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Abstract

The amount of data required to be processed in real-time embedded system is steadily increasing.
This has caused industries to search for alternatives for reliable time-sensitive network communi-
cation. IEEE set of standards for Time-Sensitive Networking (TSN) is an attractive option for
achieving this. It leverages the advantages of IEEE standards for Ethernet, such as high bandwidth
and low hardware cost, while introducing deterministic behaviour. Simulation tools are used to
facilitate verification and analysis of TSN networks. However, even simulation-assisted design of
large complex networks is a challenging process. To alleviate this issue, this thesis investigates
how TSN simulation can be improved by automatic generation of network configurations. So far,
many different simulation frameworks have been developed in academia. This thesis builds on the
OMNeT++ simulation framework and NeSTiNg simulation model. We prototype an automatic
TSN configuration tool capable of generating configuration automatically through a graphical user
interface (GUI). The purpose of the prototype is to demonstrate the feasibility of automatic con-
figuration in TSN and how it eases design complexity. Furthermore, to verify the proposed tool a
use case inspired by the vehicle industry is modelled. It is concluded that automatic configuration
improves usability in five key areas, such as: (1) facilitating recollection of the network, (2) en-
abling automatic configuration, (3) increasing user-friendliness of a TSN simulation platform with
a GUI, (4) increasing efficiency and usability of a TSN simulation platform, and (5) minimizing
user error. The results gained in this thesis justify the usability of automation and could provide
insights for future research and development of TSN simulation tools.
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1. Introduction

Real-time embedded systems have an essential role in many different industries such as in auto-
motive, locomotion and aviation industries. These systems require the ability to process physical
and ambient events within a specified time, such as emergency brakes or events based on sensor
data, camera, LIDAR and accelerometers. Many of these systems are commonly implemented
as distributed systems, connecting various sensors, actuators and nodes. For these systems, it is
important to determine end-to-end delay from the point the event has been sensed to the point
the system is ready to react to the event. However, in most traditional networks the end-to-end
delay of a packet is affected by other traffic on the network and, during heavy traffic loads, can be
indefinitely blocked. As a result, network delay and delay variation (jitter) in real-time communi-
cation must be deterministically bounded [1].

Due to this need for reliable time-sensitive network communication, many different approaches
have been suggested. Controller Area Network (CAN) [2] has been a communication protocol well
suited for real-time systems but with some drawbacks such as the trade-off between signal rate and
network length. For instance, if a cable length of 100 m is required, then the network will be limited
to a signal rate of approximately 0.5 Mbps to be reliable [2]. Ethernet is an attractive alternative
to CAN, as it has a considerable bandwidth and low adoption cost. These are important properties
as many real-time systems today face increasing communication needs in terms of network capacity
to process and transfer a considerable amount of data (such as raw camera data, map data and
high-resolution displays). However, Ethernet has some innate properties which made it infeasible
for real-time systems. For instance, it is impossible to guarantee a bounded message transmission
time with conventional Ethernet [3].

As a result, the Institute of Electrical and Electronics Engineers (IEEE) developed the Time-
sensitive networking (TSN) standards. TSN standards are extensions of the IEEE Ethernet stan-
dards to support high-bandwidth, mixed-criticality, low-latency real-time communication and are
promising solutions to be applied in various real-time domains. Several scheduling algorithms are
available in TSN for controlling traffic flow, such as time-triggered gating, priority scheduling,
credit-based shaping as well as other supporting mechanisms like frame preemption and frame du-
plication. For example, TSN provides different traffic classes, including time-triggered (TT), Audio
Video Bridging (AVB) and Best Effort (BE), to handle mixed-criticality communication. Many of
the TSN mechanisms can be deployed simultaneously (for example combining credit-based shap-
ing on a queue with time-triggered gating and frame preemption) to create intricate behaviour,
resulting in a complex network which can be difficult to analyze [4]. As the network grows, the
complexity of the analysis also grows. Therefore, configuring, simulation and interpretation of the
network in terms of behaviour, timing and scheduling becomes a challenging task. OMNeT++ is
a popular discrete event simulation framework used in scientific as well as in industrial settings [5].
The framework consists of many different components, including a simulation kernel library which
several simulation tools are based on [6]. One of the extensions to OMNeT++, called Network
Simulator for Time-Sensitive Networking (NeSTiNg) [4], models several TSN mechanisms includ-
ing the time-triggered scheduling mechanism and frame preemption. However, although existing
simulation models such as NeSTiNg have implemented the fundamental characteristics of the IEEE
TSN standard, they still have some limitations when attempting to simulate larger networks. For
example, in all of the existing academic simulators creating or modifying network configurations, to
define TSN traffic of the network, involves working with raw text files. As such, designing complex
networks in this simulators can be challenging for the designers. Another related issue is the trace-
ability of errors made during the configuration of the simulated network. With several different files
requiring modification, tracing errors during the process is challenging. As this field of research is
significant for many industries which rely on real-time systems, the main purpose of this thesis is to
facilitate the analysis and use of TSN networks by exploring different approaches to automatically
generate TSN networks configurations. The thesis will also examine approaches to automate and
enhance simulation tools to deliver more meaningful and understandable visualization of results.

1
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1.1 Motivation

Design and analysis of dependable real-time networks based on TSN standards is a complex process.
Simulation frameworks have been developed for this purpose, alleviating some of the difficulties
with network analysis in TSN. Moreover, careful configuration of the complex simulated TSN net-
work is also essential.

In TSN, the critical traffic schedule must be planned beforehand. For network simulations, several
properties can be configured including traffic schedule for each node, type of nodes, TSN switch
parameters and the traffic class. To allow several different types of traffic to coexist in the same
network, TSN includes specifications for traffic classes. Each traffic class has a unique priority and
is isolated from the other traffic classes to prevent interference. The purpose of this is to accommo-
date the specific requirements of timing and bandwidth of each traffic class, ensuring deterministic
behaviour.

