is also possible. To avoid subject fatigue, the
sample size is kept to 8 images. None of the subjects had reported degradation in eyesight or
similar. However, corrected vision with glasses was allowed. See Table 3 for test setup.

Table 3: Table over ranking participants.

Subject Background
1 Pilot/Avionics System Developer
2 Pilot/Avionics System Developer
3 Avionics System Developer
4 Avionics System Developer
5 Avionics System Developer
6 Avionics System Developer
7 Avionics System Developer
8 Avionics System Developer
9 Robotics Student
10 Robotics Student
11 Knowledge In Object Detection
12 Knowledge In Object Detection
13 Computer Science Student
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5.6.2 Method 1: CNN with Visual Geometric Group (VGG)-19 model

The first method implemented is proposed by Li et al. [67]. The approach utilizes the VGG-19 [68]
model trained on ImageNet [69]. The method decomposes the input images to detailed layers Idk
and base layers Ibk. The base layers are fused with a weighted-averaging strategy, and the detailed
layers are fused using a multi-layer fusion strategy of features extracted with the VGG-19 model.
Finally, the fused layers are added to one resulting image. Source images are taken as input, k
denotes which input is used, and source images are denoted as Ik, where k ∈ {1, 2, 3} in this
example. The base layer is obtained by solving the Tikhonov Regularization problem, where the
horizontal and vertical parameters are set to gx = [−1 1], gy = [−1 1]T and λ = 5 in this method:

Ibk = arg min
Ib

k

||Ik − Ibk||2F + λ(||gx ∗ Ibk||2F + ||gy ∗ Ibk||2F ) (6)

After the base layers have been obtained, the detail layers Idk are extracted from the source
image, by subtracting the base layer:

Idk = I − Ibk (7)

When both detail and base layers are separated, the fusion of the base layer is achieved using a
weighted average strategy. Where x and y represents placement in the image and α denotes weight
values of the pixel for each of the base layers, α1 = α2 = α3 = 1

3 :

Fb(x, y) = α1I
b
1(x, y) + α2I

b
2(x, y) + α3I

b
3(x, y) (8)

For the details of the image, a convolutional neural network VGG-19 [68] is used as a feature
extractor of the detailed layers Idk . The extracted features are used to create weight maps and
fused by multi-layer fusion. φi,mk denotes the feature maps of k′th sensor in the i′th layer, where
m is the channel for each layer (m ∈ {1, 2, ...,M},M = 64x2i−1). Where there’s a Φi for each of
the rectified unit layers (relu 1 1, relu 2 1, relu 3 1, and relu 4 1) in the network.

φi,mk = Φi(Idk ) (9)

The contents for each φi,mk at each position in the image is denoted as φi,mk (x, y) After all
features have been extracted from the source image, the initial pixel intensity map Cik is created
by applying l1 − norm, where k ∈ {1, 2, 3} and i ∈ {1, 2, 3, 4} [70]:

Cik(x, y) = ||φi,1:M
k (x, y)||1 (10)

The created pixel intensity maps are then further processed by applying a block-based average
operator to limit misregistration, where r determines block size. Using a more significant value of
r can however lead to missing details:

Ĉik =
∑r
β=−r

∑r
θ=−r C

i
k(x+ β, y + θ)

(2r + 1)2 (11)

Once the pixel intensity maps have been created, initial weight maps W i
k(x, y) for the pixels

are created with K denoting the number of maps (K = 3) by normalizing the pixel intensity maps:

W i
k(x, y) = Ĉik(x, y)∑K

n=1 Ĉ
i
n(x, y)

(12)

Using a VGG network solution, the pooling operator used is a subsampling operator, meaning
that the size of created weight maps W i

k differs from the size of Idk . Therefore an upscaling of W i
k

is needed. After the upscaling of the weight maps are completed, new weight maps: Ŵ i
k all have

matching sizes as Idk .Where p, q ∈ {0, 1, ..., (2i−1 − 1)}:

Ŵ i
k(x+ p, y + q) = W i

k(x, y) (13)
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The new weight maps Ŵ i
k are used to extract features from source images detail layers:

F id(x, y) =
K∑
n=1

Ŵ i
n(x, y)× Idn(x, y), K = 3 (14)

And, fusion of the details is completed by selecting the biggest value of each of the outputs acquired
in Equation (14) at all possible positions (x, y)

Fd(x, y) = max[F id(x, y)|i ∈ {1, 2, 3, 4}] (15)

Finally the entire image is fused together using the obtained detail and base layers:

F (x, y) = Fb(x, y) + Fd(x, y) (16)

See Figure 11 for a visual representation of method 1.

Figure 11: Illustration of Method 1, showing three images as input. The input images are optimized
with Thikonov Regularization, and divided into base and detail layers. All detail layers are then
fused using a multi-layer fusion strategy of features extracted with the VGG-19 model and the
base layers are fused using a weighted averaging strategy.

5.6.3 Method 2: CNN with Residual Network (ResNet)50 model

Like the previous method described in section 5.6.2 Li et al. [71] utilizes a CNN, trained on
ImageNet. Unlike previous authors who extracted detailed features using VGG-19 [68], this method
implements the ResNet50 model. The model is a residual network based on ResNet [72] and is 50
layers deep with 5 convolutional layers. ResNet50 is used to extract details from the source images
Ik (where k ∈ {1, 2, 3}) in blocks from the input source images, and processed using Zero-Phase
Component Analysis (ZCA) operations. Features for each block is represented by Ii,1:C

k containing
C channels (i ∈ {1, 2, ..., 5}). Each iteration of i, contains j number of convolutional channels,
j ∈ {1, 2, ...C}.

For each of the input sources, the covariance matrix in ZCA is given by:

Coi,jk = Ii,jk × (Ii,jk )T

And the decomposition as:
Coi,jk = UΣV T

The features Ii,1:C
k is represented in a ZCA subspace as Îi,1:C

k and are obtained by Equation
(17) together with the extracted features for each channel:

Îi,1:C
k = (U(Σ + εI)− 1

2UT )× (Ii,jk ), j ∈ {1, ..., C} (17)
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l1-norm of average values is used to create weight maps Ii,∗k where t = 2:

Ii,∗k =
∑x+t
p=x−t

∑y+t
q=y−t ||Î

i,1:C
k (p, q)||1

(2t+ 1)× (2t+ 1)
The weight maps are then transformed into the size of the source images with bicubic interpola-

tion [73]. Where bicubic interpolation increases the size of the smaller weight maps, by estimating
pixel values and adding pixels. An example of bicubic interpolation can be seen in Equation (18)
where the matrix represents an input image:1 2 3

4 5 6
7 8 9

 (18)