Planning the TSN configuration depends on the properties of the network including transmis-
sion delays, processing delays, package sizes as well as the individual deadlines of tasks. As a
result, creating these configurations by hand is a challenging task and becomes more infeasible as
the size of the networks increases. Complex real-time networks can have many different kinds of
traffic, each with individual requirements of worst-case response time, packet frequency and size of
payload. The more data that needs to be relayed between senders and receivers, the more problem-
atic it is to configure. Additionally, manual configuration of nodes in the network to comply with
timing requirements is time-consuming, especially when considering changes might be required
after analysis indicates an issue with the current configuration.

The focus of this thesis is to explore the possibility of extending an existing simulation frame-
work, OMNeT++, with an automatic process to facilitate the creation and modification of TSN
network configurations.

1.2 Problem Formulation

The main goal of this master thesis is to investigate automatic configurations of TSN networks by
analyzing TSN simulations tools. The thesis aims at providing an answer to the following research
question:

• How can TSN configuration be automated to improve the usability of the TSN simulation
tools?

To investigate this research question, existing literature will be reviewed. Based on the knowledge
gained through this process, a tool will be implemented which can generate network configura-
tions for TSN. A use case inspired by the vehicle industry is modelled with the prototype tool to
demonstrate its usability. For the use case, the simulation framework OMNeT++ will be the tar-
geted platform to be integrated with the tool, using existing network descriptions in the framework
along with user-defined network performance requirements to generate configurations. OMNeT++
is considerably modular and popular with the scientific community, which makes it suitable as the
targeted platform for the use case. The purpose of the tool is to validate the proposed approach
to automatic configuration of TSN and examine how it improves usability.

1.3 Thesis outline

Section 2. describes some relevant background, including main terms and concepts, which are
required to know for the thesis. Section 3. presents the related work done in TSN simulation
and automation. Section 4. present the approach employed and explains how it was carried out.
Section 5. described the configuration tools design, examining and motivation design decision.
Section 6. presents the modelled use case using the tool to demonstrate its usability. The results
are presented along with a discussion of the usability improvements gained through automatic
configuration. Section 7. presents the conclusions reached in this work as well as suggestions on
potential future work.

2
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2. Background

Computer Networks is a core part of Information Technology (IT), allowing computational devices
to communicate and share data. Ethernet is the most popular medium for networks, due to low
cost, scalability and high bandwidth. TSN is built on Ethernet, both developed by the IEEE
through the IEEE 802.3 and IEEE 802.1 respectively. TSN leverages the advantages of Ethernet
such as scalability and bandwidth while providing deterministic behaviour necessary for real-time
systems. Several simulation frameworks are available for simulating network behaviour, such as
ROSS[7], J-Sim[8] and TraceR[9]. For this work we have chosen the simulation framework OM-
NeT++ as the targeted platform for the automatic TSN configurations tool, as it supports TSN
mechanisms through NeSTiNg.

In the following subsections, the concepts of Ethernet, real-time systems, time-sensitive networking
as well as OMNeT++ will be described in detail.

2.1 Real-time systems

Real-time systems are the foundation of many modern embedded systems, such as vehicle control
systems, industrial control systems and electric power system. A real-time system is a system which
not only dependent on the logical correctness of its performance but also time-bound. Tasks must
be done within their defined real-time constraint. Real-time systems are designed for predictability
to ensure that certain tasks are carried out within a maximum allowable amount of real-time.
For example, as real-time systems have to handle several different tasks simultaneously, tasks in
real-time systems must be scheduled when to executed to ensure time constraints are met. For
critical systems, it should be possible to demonstrate that the schedule can fulfil all real-time
constraints (with some assumptions of system the specifications). Not fulfilling time constraints in
a real-time system can have varying consequences, from the degradation of service to fatal system
failure. Time-constraints in real-time systems can be divided into three categories based on the
consequences of a missed deadline: hard, firm or soft [10].

• Hard real-time constraint: The result of not meeting the deadline would have catastrophic
consequences and are non-tolerable, typically used for periodic tasks. Examples of this are
airbags, vehicle control and medical equipment such as Electrocardiogram (ECG/EKG) mon-
itors.

• Firm real-time constraint: Missing a deadline is tolerable. However, If the process is not
carried out before the deadline, the result has zero utility, and the task should be aborted.
Database transaction for banks, ticket sites and betting sites usually operate with firm real-
time constraints.

• Soft real-time constraints: Occasional deadline misses are tolerable, but could negatively
impact the Quality of Service (QoS) as the utility of the result decreases after the deadline
has passed. Video streaming, consumer electronics, and map updates are some example of
soft real-time constraints.

Many embedded systems are also implemented as real-time systems. In a real-time embedded
system, the embedded components must also be considered. For instance, when components must
communicate over a network, the end-to-end delay of the network must be bound to guarantee
critical messages can be transferred within the real-time constraint.

2.2 Ethernet

Ethernet includes a collection of network technologies standards for communication in Local Area
Networks (LAN). The Open System Interconnection (OSI) standard for computer communication
consists of seven layers, physical, data link, network, transport, session, presentation and applica-
tion layer. Ethernet encompasses both the physical and data link layers from the OSI model[11].
Several variations of physical mediums and ranges are included in the Ethernet standards for the
physical layer, such as coaxial, fibre-optic and twisted pair cable. Since the initial development

3
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of Ethernet in 1976 by XEROX Palo Alto Research Centre (PARC) [12], Ethernet has steadily
increased the serial transmission bit rates and serves for handling communication in applications
that are based on ever-growing data [13]. In 2017 bit rates of 200Gbit/s and 400Gbit/s were intro-
duced to the IEEE standard for Ethernet [14]. The data link layer of Ethernet is made up of two
sublayers, the Logical Link Control (LLC) and Medium Access Control (MAC) layer. MAC is re-
sponsible for the hardware which has access to the transmission medium. Every Ethernet interface
is given a unique 48-bit MAC address to be identified in the network. The LLC is responsible for
error-correction and controlling the link between nodes, acting as an interface between the upper
network layer (OSI layer 3) and the MAC layer.