If the image is to be extended into a 4×4 matrix, the method starts by extending the image in one
direction and after the initial extension, repeats the process in the next direction. First a padding
of two zeroes is added at the edges of each row, to the matrix in Equation (18). The padding is
added so that calculations of the edge values in the new image is possible, where each pixel requires
two values on each side of the value to be calculated:0 0 1 2 3 0 0

0 0 4 5 6 0 0
0 0 7 8 9 0 0

 (19)

The matrix in Equation (19) is then extended and shifted in the first direction, in this case the
rightward direction: 0 0 0 1 1 2 2 3 3 0 0 0 0

0 0 0 4 4 5 5 6 6 0 0 0 0
0 0 0 7 7 8 8 9 9 0 0 0 0

 (20)

Each pixel value in the matrix from Equation (20) is then averaged using weights, by the two
values on either side of the pixel:0.9453 1.5811 2.4189 3.0547

3.9453 4.5811 5.4189 6.0547
6.9453 7.5811 8.4189 9.0547


The same method is then repeated in the downward direction and starts by adding two zeroes at
the edge of each column instead of row, as the extension is now conducted downward:

0 0 0 0
0 0 0 0

0.9453 1.58118 2.4189 3.0547
3.9453 4.5811 5.4189 6.0547
6.9453 7.5811 8.4189 9.0547

0 0 0 0
0 0 0 0


(21)

And the matrix from Equation (21) is extended and shifted:

0 0 0 0
0 0 0 0
0 0 0 0

0.9453 1.5811 2.4189 3.0547
0.9453 1.5811 2.4189 3.0547
3.9453 4.5811 5.4189 6.0547
3.9453 4.5811 5.4189 6.0547
6.9453 7.5811 8.4189 9.0547
6.9453 7.5811 8.4189 9.0547

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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And the final resized image is calculated by implementing weighted average, and the output of the
interpolation is obtained as: 

0.7813 1.4170 2.2549 2.8906
2.6885 3.3242 4.1621 4.7979
5.2021 5.8379 6.6758 7.3115
7.1094 7.7451 8.5830 9.2188


In the next step of the fusion method soft-max is used to obtain the final weight maps.

wik(x, y) = Ii,∗k (x, y)
Ii,∗1 (x, y) + Ii,∗2 (x, y) + Ii,∗3 (x, y)

After the weight maps have been transformed into correct size, equal to input images, they are
multiplied with each corresponding source image and fused with weighted averages:

F (x, y) =
3∑
k=1

wik(x, y) ∗ Ik(x, y) (22)

An overview of method 2 can be seen in Figure 12.

Figure 12: Illustration of Method 2 showing three input images. Features from the input source
images are extracted using a CNN, and the features are furthered processed using ZCA and Soft-
max to select which sensor have the most prominent features. Final output is then reconstructed
by fusing selected features with base informations from all sensors.

5.6.4 Method 3: Convolutional Sparse Representation (CSR)

CSR by Liu et al. [6] is suggested as the third method to be evaluated. The method implements
a dictionary learning method from Wohlberg [74]. This method takes K number of source images
(denoted as Ik, k ∈ {1, ...,K}), in this thesis K = 3 and the dictionary filters are denoted as
dm,m ∈ {1, ...,M} All source images are divided into two layers, a base layer Ibk and a detail layer
Idk . The layers are separated by Equations (6) and (7) explained in section 5.6.2. The detailed
layers are then further processed to calculate sparse coefficient maps. Where the coefficient maps
are denoted as Ck,m and dm represents a set of filters from the dictionary and m ∈ {1, ...,M} from
Wohlberg’s method [74] method:

arg min
Ck,m

1
2

∣∣∣∣∣∣∣∣ M∑
m=1

dm ∗ Ck,m − Ikd
∣∣∣∣∣∣∣∣2

2
+ α

M∑
m=1
||Ck,m||1 α = 0.01 (23)

Ck,1:m(x, y) represents sparse coefficients at a position of x, y with M dimensions. l1 − norm is
then used for each of the calculated Ck,1:M values to create a pixel level measure map for each of
the pixels in the source images and Ak(x, y) is obtained:

Ak(x, y) = ||Ck,1:m(x, y)||1 (24)
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To decrease the possibility of misregistration of Ak(x, y) an averaging strategy of all positions is
used to calculate Āk(x, y). Where r represents window size and should be as big as possible to
avoid misregistration. Yet small enough that details still appear, for multimodal fusion that often
contains small features a small value of r is preferred:

Āk(x, y) =

r∑
p=−r

r∑
q=−r

Ak(x+ p, y + q)

(2r + 1)2

To fuse the coefficient maps, the max value is chosen:

Cf,1:M (x, y) = Ck∗,1:M (x, y), k∗ = arg max
k

(Āk(x, y)) (25)

And the detail layers are fused by:

F d =
M∑
m=1

dm ∗ Cf,m

There are two possible fusion methods for the base layer, ”choose-max” similar to Equation
(25), or an averaging strategy. In regards of the base layer, the averaging strategy is applied as
it’s deemed more appropriate for multimodal fusion:

F b(x, y) = 1
K

K∑
k=1

Ibk(x, y)

Lastly having obtained both the detail layer Idf and the base layer Ibf , The fused image If is
obtained by adding the two:

F = F d + F b

For an overview of the fusion process for method 3 see Figure 13.

Figure 13: Illustration of Method 3 with three images as input. The input images are divided into
base and detail layers by solving the Tikhonov Regularization problem. All detail layers are used
to create sparse detail maps which are in turn used to create activity level maps. The sensor with
highest values in the activity level map will then be selected at apropriate position, and fused with
the averaged values from all base levels.

5.6.5 Method 4: Saliency Map with Weighted Least Squared Optimization (WLS)

Ma et al. [75] propose a conventional method for image fusion based on MSD and Visual Saliency
Map (VSM). The method decomposes IR images and visual images into base layers and detailed
layers using MSD. Decomposing is accomplished by utilizing a method proposed by Zhang et al.
[76] named Rolling Guidance Filter (RGF). The motivation for RGF over other MSD methods
separating detailed features from background structures is that RGF iteratively preserves both
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edges and scale. For the number of input images K = 3 the images Ik, k ∈ {1, ..,K} is fed through
a Gaussian filter G where x and y is the pixel coordinate system of the image and σs is the standard
deviation, see Equation (26), removing small structures.

G(x) = 1
Px

∑
y∈N(x)

exp

(
− ||x− y||

2

2σ2
s

)
I(y), σs = 0.05 (26)

With normalization (N(x) is a set surrounding pixels),

Px =
∑

y∈N(x)

exp

(
− ||x− y||

2

2σ2
s

)

The next step is edge-recovery from the work of Zhang et al. [76]. The rolling guidance filter is
given by Equation (27) where J t+1 (t-th iteration) is guided by the previous step J t. J t is the
input image processed by Equation (26).