Ethernet networks were initially designed to use a shared medium for all connected nodes, similar
to how radio systems and CAN operate, and support several different kinds of network topology.
Token bus networks were one of the early arbitration mechanisms developed1, where one token was
passed around each node in the network and only the node with the token was allowed to transmit.
However, token bus networks were difficult to set up, caused issues when the number of nodes on
a network changed. Ethernet is based on an arbitration mechanic called Carrier Sense Multiple
Access/Collision Detection (CSMA/CD). With CSMA/CD every node in the network listen to a
common medium, generally through an Ethernet hub which repeats incoming traffic to every other
port, to sense if the medium is idle (Carrier Sense). If no transmission is detected, each node is
allowed to transmit onto the medium (Multiple Access). While transmitting, the nodes monitor
the medium to detect collisions (Collision Detection). In the case a collision is detected, the nodes
send out a jamming signal to indicate for every receiver that a collision is detected and then they
wait a random amount of time before trying to transmit again. If another collision happens after
the waiting period, the period is increased exponentially until either the transmission succeeds or
the transmission node reaches the 16th attempt which will cause the node to abort retransmission
[15]. The end-to-end delay of conventional Ethernet is unbound, as in theory transmissions can be
perpetually blocked due to network congestion.

2.3 Switched Ethernet

Conventional Ethernet networks operate by broadcasting the message from a source node to all
connected nodes in the network, with no regard of destination. This means that only one node
can transmit messages at any given time. As the number of nodes on the network increases, the
conventional Ethernet method yields exponentially worse efficiency as more nodes has to wait until
they can transmit. Switched Ethernet addresses this issue by only sending traffic from sources to
its destinations. While an Ethernet hub simply repeats traffic to every connected port, an Ether-
net switch generates a MAC table containing the MAC addresses of every connected interface to
manage where messages should be sent. This allows Ethernet switches to have multiple concur-
rent transmissions in the network, greatly increasing switches efficiency. With switched Ethernet,
full-duplex is also possible, allowing nodes in the network to receive traffic while simultaneously
transmitting. Switched Ethernet makes up most of modern LAN, as it is considerably more effi-
cient. The only disadvantage with switched Ethernet is the slight latency introduced by performing
MAC table lookup to determine the message receiver, which is negligible. As the Ethernet switch
can control the flow of traffic on the network, end-to-end delays throughout networks can be bound.
This is the core principle of TSN, controlling the flow of traffic at endpoints to create deterministic
behaviour.

2.4 Ethernet and Real-time

As technology continues to advance, more and more data will be required to be transmitted over
real-time systems. As a result, Ethernet has become an attractive option for many real-time sys-
tems with its high bandwidth, scalability and low cost. However, standard Ethernet is not suitable
for real-time systems as it is comprised of several mechanisms which prevent data transmissions
from being guaranteed and instead operating using BE. Due to the lack of deterministic behaviour,

1https://tools.ietf.org/html/rfc1042
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several standards have been proposed based on Ethernet to solve the problem of unpredictabil-
ity for standard Ethernet-based communication. Protocols based on Ethernet do not have any
innate support for real-time requirements, such as Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Internet Protocol (IP). Therefore, real-time Ethernet solutions
typically introduce special transport protocols focused on delivering low latency and deterministic
delay guarantee [16]. Some examples of the real-time communication standards based on Ether-
net are: Ethernet Powerlink2, TCnet3, CC-Link IE Field4, EtherNet/IP5, SERCOS III6, Profinet7,
TTEthernet8. However, a considerable disadvantage with these specialized approaches is that they
are incompatible with other networking technologies. Solving this issue is one of the goals with
the TSN standard.

2.5 Time Sensitive Networking (TSN)

TSN, developed by the IEEE 802.1 TSN Task Group, is a collection of IEEE 802.1Q standards
which introduce deterministic, real-time communication over Ethernet. TSN works at the data
link layer of OSI, ensuring that information transmitted between two points in a network arrives
within a fixed and predictable amount of time.

The IEEE 802.1 AVB was initial created 2007 for the purpose of developing AVB, which would
replace audio, High-Definition Multimedia Interface (HDMI) and other cables by standardizing
Audio Video (AV) transfer over Ethernet [17]. The AVB Task Group developed several standards
for creating ad hoc networks for streaming AV with low jitter and bound latency. The standards
included:

• 802.1AS: ”Timing and Synchronization for Time-Sensitive Applications” which described
synchronization protocols and procedures,

• 802.1BA: ”AVB Systems” which defined components and preparations necessary for building
networks supporting time-sensitive AV data streams,

• 802.1Qat: ”Stream Reservation Protocol” which reserves bandwidth by establishing a path
between senders and receivers through the network,

• 802.1Qav: ”Forwarding and Queuing for Time-Sensitive Streams” which describes timing-
aware queue draining algorithms.

In 2012, the IEEE 802.1 AVB Task Group was renamed to the TSN Task Group and begun working
on a number of TSN standards.

Time-critical communication between end devices in TSN is commonly expressed with the term
”TSN flows”. Each TSN flow is unidirectional, going from one source end device to destination end
device with a unique identification and time requirement. Bridges (also referred to as switches)
transmits and receives frames for a TSN flow based on a time schedule. To operate correctly, all
bridges and end devices must first be time synchronized to ensure the time schedule is followed
correctly throughout the network. The IEEE 802.1AS-rev standard, a redesign of 802.1AS, spec-
ifies the protocol for establishing and maintaining time synchronization between network devices.
Several queuing algorithms are specified for TSN to provide bounded latency and prevent con-
gestion loss. Congestion loss occurs when buffers in a node are overflowed with packets. TSN
networks pace the transmission of packages so the amount of traffic never exceeds the capability
of buffers and can be delivered within a bounded latency. TSN also offers methods for increasing
the reliability of packet delivery. By sending copies of data over several paths in the network, TSN
can avoid packet loss caused by equipment failure.

2https://www.ethernet-powerlink.org/
3https://www.toshiba.co.jp/sis/en/seigyo/tcnet/technology.htm
4https://www.cc-link.org/en/cclink/cclinkie/cclinkie_f.html
5https://www.odva.org/Technology-Standards/EtherNet-IP/Overview
6https://www.sercos.org/technology/what-is-sercos/
7https://us.profinet.com/technology/profinet/
8https://www.tttech.com/technologies/time-triggered-ethernet/
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A significant advantage with TSN, compared to other real-time Ethernet solutions, is that it
enables different kinds of traffic to be consolidated into one single network. Unless TSN flows
demands an extensive amount of the bandwidth from a network link, devices requiring BE traffic
can still as operate as normal. This means that critical and non-critical traffic can share the same
infrastructure, reducing cost.