J t+1(x) = 1
Px

∑
y∈N(x)

exp

(
− ||x− y||

2

2σ2
s

− ||J
t(x)− J t(y)||2

2σ2
s

)
(27)

Where,

Px =
∑

y∈N(x)

exp

(
− ||x− y||

2

2σ2
s

− ||J
t(x)− J t(y)||2

2σ2
s

)
The image is processed with Equation (26) and Equation (27) for the number of decomposition
levels l, in this thesis l = 4. When the base layers B1, B2 and B3 given by J l+1 together with
the detailed layers d1

1...d
l
1 ∈ D1, d1

2...d
l
2 ∈ D2 and d1

3...d
l
3 ∈ D3 are obtained the base layers can be

fused. The fusion of base layers are obtained by a weighted averaging strategy based on VSM by
Ma et al. [75], this provides contrast information and overall structure of the fused image. The
method operates at pixel-level and finds saliency features V (p) based on a pixel p contrast to all
other pixels in the image and is given by Equation (28). Assigning j for pixel intensity and Mj for
the number of pixels with equal intensity, lastly L to the number of gray levels gives:

V (p) =
L−1∑
j=0

Mj |Ip − Ij | (28)

The weight maps for each sensor are constructed as follows, with V1, V2 and V3 representing the
VSM of input source images:

B̂k = Vk ∗Bk, k ∈ {1, 2, 3} (29)

Comparison between all sensors is achieved using max absolute strategy to calculate the coefficient
matrix W b

k and select the sensor with the highest pixel value at position x, y in the image. First
coefficient matrices are created in Equation (30) for each of the sensors:

W b
1 =

{
1, |B̂1 > B̂2| & |B̂1 > B̂3|
0, otherwise

W b
2 =

{
1, |B̂2 > B̂1| & |B̂2 > B̂3|
0, otherwise

(30)

W b
3 =

{
1, |B̂3 > B̂1| & |B̂3 > B̂1|
0, otherwise

And finally all base layers are fused together by applying max-absolute rule:

BF =
K∑
n=1

W b
n ∗ B̂n (31)
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The detailed layers are combined with the WLS by Farbman et al. [77], fusing detailed data.
Typically fusing an IR image with a visual image with max-absolute strategy, noise tends to appear
in the result from the IR image and can appear grainy. With WLS optimization, the fused image
can result in a more homogeneous image with less background noise. First, coefficients from the
max-absolute strategy W k is obtained, followed with a Gaussian smoothing of the coefficients W k

d

with σ = 2.
W d,1:l

1 =
{

1, |d1:l
1 > d1:l

2 | & |d1:l
1 > d1:l

2 |
0, otherwise

W d,1:l
2 =

{
1, |d1:l

2 > d1:l
1 | & |d1:l

2 > d1:l
3 |

0, otherwise
(32)

W d,1:l
3 =

{
1, |d1:l

3 > d1:l
1 | & |d1:l

3 > d1:l
2 |

0, otherwise

Then applying max-absolute rule:

Mk =
K∑
n=1

l∏
i

W d,i
n ∗ din (33)

Equation (34) is a WLS cost function, the method minimizes the function to obtain Dj . The
function minimizes Euclidean distance, between the detailed layer and the result obtained in Equa-
tion (33). ∑

p

(
(Dj

p −M j
p )2 + λajp

(
Dj
p − (dj2)p

)2) (34)

Let ωp represent a window centered around pixel p. If the window is to large blur can occur in the
result, and if the window is too small noise can still be present. Given ωp and ε as a small constant
ajp is obtained by:

ajp =
(∣∣∣∣ ∑

q∈ωp

(dj1)q
∣∣∣∣+ ε

)−1
(35)

If Dj , M j and dj2 is represented as vectors together with a diagonal matrix Aj as weights of aj ,
Equation (34) can be expressed as:

(I + λAj)Dj = M j + λAJdj2, Aj = (Aj)T (36)

The last step is to reconstruct the image F as the fused result:

F = BF +D1 + ...+DN

See Figure 14 for an overview of Method 4.

Figure 14: Illustration of Method 4 with three images as input. By applying a rolling guidance
filter, source images are divided into base and detail levels. Visual saliency maps are created and
max absolute rule is applied to select correct sensors input for the base layer at the corresponding
position. For the detail layers choose max is implemented and the most prominent sensor is
selected. Finally all detail and base layers are fused to create a fused output.
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5.6.6 Summary of Image Fusion Methods

Generally, there is a common thread amongst state-of-the-art fusion methods, including methods
evaluated in this thesis. In practice, a fusion process begins with a separation of ”base layers”
and ”detailed layers” with base layers meaning structures with a low frequency and detailed layers
having a high frequency and rate of change compared to surrounding pixels. The process continues
with a fusion of the base layers from the different image sources. This process is often a more
straightforward fusion process than the fusion of detailed layers. The fused base layer provides
the overall appearance and contrast of the image. The processing of detailed layers varies between
methods, but the overall goal is to extract silent features from the extracted detail layer, repre-
senting them in layers as a subset of the detailed layer. Two of the methods evaluated in this thesis
utilizes CNN for feature detection and extraction. The other two methods extract the features
with conventional mathematical models and filters. The extracted features from the corresponding
source image are fused to generate a detailed fused layer. Finally, the base layer and detailed layer
are fused.
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5.7 Image Quality Metrics
This section explains the methods used as quality metrics of the fused image. All methods are NR-
IQA methods, as no comparison can be made to an optimally fused image. Two of the methods
compare the output of the fusion method with the inputs from sensors. However, one method
compares on a pixel-level, whereas the other compare edges, as edges are perceived as information.
The third of the methods bases results of induced artifacts in the output image that have no way
of appearing naturally.

5.7.1 Fast Feature Mutual Information

Fast-FMI is an NR-IQA method proposed by Haghighat and Razian [35] as an improvement of
the method by Haghighat et al. [78], regarding complexity reduction. Fast-FMI is a metric on the
similarity and dependency between two variables. It is measured with the Kullback Leibler diver-
gence [79]. The Kullback Leibler divergence formula calculates the mutual information I(X;Y )
where X and Y is two random variables with a joint probability mass function p(x, y) together
with marginal probability mass functions p(x) and p(y), see Equation (37).

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log p(x, y)
p(x)p(y) (37)

Features are extracted from the two source images and the fused image with metrics from Haghighat
et al. [78]. With the features extracted p(a), p(b) and p(f) is created with Marginal Probability
Density Functions (MPDF). p(a, f) and p(b, f) is created with the Joint Probability Density Func-
tion (JPDF). JPDF is an estimate from p(a) with p(f) and p(b) with p(f). Furthermore, a JPDF
estimation is quadratically related to MPDF regarding complexity and size of calculations. The
issue of the complexity of the JPDF function is the motivation for Fast-FMI over FMI. Haghighat
and Razian [35] reduces the overhead with a sliding window that calculates portions of the source
and fused images. The calculated regional FMIs is normalized with Equation (38) where H is the
entropy of the regional window. Lastly, the final Fast-FMI is the average of the regional FMIs.

Hi(A) +Hi(F )
2 (38)

5.7.2 Edge Preservation Quality Index

Xydeas and Petrović [36] propose a method for evaluating image quality at the pixel level. This
method is based on a Sobel edge operator to find the approximate derivative of the input image
in y- and x-direction. The Sobel kernels are defined in Equation (39).

Gx =

∣∣∣∣∣∣
−1 0 1
−2 0 2
−1 0 1

∣∣∣∣∣∣ ∗A Gy =

∣∣∣∣∣∣
1 2 1
0 0 0
−1 −2 −1

∣∣∣∣∣∣ ∗A (39)

The Sobel operator is applied on all pixels of the image p(m,n) where n ∈ N and m ∈ M if the
input image A has a size of NxM . The approximations combined gives the total magnitude of
the gradient by applying Equation (40). The direction of the gradient can also be calculated with
Equation (41).

G(n,m) =
√
G2
x(n,m) +G2

y(n,m) (40)

θ = atan

(
Gy(n,m)
Gx(n,m)

)
(41)

The relative magnitude and direction of GAF and ΘAF with F being the fused image are given by:

GAF (n,m) =
{GF (n,m)
GA(n,m) if GA(n,m) > GF (n,m)
GA(n,m)
GF (n,m) otherwise

(42)
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The quality QAB/F index is based on the preservation of edge strength and orientation defined as:

QAF (n,m) = QAFG (n,m) ∗QAFΘ (n,m) (43)

where,
QAFG (n,m) = ΓG

1 + eKG(GAF (n,m)−σG) (44)

QAFΘ (n,m) = ΓΘ

1 + eKΘ(ΘAF (n,m)−σΘ) (45)

Finally, the weighted and normalized metric is given by Equation (46) with w(n,m) = [G(n,m)]L
where L is a constant.

QAB/F =
∑N
n=1

∑M
m=1Q

AF (n,m)wA(n,m) +QBF (n,m)wB(n,m)∑N
i=1
∑M
j=1(wA(i, j) + wB(i, j))

(46)

5.7.3 Natural Image Quality Evaluator

The last quality metric used in this thesis is NIQE from Mittal et al. [56]. This method is based on
Natural Scene Statistics (NSS) [80]. NSS assumes that a distinction can be made between images
captured from the real world and computer-generated images. In essence, processing images e.q.
fusion can introduce errors that deviate from a naturalistic scene. The method divides the image in
patches PxP and calculates NSS features from the patch coefficients. The patches are then fitted
to a Multi-variate Gaussian (MVG) model and comparing the result to a natural MVG model.
The method is not bound to any specific distortion variable compared to similar methods e.g.,
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). The spatial NSS model used in
this method pre-processes the image with the removal of local mean and divisive normalization
Equation (47) where w is circularly-symmetric Gaussian weighting function.

Î(i, j) = I(i, j)− µ(i, j)
σ(i, j) + 1 (47)

µ(i, j) =
K∑

k=−K

L∑
l=−L

wk,lI(i+ k, j + l) (48)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l[I(i+ k, j + l)− µ(i, j)]2 (49)

The final quality index NIQE is given with Equation (50).

D(v1, v2,Σ1,Σ2) =

√√√√((v1 − v2)T
(Σ1 + Σ2

2

)−1
(v1 − v2)

)
(50)

where v and Σ represents the mean and covariance matrix from the MVG model given in Equation
(51).

fx(x1, ..., xk) = 1
(2π)k/2|Σ|1/2 exp

(
− 1

2(x− v)TΣ−1(x− v)
)

(51)

5.7.4 Summary of Image Quality Metrics

The objective quality metrics in this thesis evaluates the task from different viewing points. Fast-
FMI calculates mutual information on the feature level. The QAB/F index estimates image sharp-
ness and edges on pixel level with Sobel operations. NIQE is not bound to a specific parameter
and estimates induced error from image processing with the assumption that computer-generated
errors diverse from natural images.
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5.8 Object Detection
RQ4 requires the ability to detect objects present in the output from the evaluated image processing
techniques. A comprehensive evaluation of object detection is out of the scope of this thesis.
However, a provided object detection algorithm, based on Faster Residual-CNN architecture with
a ResNet50-Feature pyramid network backbone, is used to evaluate the detection capacity. The
algorithm is capable of detecting objects surrounding an airfield, including other aircraft, runways,
and vehicles. The algorithm was initially trained on the same dataset used to fuse images in this
thesis. A total of 8 images from each evaluated method is analyzed, with PyTorch Detectron 2
Application Program Interface (API) [81]. It’s important to note that the network is not trained
on the output from this thesis fused images.

5.9 Software Deployment
Software development in the avionics domain follows RTCA DO-178/C in compliance with ARP4754.
A rigorous development process written by the standards and guidelines above is out of scope for
this work. This thesis aims to evaluate different techniques in a ”concept phase.” Where in the
first phase, simulations are conducted using MATLAB. In the second phase, adaption to the pro-
gramming language C++ is conducted to evaluate the performance of the algorithms in a language
commonly used in avionic systems. MATLAB coder [82] is applied to generate C++ code, and
all previously implemented MATLAB code is optimized to ensure code generator compatibility.
The generated code is only utilized for the fusion part of the program, and images are read using
openCV. It should be noted, however, that the software is not deployed and executed on a CPU
graded for avionic systems. However, deploying the software on specific hardware only requires
minor changes. Further, the generated MATLAB code is not optimized for execution on embedded
software systems with limited hardware capabilities. The software is also optimized to a minor
extent using GPU acceleration with CUDA and OpenCL.
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6 Ethical and Societal Considerations
The purpose of this thesis is to investigate technologies, to increase the safety of aircraft. The
technology may be used and implemented in other areas without the knowledge of the authors,
but it should be known that it is not the purpose of the technology.

As the test involved humans, all participating subjects were informed of the purpose of the
thesis and asked for consent. Further, no data regarding identities is saved after the completion of
the experiment, and no correlation between answers and identities is published in this paper. All
participants were also informed that they could withdraw at any time during the test. It should
be noted, however, as the correlation between answers and identities was removed when the test
was completed that it was no longer possible to withdraw a single subject’s answers.
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7 Results
This section presents data and findings from work conducted in the thesis in a raw format. The
data is obtained from the methods in section 5 and provides a basis for conclusions.