2.5.1 Traffic classes

Traffic classes in TSN are encoded in the data link frame and represented by a three-bit priority
code point (PCP). TSN uses eight traffic classes to prioritize different types of data traffic based
on the QoS required. Although not mandatory, IEEE provides some suggestions for each traffic
types [18, pp. 1711-1712] represented by the eight combinations of PCP. Each TSN bridge can
queue up to eight different traffic classes on every port. When queues are allowed to transmitted
is controlled by so-called gates, which can either be open or closed. If two or more gates are open
at the same time, the queue with the highest priority is drained first.

2.5.2 Scheduling mechanisms

The IEEE 802.1Qbv standard defines the scheduling and transmission of frames for bridges and
endpoints for time-sensitive networks. The Time-Aware Shaper (TAS), specified in the 802.1Qbv
standard, is responsible for determining when different traffic classes should be allowed to transmit
on a network and is an essential feature of TSN. Based on time-triggered scheduling, TAS schedules
consist of equal discrete time-slots. Each slot specifies which gate should be open or closed at that
specific time. The schedule is represented in a list, called Gate Control List (GCL), which contains
the time-slot entries and the associated configuration of gate states (GS). During operation, the
list is iterated through with gates opening and closing according to the entry. When the last entry
is reached, the schedule returns to the first entry and continues.

Credit-Based Shaper, defined in 802.1Qav, is another scheduling mechanism which can be imple-
mented together with TAS. The Credit-Based Shaper distributes the transmission for two traffic
classes to even-out sudden increases in traffic and is suitable for performing AVB. With the Credit-
Based Shaper, queues build up credit when packets are waiting in the queue and spend credit to
send packages. While useful for reducing delays for AVB, the mechanism is unsuitable for real-time
traffic which requires deterministic behaviour.

2.5.3 Frame preemption

The IEEE 802.1Qbu standard defines a class of service for time-critical frames to preempt the
transmission of non-time critical frames. In standard Ethernet, once a frame has started being
processed, it will continue being processed until it has finished being transmitted. This is an issue
for time-sensitive networks, as a time-critical frame that just arrived will have to wait until the
non-time critical frame has finished transmission [19]. As a result, the transmission latency for the
time-critical frame is increased unexpectedly, and it could cause issues with the time-scheduled
traffic in the network. The amendment was introduced to address this issue, by providing a
mechanism for interrupting non-time critical frame mid-transmission when a time-critical frame
arrives. Once the time-critical frame has been processed, the non-time critical frame resumes the
transmission. A requirement for frame preemption is that both the transmitting and receiving
devices has support for this mechanism.

2.6 OMNeT++

OMNeT++ is an abbreviation of Objective Modular Network Testbed in C++ and is a discrete
event simulation platform, primarily used for constructing simulations of networks [5]. While OM-
NeT++ itself is not a network simulator, it provides an extensive simulation framework and library
for modelling network components. OMNeT++ is open-source and free to use for non-commercial
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purposes such as research and teaching. As a result, the platform has gained widespread pop-
ularity in the scientific community with several simulation model and frameworks being based
in OMNeT++. OMNeT++ models are built using nodes and messages. Components are im-
plemented using the provided C++ library and can be combined to model complex behaviour.
OMNeT++ also provides an Integrated Development Environment (IDE) based on the Eclipse
platform with several features such as C++ editing, result analyze and file editor for configuring
simulation models execution.

2.6.1 NED

Network topologies in OMNeT++ are defined through NED description language. The Integrated
Development Environment provides a Graphical User Interface (GUI) for creating and editing the
network structure with modules and channels.

2.6.2 INET Framework

INET9 Framework is a comprehensive open-source model library created for OMNeT++. INET
contains several models for simulating protocols, including Ethernet, Transmission Control Pro-
tocol (TCP), User Datagram Protocol (UDP), IP version 4 (IPv4) and is especially useful for
studying new protocols in various networks including wired, wireless and mobile networks. Be-
cause of this, many researchers working in OMNeT++ utilize INET modules and components as
a base for their models.

9https://inet.omnetpp.org/
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3. Related Work

As TSN gained more popularity, more focus has been placed on making the implementation of TSN
networks easier. Many researchers have presented different TSN models which focus on various
aspects of TSN. Automatic synthesizing of TSN schedules which can fulfil real-time constraints is
also a prominent area of research which can be approached with various methodologies. The tool
presented in this thesis does not include any form of automatic schedule synthesizing. However, it
is still beneficial to examine work relate to schedule synthesizing as generated schedules could be
used as input for the automatic configuration. Section 3.1 presents some of the work investigating
schedule synthesis. Section 3.2 presents research done in the field of TSN network simulation.

3.1 Comparison of schedule synthesis methods

Researchers have proposed several different approaches to synthesize schedules in networks with
real-time constraints. Nigam et al. presented a tool, TSNsched [20], which can automatically gen-
erate a TSN schedule. The tool uses a topology of a network and a Satisfiability Modulo Theories
(SMT) solver called Z3 [21] to generate schedules for each TSN switch in the network. This tool
is the first openly available tool for generating TSN schedules, according to the authors. An open-
source implementation of TSNched is available online10 based on the theoretical work of the paper.

Serna et al. addressed the scheduling problem of TSN by examining what information is re-
quired from the network to derive scheduling constraints [22]. Based on the key parameters and
scheduling constraints, a graph-based approach for computing static schedules was presented. In
this approach, a generalized network model is first extracted and modelled as a directed graph.
Then, scheduling constraints are defined which will guarantee the correct temporal behaviour. In
this work, the authors defined two types of scheduling constraints: Basic Deterministic Ethernet
Constraints which are constraints defined for one single frame and 802.1Qbv Constraints which
defines constraints for specified traffic queues which encompassing all frames of the same priority.
To determine if the current set of scheduling constraint is schedulable, the authors used an SMT
solver similar to the previous work. SMT is suitable for solving constraint-satisfaction problems
[23, 24]. The goal of the solver was to determine offset and queue priority for each frame in the
network. However, some issues were presented by the authors. As the task of finding a feasible
time-triggered schedule is an NP-complete problem [22], the approach had poor scalability. As
the size of a network is increased, the computational time required to synthesis a schedule grows
exponentially. To alleviate this issue, a modified implementation of SMT was used, which included
an incremental backtracking algorithm to eliminates unfeasible schedules early in the process [25].
The second issue is a lack of possibility to optimize the result for a specific property, as SMT
will only give the first valid result reached other of many potential solutions, provided a valid
result exists. To address this issue, an approach called Optimization Modulo Theories (OMT)
was implemented. OMT is an emerging field of research [26]. It functions as an augmented SMT
solver, solving constraint-based problems while optimizing for specified goals such as minimizing
end-to-end latency or number of used queues.

Serna et al. continued their work on synthesizing GCL schedules in [27] by presenting a novel
approach which formulates arrays to express a system of constraints. This work is the first, ac-
cording to the authors, that addresses the scheduling problem of windows directly. In this approach,
window intervals are computed through these constraints and are mapped to entries in the GCL
schedule. The authors compared their window-based synthesis method with the same constraints
as their previous work [22] which used a synthesis method based on frames instead of windows.
The window-based synthesis was able to reduce the amount of gate open events by scheduling
several frames in one window, although this is done after the generation of a schedule and thus
not guaranteed due to hardware limits.

Farzaneh et al. present another approach to schedule synthesis in their graphic modelling tool
which automatically synthesis schedules for TSN network [28]. Their work applies SMT, object-

10https://github.com/ACassimiro/TSNsched
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oriented modelling and logic programming to automate the scheduling of TT traffic. The tool
consists of a graphical editor where the users can construct a model of their network. The model is
based on the Eclipse Modeling Framework and uses two types of nodes, switches and end-stations,
with connected links. Logic programming is then used to transform the model into a network
knowledge base. The authors use their network query tool to produce queries which are used to
define the schedule constraints. The authors demonstrated the tool by modelling a network of
their previous work [29], proving the tool’s capability of synthesizing schedules for schedulable
networks. An interesting feature of the tool was that it allowed non-schedulable network models to
be provided. In these cases, the tool would provide helpful feedback to clarify issues in the model,
by indicating unfulfillable conditions and which stream they belong to.

In summary, the research area of schedule synthesis for TSN is still developing as the major-
ity of research was done in the last five years. Most approaches utilized an SMT solver such as Z3
and expressed the network topology with a directed graph or object-oriented modelling. The goal
of this thesis is to facilitate configuration of TSN networks in OMNeT++. While interacting with
a human designer directly is the approach mainly focused on in this thesis, this could also be done
through an automatic schedule generator. As the tools presented in this section are external and
not integrated with any specific development environment, their outputs could be used directly by
the configuration tool. TSNsched in particle, is a compelling option as the tool is publicly available
and outputs useful statistics such as total execution time, average latency and average jitter. These
different approaches of synthesizing schedule also incorporate some helpful features, including the
ability to indicate issues in a model and optimizing for specific properties like end-to-end latency,
which could further enhance usability.

3.2 Simulating Time-Sensitive Networking

Jiang et al. presented a simulation model for TSN that was developed using a module-based design
method based on OMNeT++ [30]. The simulation model consisted of four modules: Configura-
tion, TAS, Queue and Transmission. The Configuration module was responsible for providing TAS
with important parameters for how the TAS would operate, including gate state, time interval and
length of the GCL. The TAS operated the gates based on the configuration module, controlling the
GS. Each GS was represented with an 8-bit value, following the traffic class representation defined
in the IEEE 802.1Q standard. The Queue module handled queue priority for each queue, caching
traffic as it arrives and transmitting during specific time-slots defined in the GCL. Each traffic class
was assigned a corresponding priority queue. The Queue module was based on the CoRE4INET-
Framework. The Transmission modules simulated the physical media using the INET-framework,
modelling the traffic flows behaviour through the network. A timer was used to establish time-
instants, which TAS uses to operate the GS. The model was validated using numerical results from
a real-world TSN testbed compared with numerical results obtained from the simulation. The
comparison showed that the differences between simulation and testbed were insignificant. The
authors expressed a need for bridging simulation nodes with real devices to create and evaluate
TSN on a larger scale. This work gives useful insights into how the different mechanisms of TSN
can be implemented in a simulation environment.

In their previous work, Jiang et al. developed a TSN simulation model for TSN-enabled switches
[6]. Compared to their previous work, which modelled a complete TSN network including end
devices with TSN functionality, this study was concentrate on simulating the behaviour of TSN
switches. The purpose of the study was to present a TSN simulation model for verifying real-time
networks with multiple classes of traffic. Similarly to the author’s previous work, OMNeT++,
INET and CoRE4INET were used to develop the simulation model. Along with the simulated
TSN-enabled switch, the authors also presented a method for synthesizing GCL schedules based
on network topology and timing requirements. In this method, the switch cycles through three
time-triggered transmission modes. The first transmission mode (Protected Window) only allows
TT traffic to transmit. The second mode (Unprotected Window) occurs after the first transmission
mode period has ended and will allow all other classes of traffic to transmits. Lastly, the third
transmission mode (Guard Band) stops all transmissions to allow any transmission started in the
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previous transmission mode to finish, ensuring the channel is idle when TT traffic continues to
transmit. To employ this method, transmission periods for the three transmission modes must
first be calculated using formulas provided in the paper. The simulation model was evaluated
using two simulated switches, six end devices and three flows of TT, AVB and BE traffic. The
authors verified that the model could guarantee bound end-to-end latency for TT traffic without
being affected by BE traffic.