7.1 Systematic Review
Table 4 show a summary of the systematic review, where ”HSR” is short for Human Subjective
Ranking. Meaning that the methods in the literature are compared to human visual ranking.

Author Aims HSR Method Conclusion
[53]
Eski-
cioglu,
Fisher.
1995

Evaluate quantitative
image quality metrics.

Yes Experiment by com-
paring algorithm with a
set of images.

It is not possible to
compare different tech-
niques based on that
one data point cannot
describe several fea-
tures.

[54]
Pappas,
Safranek.
1999

Migrate from MSR
and PSNR to objective
quality assessment
based on human
perception.

Yes Examine objective cri-
teria of existing mod-
els.

General models are
more complex than
specific methods. Most
models are designed for
a specific application.

[49]
Wang,
Bovik.
2002

Propose a new method
for IQA with a math-
ematically approach
that aims to be univer-
sal.

Yes Testing the proposed
method with ”Lena”
image.

The new method
achieves better results
comparing to MSR.
However, a lot of re-
search remains to be
conducted but this is a
great starting point.

[50]
Wang et
al. 2002

Propose a new philos-
ophy of IQA that in-
stead of looking at im-
age errors, checks for
structural errors.

Yes Testing the philosophy
with a simple evalua-
tion of ”Lena image.

Implementation with
the new philosophy
provides great results.

[55]
Wang et
al. 2003

Develop a multi-scale
structural similarity
method.

Yes Comparing scales of
different factors.

The multi-scale meth-
ods gains better result
compared to single-
scale with correct
parameter settings.

[51]
Wang et
al. 2004

Finding a new ap-
proach to assess image
quality based on struc-
tural similarity and not
error visibility.

Yes Construct a new qual-
ity index based on the
philosophy by Wang et
al. [50].

Some challenges re-
mains, one that the
SSIM index requires
optimization for gen-
eral purpose use. How-
ever, the performance
is promising compared
to traditional methods.
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Table 4: Summary of systematic review in table format.

Author Aims HSR Method Conclusion
[48]
Wang et
al. 2006

Collect and summarize
the current progress of
IQA.

Yes Evaluate FR-, RR- and
NR-IQA together with
challenges and possibil-
ities.

A book of the cur-
rent state-of-the-art
practice with its
conclusions.

[52]
Hassen
et al.
2010

Evaluate local phase
coherence for image
sharpness assessment.

Yes Defining an image
sharpness index.

This method decouples
sharpness and blurri-
ness.

[56]
Mittal
et al.
2012

Develop an NSS-based
framework for distor-
tions that are com-
pletely blind.

Yes Fitting a collection of
quality aware features
in a multivariate Gaus-
sian model.

The new method
NIQE outperforms es-
tablished full reference
IQA.

[57]
Fang et
al. 2015

Develop a quality met-
ric for contrast dis-
torted images based on
natural scene statistics.

Yes Development of a NSS
model with focus on
contrast distortion.

NSS models requires
future research but
gained promising
results for contrast
distorted images.

[58] Gu
et al.
2016

Evaluation of no-
reference contrast
distorted images met-
rics.

Yes Designing a blind
NIQMC with informa-
tion maximization.

Promising results with
the proposed method.
Performing better than
classical FR-IQA.

[59]
Bosse et
al. 2017

Utilizing CNNs for
IQA.

Yes Develop a network for
FR and then adopting
it to NR.

Experimental re-
sults outperforms
traditional methods.
However, there is room
for improvements such
as balancing ratio
between parameters.
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7.2 Image Registration
In this section results for image, registration are presented. The tests together with generated plots
were run with MATLAB. The images in Figure 15 and 16 are presented with false-color overlay.
One image has a magenta mask, and the other image has a green mask. When the intensity of
the two images placed on top of each other is equal in an area, the color becomes gray/white.
Otherwise, the image with higher intensity becomes the dominant color. False-color overlay is a
good technique to distinguish features from their origin in different images. The false-color overlay
also helps separate how one image is transformed when placed on top of the reference image, seen
in Figure 15 and 16.

(a) Manual feature detection (b) SURF feature detection

Figure 15: False color overlay with runway lights comparing manual selection of features (15a) and
SURF feature selection (15b).

(a) Affine (b) Projective

Figure 16: False color overlay shows comparison of Affine transformed image (16a) and Projective
transormed image (16b).
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Figure 17: Boxplot of elapsed time during transform of images with a dataset of 23 images.
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7.3 Image Fusion
This section presents the major contribution of our work, image fusion. First, in Table 5 the rela-
tionship between IQA and image input size is displayed. Second, Figure 18 to 23 shows results of
the fusion process with all four methods with respective input images. Its a result of the combina-
tion of three sensors with different spectral ranges sensing unique salient features. Furthermore,
box-and-whisker plots are included in this section regarding the performance of the fused images
with selected quality metrics together with time complexity plots (Figure 24 to 30). Lastly, a
comparison between the generated C++ code and Matlab code is presented in Figure 31.

Table 5: This table shows the relation between input size of images and results from quality
metrics. The size of images directly affects the quality metrics. A valid comparison between fusion
methods requires the same input size of images.

Image Size Pixels Fast-FMI QˆA/BF NIQE
94x54 0.85501 0.26116 18.8802
185x108 0.87332 0.26159 18.8784
278x162 0.89827 0.24856 6.44468
370x216 0.91069 0.22964 5.17057
462x270 0.91752 0.21760 5.62721
555x324 0.92176 0.20884 5.14801
739x432 0.92883 0.19509 3.60057
832x468 0.93174 0.19215 3.46398
924x540 0.93365 0.19380 3.15547
1016x594 0.93626 0.19456 3.03400
1109x648 0.93861 0.19746 2.79146
1201x702 0.93998 0.19855 2.85024
1293x756 0.94078 0.20100 2.83964
1386x810 0.94177 0.20308 2.67124
1478x864 0.94306 0.20467 2.75511
1570x918 0.94340 0.20650 2.97351
1663x972 0.94446 0.20845 2.84228
1755x1026 0.94532 0.21023 2.77491
1847x1079 0.94574 0.21340 3.02118
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(a) Input visual image.
Size: 1920x1080 pixels. (b) Input SWIR image.

Size: 720x480 pixels.
(c) Input LWIR image.
Size: 720x480 pixels.

Figure 18: Input images for Figure 19

(a) Fused image with Method 1, section 5.6.2
Size: 1847x1079 pixels.