Another notable example of TSN simulation framework is NeSTiNg [4]. Presented by Falk et
al. NeSTiNg is a collection of extensions for the OMNeT++ and INET framework, made to fa-
cilitate simulation of TSN networks. Due to the several overlaying mechanisms TSN encompass,
it is difficult to analyze network behaviours using formal network analysis. Therefore, the authors
developed this simulation framework to ease evaluations of TSN networks. Several TSN features
are provided in NeSTiNg, including time synchronization, preemptable frames by ST traffic, time-
aware and credit-based shaping. NeSTiNg is available online11 for use in research and is used in
this thesis to modelling various TSN mechanism when evaluating the automatically configure tool.

In summary, as these researchers focused on simulating TSN, most of them only studied how
the hard real-time traffic behaved. They commonly limited the models to a small subset of TSN
mechanisms. Lastly, the majority of presented implementations were not made publicly available
by the authors, with the exception of NeSTiNg. This thesis examines automatic TSN configu-
ration through the NeSTiNg simulation platform. As such, this thesis will extend the NeSTiNg
implementation by introducing automatic network configuration to the framework.

11https://gitlab.com/ipvs/NeSTiNg
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4. Method

The focus of this thesis is developing new approaches to automatically configuring TSN simulations.

4.1 System Development Research Method

The research approach in the thesis is based on the ”System Development Method” presented by
T. Purdin, M. Chen and J. Nunamaker in [31], a multi-methodological approach to conduct re-
search in the field of information systems. The several steps of the research process are outlined in
Figure 1. This approach is suitable when the research question can not be answered with empirical
testing or mathematical proofs.

Analyze and design the system

Construct a conceptual framework

Develop a system architecture

Build the (prototype) system

Observe and evaluate the system

Figure 1: The process of System Development Research [31]

The research consists of five stages: literature review, review of existing simulation tools, design
of software architecture, implementation and evaluation. Figure 2 shows how the study has been
performed. To investigate the process of automatic generation on simulated TSN network, a state

Literature
review EvaluationImplementationDesign

Review of
existing

simulation tools

Figure 2: Research methodology
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of the art study was performed on the existing simulation tools currently used for TSN. Different
properties of each tool were examined, such as features and limitations, to provide insight into the
workflow of TSN network simulation.

A major part of the thesis was investigating the process of automatically configuring a simu-
lated TSN network. Before any implementation was performed, a detailed description of how
the automating process would be performed was made along with documentation on the software
architecture of the tool. The tool itself is based on the OMNeT++ and NeSTiNg framework, im-
plemented as a proof of concept. The primary goal of the tool was to act as an interface between
raw configuration text files, the simulation and end user. Using a GUI, the tool is able to generate
configurations based on user specifications. It is also able to load existing configurations to allow
modifications to be made.

Lastly, in order to validate the usability of the tool, an automotive application use case was mod-
elled and configured using the tool. The use case included one network model and four different
configurations of TSN schedules. The simulated performance of each configuration is analyzed and
compared.

The work carried out in this thesis can be summarized in the following steps:

• Literature review

• Study and review the existing simulation tools for TSN.

• Investigation on how to automatically configure a simulated TSN network.

• Design software architecture of the tool.

• Develop an automated tool to generate TSN configuration using a GUI.

• Configure a use case with the configuration tool to validate its usability.
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5. Design description of the tool

In this section, the design of the configuration tools is presented, focusing on the high-level design,
and we discuss different approaches to the problem. This section includes some of the critical
decisions were made during the design process, the broad design of the tool as well as some of the
challenges faced during the design process.

The primary goal of the tool is to elevate the process of simulating TSN networks, by automating
the configuration process and providing easily readable information about the TSN flows, such as
their path, priority and period, back to the user. To achieve this, the tool has to interact with the
user via a GUI and connect to the network simulator OMNeT++ to access the network topology
and node addresses. Lastly, the tool generates the schedule and routing files which are required
by NeSTiNg to perform the TSN simulation. Figure 3 shows the expected simulation workflow,
after the introduction of the configuration tool. The end user creates the network topology (NED),
configuration and input data (INI) for the simulation in OMNeT++ and the schedule in the con-
figuration tool. The tool uses the network topology and node addresses in OMNeT++ to generate
the configuration files. The files are read by NeSTiNg in OMNeT++ which simulates the TSN
network and presents the results back to the end user.

Figure 3: The interactions within the TSN simulation workflow

For a more comprehensive description of how to use the tool as well as more details on the software
components, please refer to the user documentation in appendix A and B as well as the openly
accessible repository12.

5.1 Choice of platform

One of the first design decisions considered was the platform the tool would be implemented on.
Creating a stand-alone application was initially considered, as this would offer great flexibility
in how the implementation would be carried out along with making the tool easily adaptable to
other simulation software and TSN frameworks. The other alternative was to develop the tool
as a plug-in for OMNeT++. The OMNeT++ IDE is based on the Eclipse platform, which is an
extensible, Java-based framework. Eclipse allows extensions (called plug-ins) to be written in the
Java language and added to an existing Eclipse installation, extending it with new functionality
by contributing various user interface elements into the platform user interface. As an OMNeT++
specific plug-in, the tool would have access to the OMNeT++ API provided proving many useful
functions such as browsing, accessing and even modifying the data structures used by OMNeT++,

12https://gitlab.com/abbelini/TSN-plugin
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including INI and NED files. Another advantage with this approach is that the tool can be used
in tandem with OMNeT++, accessing currently open projects and adding functionality directly
to the IDE.

While initially, the intent was to use a stand-alone implementation, it was ultimately decided
that the tool would be most suited as an OMNeT++ specific plug-in. While this would limit the
available resources to employ with the tool, partially the graphic representation, the ability to uti-
lize OMNeT++ specific API functions and more directly interact with the workflow was deemed
to be more important.

5.2 Component description

To ensure the tool would fulfil the purpose of facilitating working with TSN network configuration,
a set of requirements were formulated. The requirements to guide the software architecture design.
The following requirements were specified:

• The tool should be able to read all necessary files containing network topology and settings.

• The tool should allow existing configuration to be examined and modified.

• Users should be able to add, modify and remove TSN flows using a GUI.

• Switch gate schedules should be configurable with a GUI.

• Statistics of individual TSN flows, including packages received and end-to-end timing, should
be extract-able through the tool.

The software implementation was divided into several components, based on the requirements of
the tool. Figure 4 shows the derived components and the information flow between them. The tool

TSN Configuration tool

Modifying SavingLoading

Configuration
reader Gate state GUI

Node GUI Schedule
generation

TSN flow
extraction

Flow GUINetwork parser

schedule.XML

routing.XML

network.NED

configuration.INI

schedule.XML

routing.XML

result.VEC

analytics.CSV

Figure 4: The software components of the tool

operates in three stages: First, loading all the necessary files and configuration. Then, presenting
the GUI allowing the user to modifying the network configuration as needed. Finally, the required
schedule and routing files are generated by the tool. However, in addition to these three states,
one noticeable component exists outside this flow. OMNeT++ does not have any innate function
for extract analytic data for specific TSN flows at the time of this writing. As such, the ”TSN flow
extract” component will also be added to the tool to further help working with simulated TSN
networks using OMNeT++ and NeSTiNg.
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5.3 Configuration reader

To have simulated TSN traffic using NeSTiNg in OMNeT++, the network must be provided with
two Extensible Markup Language (XML) files containing the network configuration. One file spec-
ifies the TSN flows that should be present in the network, including the source node, a destination
address, size of the package, transmission cycle and the priority code/traffic class. The other file
specifies the static forwarding of packages for switches, meaning which port each switch in the
network should forward traffic to based on the package destination address.

The configuration reader is responsible for receiving the existing configuration supplied by the
user, parsing the content to extract all TSN flows present and forwarding the flows to the GUI.
While reading existing configuration is not a strictly necessary feature for the tool to generate new
schedule configurations, omitting the ability to reuse existing configuration would be inconvenient.
To illustrate this, consider the following two scenarios:

1. The user wants to make a small modification to an existing flow, such as changing the size
of the transmission.

2. A new TSN node has been added to an existing large network and the user wants to add a
TSN flow from this node.

In both of these scenarios, the user is attempting to make a change to schedule limited to one
flow. However, without the ability to read existing configurations, the user would be required to
recreate the configuration before proceeding. It would be unreasonable to expect the user to redo
the complete network configuration whenever one of these scenarios arises. Fortunately, several
libraries are provided in Java for parsing XML files.

5.4 Network parser

When performing simulations in OMNeT++, a NED and INI file must always be provided. INI
files contain model parameter assignments, input data and other related settings, including the
MAC addresses for every node. NED files contain component declarations and topology descrip-
tions of networks. When configuration the TSN schedule, both files are necessary.

The Network parser is responsible for determining what nodes are present in the network and
how they are connected using the NED file, while it extracts nodes specific properties through the
INI file. However, one challenge with this task is that OMNeT++ supports the use of wildcards
in INI files. Wildcard characters are tokens which represent some number of characters. For the
INI file wildcards can be used to reference several different nodes or gates within one line. This
means that node names in the NED file might only be partially found in the INI file. As a result,
simply searching for the complete node name would not work.

This could have been addressed in a few different ways. For instance, as the tool is a proto-
type, it could be specified that using wildcards with the tool is prohibited. Another way would be
to go through each line in the INI file and search for any partial matches with each node in the NED
file. Lastly, using the OMNeT++ Java API to parse the INI file together with NED. While the
API function is not design for this purpose, as it reads all NED files accessible in the project and is
somewhat slower than the other approaches, this was still deemed the most suitable approach for
the Network Parser. Prohibiting wildcards would make the tool incompatible with most INI files
and naively searching for partial matches would potentially neglect OMNeT++ specific features
such as comment lines. The selected approach also has the advantage of likely working with any
potential changes in newer releases of OMNeT++.

5.5 Flow GUI

An essential part of the tool is the presentation of TSN flows. The Flow GUI is responsible
for presenting TSN flows to the user. Each TSN flow is displayed comprehensibly with related
properties. The user is also allowed to add, modified or removed TSN flow at will. The presented
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properties for each TSN flow is based on the requirements of configuration files by NeSTiNg and
are as follows:

• Cycle - The period cycle time.

• Start - Offset for when packages should be sent, relative to the cycle.

• Queue - The priority code for packages in the flow.

• Size - The amount of data that should be transmitted.

• Path - The source, destination and all nodes visited along the way.

While almost all of these properties are easy to read and present, one exception is the path. The
explicit path is not specified for each flow. Rather, only the source and destination for each flow are
explicitly specified. The switches within the path between the source and destination are listed in
a separate static forwarding table. This means that the flows and the forwarding between switches
could be treated as two separate entities with separate configurations, which is how it is currently
done in NeSTiNg. However, this approach has two disadvantages. Firstly, it becomes difficult
to discover the path assigned to a flow as the information is spread out over the flow schedule,
forwarding table and network topology. After leaving their initial node, packages within a flow will
follow the forwarding table, which is separate from the flow schedule. However, the forwarding
table only specifies which port packages are forwarded to. This means that to determine the next
node in the path, the network topology must also be examined. Secondly, manually configuring
the complete path is time-consuming for large networks as each switch between the every flow
source and destination would have to be configured. To improve usability, the Flow GUI will
instead determine each flow’s path by comparing the source and destination with the existing
forwarding configuration. As a result, the whole flow path can be displayed, as seen in Figure 5.
This approach also makes it easy to reconfigure the path or destination, as the tool is aware of
the network topology and can ensure that the path is valid (meaning every node along the way is
connected).

Figure 5: Early design of the flow GUI
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5.6 Node GUI

When working with the different TSN flows in the network, having certain nodes properties readily
available is useful. The Node GUI is responsible for displaying information about each node,
including general information such as node type and connected nodes as well as information specific
to the node type.