(b) Fused image with Method 2, section 5.6.3
Size: 1847x1079 pixels.

(c) Fused image with Method 3, section 5.6.4
Size: 1847x1079 pixels.

(d) Fused image with Method 4, section 5.6.5
Size: 1847x1079 pixels.

Figure 19: Fused images of Visual camera, SWIR and LWIR. The images displays the final approach
of a landing sequence. The most salient features in this image is the ALS lights at the beginning
of the runway including the 1000FT roll bar. At the left of the runway precision approach path
indicators is also visible.
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(a) Input visual image.
Size: 1920x1080 pixels. (b) Input SWIR image.

Size: 720x480 pixels.
(c) Input LWIR image.
Size: 720x480 pixels.

Figure 20: Input images for Figure 21

(a) Fused image with Method 1, section 5.6.2
Size: 1847x1079 pixels.

(b) Fused image with Method 2, section 5.6.3
Size: 1847x1079 pixels.

(c) Fused image with Method 3, section 5.6.4
Size: 1847x1079 pixels.

(d) Fused image with Method 4, section 5.6.5
Size: 1847x1079 pixels.

Figure 21: Fused images of Visual camera, SWIR and LWIR. This images show a close up on the
runway, with the markings clearly visible. For example the precision approach path indicators can
be identified at the left and at the bottom the runway threshold lights can be seen.
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(a) Input visual image.
Size: 1920x1080 pixels. (b) Input SWIR image.

Size: 720x480 pixels.
(c) Input LWIR image.
Size: 720x480 pixels.

Figure 22: Input images for Figure 23

(a) Fused image with Method 1,section 5.6.2
Size: 1847x1079 pixels.

(b) Fused image with Method 2, section 5.6.3
Size: 1847x1079 pixels.

(c) Fused image with Method 3, section 5.6.4
Size: 1847x1079 pixels.

(d) Fused image with Method 4, section 5.6.5
Size: 1847x1079 pixels.

Figure 23: Fused images of Visual camera, SWIR and LWIR. The images show an overview of the
runway. With the precision approach path indicators and runway edge light’s visible. Finally, the
runway markings is also prominent in the picture.
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Figure 24: Boxplot of Fast-FMI. The y-axis indicates the percentage of features present in the fused
image with respect to the source images. Hence, a score of 1 implies that all features from the
source image are present in the fused result. The method used to find features are edge detection.

Figure 25: Boxplot of the NIQE evaluation. The y-axis is the NIQE score, a lower score indicates
a better result. The score reflects the perceptual quality of the output image with respect to the
NIQE model. In this thesis the model is based on NSS [80].
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Figure 26: Boxplot of QAB/F. This index is similar to the Fast-FMI metric but operates on pixel-
level, thus more sensitive to small dissimilarities. The y-axis comparable to Fast-FMI ranges from
0 to 1, with 1 meaning that all edges on pixel-level are persevered in the fused image from the
source images.

Figure 27: This plot illustrates the growth of time with larger image input for fusion Method 1.
The x axis represents pixels With x Height of source/result image, and the y axis is the measured
time in seconds of the fusion process. This line is approximately quasilinear in time, and the
algorithm is estimated to O(n logn).
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Figure 28: This plot illustrates the growth of time with larger image input for fusion Method 2.
The x axis represents pixels With x Height of source/result image, and the y axis is the measured
time in seconds of the fusion process. This line is approximately quasilinear in time, and the
algorithm is estimated to O(n logn).

Figure 29: This plot illustrates the growth of time with larger image input for fusion Method 3.
The x axis represents pixels With x Height of source/result image, and the y axis is the measured
time in seconds of the fusion process. This line is approximately quasilinear in time, and the
algorithm is estimated to O(n logn).
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Figure 30: This plot illustrates the growth of time with larger image input for fusion Method 4.
The x axis represents pixels With x Height of source/result image, and the y axis is the measured
time in seconds of the fusion process. This line is approximately quasilinear in time, and the
algorithm is estimated to O(n logn).

(a) Fused image with Method 3 in MATLAB (b) Fused image with Method 3 in C++

(c) Fused image with Method 4 in MATLAB (d) Fused image with Method 4 in C++

Figure 31: Comparison between fused images executed in MATLAB and in C++. Difference
between Q for Method 3 is 0.026 and for Method 4 is 0.000. Regarding NIQE the difference for
Method 3 is 0.030 and for Method 4 0.001. Finally for Fast-FMI the difference is also minor,
Method 3 having a difference of 0.003 and Method4 0.000.

43



Björklund and Hjorth Computer Vision in Aviation

7.4 Subjective Ranking

Figure 32: Pie Chart showing the results of the subjective ranking. A total of 104 data points was
collected with an average decision time of 15 seconds per evaluated image. Information about the
respondents can be seen in Table 3 in section 5.6.1.

7.5 Object Detection
In this section, fused images applied with the object detection algorithm from section 5.8 is pre-
sented. Figure 33 displays the images with bounding boxes of each detected object in the image.
In Table 6, a compilation of the results regarding object detection is shown.
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(a) Object detection algorithm applied on fused image
with Method 1, section 5.6.2

(b) Object detection algorithm applied on fused im-
age with Method 2, section 5.6.3

(c) Object detection algorithm applied on fused image
with Method 3, section 5.6.4

(d) Object detection algorithm applied on fused im-
age with Method 4, section 5.6.5

Figure 33: Fused images with applied object detection algorithm.

Table 6: This table presents the output from each image with the evaluated fusion methods
regarding number of objects detected and the mean certainty of each object detected.

Image Method 1 Method 2 Method 3 Method 4
Detected
Obj.

Mean
Cer-
tainty
%

Detected
Obj.

Mean
Cer-
tainty
%

Detected
Obj.

Mean
Cer-
tainty
%

Detected
Obj.

Mean
Cer-
tainty
%

1 2 95 2 89 2 98.5 2 95.5
2 3 95 3 89.3 2 96.5 1 84
3 2 98.5 2 98 2 99.5 1 98
4 1 99 1 99 1 100 1 100
5 1 100 1 98 1 99 1 98
6 1 100 1 100 1 100 1 100
7 1 99 1 98 1 99 1 100
8 1 90 1 84 1 93 1 92
Total 12 96.9 12 94.4 11 98.2 9 95.9
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8 Discussion

8.1 Systematic Review
Conducting a systematic review on IQA unfolds a clear pattern, particularly concerning assessment
without reference. Literature tends to directly or as a reference compare algorithms with the human
eye’s ability to judge image quality. However, relying on human subjective assessment ranges from
hard to impossible for embedded solutions, such as aviation. Therefore, there exists a demand
for efficient and accurate quality assessment techniques. The methods implemented in this thesis
originate from the systematic review and are possible to implement in an embedded environment.
The methods evaluate images based on different parameters. The diversity of quality metrics
provides a strong foundation for elaborating on the results. Another reflection essential to point
out is that a majority of well-cited publications within the area of IQA are from a handful of authors
pointing towards a narrow field within computer vision. The most recent publications provided a
turning point in the literature when quality metrics developed implements neural networks instead
of conventional algorithms.

8.2 Image Registration
Figure 15 shows that manual selection of feature matching outperforms the SURF method in this
sensor setup. The finding is visible on salient features such as the ALS. One explanation of the poor
performance of feature matching algorithms may be due to the differences in feature appearance
in different modalities of sensors. The accuracy of point selection directly impacts the result of the
transformation matrix, the choice of input images is vital as it enables a good selection process.
For the transform matrix to be as correct as possible, input images need to contain details both
in the near-field and far-field of the image. Another consideration regarding the evaluation of the
transform matrix is the fact of good results in one sensor setup may not translate well to other
setups. The comparison of applying affine transform and projective transform can be seen in Figure
16. Differences between the two transform methods are minimal, given the same control points
from the feature matching. However, the affine method is more time-efficient, as seen in Figure 17.

8.3 Image Fusion
As mentioned by Luo and Kay [14], the use of multiple sensors may provide a more accurate output
and, at the same time, the possibility of using sensors as a backup at sensor failure. The possibility
of such benefits is a strong argument for implementing vision sensor fusion in the aviation domain.
By implementing any of the tested methods, sensor failure would, by design, lead to other sensors
in the system being dominant, and all redundant data still valid. It should further be noted that
using vision sensors in different electromagnetic spectrums, can also lead to the fact of sensor-
specific data being lost at sensor failure. Therefore if sensor-specific data is crucial to airplane
operations, multiple sensors of the same type are needed to assure necessary data not being lost.

As previously stated in the background (section 3), the output from vision sensors is heavily
dependent on the surrounding environmental conditions. In the quest to cope with this issue,
sensors capturing different intervals of the electromagnetic spectrum are fused. A total of four
methods is evaluated, and their quality assessed. The algorithms are based on [67, 71, 6, 75] with
modifications to enable the fusion of three images instead of two images.

The fusion methods share similarities and variations amongst the implementations. First off,
two methods implement a deep-learning-based feature detection approach. From a safety perspec-
tive in the aviation domain, introducing deep-learning to a system might complicate the process
of development. The determinism of the output can prove harder to determine, due to the com-
plexity of the neural network. Second, a common state-of-practice is to separate the images into
detailed layers and base layers. For example, both Method 1 and Method 3 separate the layers
with the Tikhonov’s Regularization problem, while Method 4 separates the layers with multi-scale
decomposition. The most significant differences in the process occur with the processing of detailed
layers.
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The methods have comparable results regarding the Fast-FMI index. See Figure 24. One expla-
nation to this is that the output images from the method have a similar amount of features present
concerning the source images. Preserving features from three source images is a difficult task, with
the risk of the image appearing oversaturated when an overload of information is preserved.

On the contrary, regarding the NIQE index, Figure 25 shows that Method 4 deviates from the
other methods with a lower score (in this case, a better result). Figure 19 to 23 have a frequent
pattern being Method 4 stands out from the other methods. Method 4 possessing a higher contrast,
with less blur present, indicating a better NIQE score with the assumption that natural images
lack blurriness. With a high amount of distortions present in an image, the result might produce
erroneous decision making, thus making the NIQE index relevant to this evaluation. Depending on
the obstacle detection algorithm, and the nature of distortions, the risk of classifying distortions
as obstacles exist.

The last quality metric QAB/F confirms a clear pattern with Method 4 producing a higher
score, with higher contrast. A higher contrast can be related to the previously presented result
of index NIQE. In comparison to the other methods, Method 4 appears to have a higher contrast
ratio. Another abnormal finding is the result of Method 3. With this index, Method 3 is given
a low score compared to the other methods. However, visually inspecting the result, Method 3
appears to have a similar contrast compared to Method 1 and 2. The results were repeated over
several test runs, implying that the quality index provides a lower score for Method 3.

8.4 Subjective Ranking
All images were also graded by human subjects in subjective tests, with 13 participants. The
participants all had previous knowledge in either computer science or aviation, the background
of the participants strengthens the applicability of the method within its given fields, machine
learning and aviation. A total of 104 datapoints was collected, and a majority of the data points
showed that Method 4 is the preferred method. Method 4 is chosen as the top-ranked method
in the subjective test, which may have two possible explanations. First, as the method contains
more contrast compared to Method 1-3, resulting in runway lights being more prominent in the
image, which participants with knowledge in aviation deem essential. And secondly, the human
perception of image quality increases with the amount of visible contrast in an image. Method 1-3
showed very similar scores when compared to each other, which could be explained by the three
methods of similar appearance in regards to clarity and contrast.

8.5 Object Detection
It’s important to point out that the tests regarding object detection were not optimized for this
thesis. The deep learning-driven approach for object detection is not trained on data produced
from the output of this thesis. Lack of appropriate training might decrease the validity of the
experiment, but accurate enough to produce result pointing towards a particular direction. The
fusion methods produce similar results with minor deviation. Method 1 and Method 2 identify the
highest quantity of objects while Method 3 having the highest certainty. Method 4 compared to
the other methods performed at the lower bound. One rationale for this finding is that the object
detection algorithm was trained on images similar to Method 1-3. However, all methods produce
satisfying results, given the limitations of the tests.

8.6 Software Conversion
Two of the methods, Method 3 and Method 4, were also implemented in the compiled language
C++. A visual comparison between MATLAB and the same methods in C++ can be seen in Figure
23, visually, the two images appear very similar. However, some minor differences for Method 3
can be seen when implementing QAB/F, whereas Method 4 shows no difference when comparing
the two outputs. When compared with NIQE, both methods show small differences. Method 3
has a difference of 0.03 and Method 4, differs by 0.001. Lastly, when comparing the methods using
Fast-FMI, Method 3 again shows a small difference of 0.003 and Method 4, no difference at all.
The small differences in output may be explained by the MATLAB coder’s inability to directly
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generate some functions leading to the need for alterations of the code. One other observation
regarding the generated code, is the generator utilization of the stack for data storage, resulting in
stack overflow if input images are big. Therefore the IQA comparison between MATLAB and C++
code, use smaller images as input for both implementations. However, when comparing the results
of the three IQA methods, output values vary for all methods depending on input image size, as
can be seen in Table 5. As the output of the IQA methods varies with regards to input size, it’s
important to note that the difference between C++ code and MATLAB may change depending
on image size. While comparing images, it should further noted that comparing images of equal
sizes is crucial to see what method yields better results.

8.7 Time Complexity
Analyzing the results of Figure 27 - 30 produces remarkable findings. The time complexity plot
of all methods is similar to each other. However, the absolute time taken for a given set of images
to be processed with the methods is very diverse. For example, implementing Method 3 compared
to the faster method, Method 4, produces a significant time overhead. It’s important to note that
the time complexity (Ordo) is estimated with a measured time of execution and not calculated.
On the contrary, the range of input size varies from a small input of approximately 5000 pixels
to an extensive input of 2 million pixels. Another validity concern of this test is the platform
that the software executed on. Executed on other platforms might provide other time samples.
However, regardless of the platform and programming language, the algorithms follow the same
characteristics and would produce the same Ordo.
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9 Conclusions
This research aimed to show that a fusion method existed and was suitable to implement in an
aircraft avionic system. All evaluated methods had to be able to receive input from three vision
sensors, two in the IR spectrum and one in the visible spectrum to achieve visibility in low light
and fog conditions. A pre-processing method was needed so that images from all three spectrums
were registered correctly, as the three sensors differed in resolution and placement on the aircraft.
By analyzing IQA results along with image grading from subjects who have a relevant background,
it’s possible to conclude which of the suggested methods have better application-specific quality.
All methods were further evaluated by testing the time complexity of each of the methods. To show
that it is possible to implement the suggested methods in a more extensive system, which includes
object detection, the output from all methods was tested with a non-optimized object-detection
algorithm.

9.1 RQ1
What image quality assessment techniques are required to determine the output quality of evaluated
image processing methods? A systematic review was conducted to find adequate IQA methods.
The review showed that several techniques existed, and some techniques were more appropriate
for fusion-based image assessment. As no known optimally fused image existed for this setup,
NR-IQA is chosen due to the findings of the review. Furthermore, the review proves that all of the
investigated methods compare their results with human perception, and therefore it is concluded
that a subjective test of perceived image quality is needed. The selected image quality methods
QAB/F, Fast-FMI, and NIQE is chosen based on findings in the review. QAB/F is chosen as its
ability to show preserved edge information in the fused output indicates an output image with
good clarity. NIQE gives a better score where a lack of artificial artifacts due to image processing,
are present. As image fusion is an image processing technique, a conclusion based on the number of
artificial artifacts helps in determining overall image quality. Fast-FMI is a method that compares
the source images with the fused output and calculates the amount of preserved information. If the
information in the fused output is lost, the risk of relevant data being neglected exists. To assure
the different fusion methods ability to preserve information Fast-FMI is deemed appropriate. The
review also showed that existing IQA methods usually compare their results with the results of
human perception due to human ability to determine NR-IQA. A subjective test was conducted
using subjects with prior knowledge in the field of avionics or computer science.

9.2 RQ2
What are the similarities and differences between state-of-the-art vision based fusion methods? One
key finding is the similarities between the methods evaluated. It is concluded that the majority
of image fusion processes separate the image into layers, more particularly detailed layers, and
base layers. Furthermore, state-of-the-art methods usually represent the data in transforms. Both
integral transform e.g., Laplace transform and Wavelet transform as well as discrete transform
equation, Discrete Fourier transform. It is further concluded that a common practice for fusion is
coefficient based, for example, weighted-average. On the other hand, methods implementing CNN
has also emerged as a solution.

9.3 RQ3
What sensor fusion technique provides adequate results with respect to given quality metrics from
RQ1 in an aircraft environment? Four state-of-the-art fusion methods were chosen to be evalu-
ated, where two of the methods are CNN based and the other two implements more conventional
methods. Method 4 showed promising results using NR-IQA, the method performed best in both
NIQE and QAB/F and showed similar results to Methods 1,2 and 3 when evaluated using Fast-
FMI. Method 4 was chosen in a majority of subjective tests as the technique with the best image
quality, and it was chosen 75% of the time. The three other methods evaluated in the subjective
tests showed similar results and were chosen 8%, 9%, and 7% of the times. As Method 4 showed
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very promising results in subjective tests as well as non-subjective IQA, Method 4 is concluded to
be the method with the best application-specific image quality. It should be noted, however, that
when tested on the non-optimized object-detection algorithm, Method 3 showed the best results.

9.4 RQ4
What correlation exists between the detection capacity of objects and image quality? All four
methods were tested using a non-optimized object detection algorithm, and Method 3 performed
best regarding mean certainty, while Methods 1 and 2 had a higher amount of detected objects.
As mentioned in section 8, the object detection algorithm being trained on images similar to the
output of Methods 1,2, and 3 increases the score for those three methods. This seems to point
towards the need of a properly trained network based on correct training data of the network or the
fact of no correlation between the implemented image quality estimations and detection capacity.
With the results being ambiguous, no conclusion about detection capacity and image quality is
made in this thesis.

9.5 RQ5
What is the most correct way to assure that output from one sensor matches that of other sensors in
a sensor setup of two IR sensors and one visual spectrum sensor? It is concluded that the ability to
interpret the images for a correct matching between the sources is essential for a good result. The
nature of the sensor setup in this thesis having differences in modality restricts the abilities of the
SURF algorithm resulting in manual feature matching outperforming SURF. It is further concluded
that a careful selection of images for feature matching is crucial and requires salient features both
in the near-field and far-field of the image. A careful selection provides a more robust result and
optimized transform matrices. Lastly, affine transform compared to projective transform did not
change the outcome of the registration process, and therefore, nothing is concluded besides that
affine transform is more time-efficient for this implementation.

9.6 Future Work
The work of this thesis shows promising results with regards to realize computer vision with image
fusion in aviation. However, further research is necessary. For example, addressing the validity
concerns is a great starting point. The sensors and chosen fusion method require extensive tests
in different weather conditions. More research is also required in the field of identifying objects
with the output from the fusion method to provide an accurate estimation between image quality
and detection capacity. More thorough image registration and alignment of sensors is also a factor
that can improve future results. The software needs to be evaluated in an embedded avionics
system environment with limited computational resources. Furthermore, additional safety-related
activities need to be performed to achieve compliance with industry standards and guidelines.
Regarding the complexity of the methods, they all share complexity within the range of inputs
that are tested. When comparing the methods, actual run-time of the methods differ vastly.
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A MATLAB Graphical User Interface

Figure 34: Develoepd software for a structured evaluation approach.

56



Björklund and Hjorth Computer Vision in Aviation

B Subjective Ranking Enviroment

Figure 35: Developed software for the subjective ranking tests. Here the subjects selects the
preferred image and a new set of samples is loaded.
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