5.7 Gate state GUI

Along with scheduling the flows, TSN also requires gate scheduling of the traffic shaper to ensure
deterministic behaviour. As such, the Gate state GUI is responsible for displaying the current gate
schedule for switch ports as well as allowing the user to modify the schedule. The gate schedule
is defined as a list of entries. Each entry contains an eighth-bit long bit vector representing the
eight queues state as either open or close, along with the amount of time before switching to the
next entry. The Gate state GUI employs two different views of the gate schedule. The first

Figure 6: Window used to configure gate schedule

Figure 7: Window showing the gate state entries proportionally to the duration
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view allows the user to added, edit and remove entries in a concise window, shown in Figure 6.
The second view displays the states proportionally to their duration using a diagram, shown in
Figure 7, and is meant to aid the configuration of TSN schedules by displaying a time period which
can be compared to existing designs. Initially, the diagram was meant to also display any flows
which passed through the gate, showing when the package would be expected to arrive at the gate
and what queue it would be placed in. However, two issues with including the TSN flows in the
diagram were identified in the initial design stage. Firstly, adding the flows along with the queue
would make the window considerably large and make it difficult to compare gate states with the
flow. Secondly, it is difficult to estimate exactly when a package from flows will arrive at a switch,
especially if the switch is not directly connected to the source node. If the estimate receiving time
is incorrect, the presented diagram would potentially be misleading. As such, it was decided that
the diagram would only present the gate schedule for the queues.

5.8 Schedule generation

After the user either creates a new configuration or modifies an existing one in the tool, the tool
should either create or update two configuration files which can be used by NeSTiNg. This is the
purpose of the schedule generation component, to generate schedule and routing files. This process
is similar to how the configuration reader operates but in reveres, converting the TSN flows and
gate schedules in the tool into XML readable for NeSTiNg. One difference from the configuration
reader is that the schedule generation also generates a flow Identification no, (ID) for each entry.
Flow ID is a unique identification number used by NeSTiNg to identify flows during the simulation.
While the assignment of flow ID could have been performed manually by the user, it was decided
that it would be likely more convenient to automate the assignment.

5.9 TSN flow extraction

Along with simulating many different kinds of networks, OMNeT++ also offers tools for analyzing
the results of simulations. However, while it is possible to collect certain useful statistics such
as end-to-end delays, the collection process does not differentiate between TSN flows. As a re-
sult, OMNeT++ does not offer any built-in functionality for extracting TSN statistics. Currently,
obtaining statistics for TSN in OMNeT++ involves either tracing event logs by hand (a chal-
lenging and time-consuming process) or exporting the statistics to an external application such as
SQLite13 were evaluation is easier. To facilitate TSN statistics collection with a built-in option
for OMNeT++, the TSN flow extraction component was also added to the tool. The TSN flow
extraction takes a vector (VEC) file as input, which is a file generated after a simulation run. This
file records data values as a function of time and stores the results in vector form. The compo-

Figure 8: CSV file generated by TSN flow extraction

13https://www.sqlite.org/index.html
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nent searches the VEC file for two specific statistic collections when TSN packets are received, the
flow ID and end-to-end delay, and collects the data separate for each flow. After that, a comma-
separated values (CSV) file is created with the end-to-end delays separated by TSN flows. An
example of this file can be seen in Figure 8.

However, while this is the approach used by the TSN flow extraction component, it has some
considerable disadvantages. Firstly, this method requires that the two statistic collections men-
tioned are present for each receiving node by adding it to the NED file. This means that it will
not work on any result file generated together with NeSTiNg and the user must manually add the
statistic collection. Secondly, the current method is not very efficient when processing the data.
While this is less noticeable when working with smaller networks and shorter simulation time, this
could be a potential issue if the tool is employed on a larger scale. One example of an alternative
approach to extracting TSN flow would be to modify the NeSTiNg models to generate a unique
vector for each flow, making the statistic data directly available in the VEC file. However, by
modifying the model itself, the option to not record statistics would also be removed. If the data
is not needed for every receiving node, the modification would lead to an unnecessary increase in
computation time and file size of results.
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6. Network configuration use case

In this section, the usability of the proposed network configuration approach is validated by mod-
elling an industrial use case with the prototype TSN-configuration tool. The use case was selected
as an example of the application of the tool inspired by a real industrial use case. Moreover, this
section also presents an end-to-end timing analysis of the modelled system using the TSN analytic
extraction of the TSN-configuration tool.

6.1 Use Case Description

The use case considered in this thesis is inspired by the in-car network system presented by BMW
Group Research and Technology [32]. This use case has been used in many existing works for the
purpose of validation [33, 34, 35]. The use case models several different types of traffic including
control messages, camera streaming, video streaming, audio streaming, CAN messages and bulk
traffic. The topology of the use case can be seen in Figure 9. The traffic in the network is limited
to two classes, TT with a PCP of 7 and BE with a PCP of 0. The test case was also planned
to include AVB class A and B traffic which would utilize credit-based shaper together to model
multimedia streaming in a fully-loaded network. However, at this time of writing, the current re-
lease of NeSTiNg does not support the credit-based shaper together with the ST as the mechanism
has been temporally removed from the framework. As such, multimedia streaming in the network
either uses the TT or BE class, depending on how critical the media stream is to the system.
The topology models an in-car network system with three TSN switches, one near the front of
the vehicle (front switch) and two near the rear (left and right switch). In a typical geometrical
arrangement in a vehicle, most of Electronic Control Units (ECUs) in a vehicle are located either
at the front or the rear, since the space under the passenger cabin is limited and leaves little space
for ECUs. This motivates the placement of ECUs to congregate around the front and rear section
of the vehicle.

In the use case network, there is a head unit which represents the main processing unit. The
head unit is connected to the right switch and functions as a data sink for all the control messages
in the network, as well as some video and bulk data. There are four control nodes (control 1-4)
in the network which periodically send control messages to the head unit. While the data payload
of control messages are most commonly very small, the size has been increased in this use case
to further highlight the effect of frame preemption. The control nodes are spread out over the
network, with control node 1 connected to the front switch, 2 and 3 connected to the right switch
and control node 4 connected to the left switch. As these control signals are critical for the system,
they are given the priority of TT.

A camera (CAM) is also placed in the front of the vehicle, connected to the front switch and
sends video frames at a regular interval. The CAM generates two streams of data, one transmit-
ting driver assistance related video data to the head unit and another transmitting to a dedicated
processing unit (PUCAM) connected to the right switch which supplies a front view system with
video data. While the front view system is not time-critical and given the priority of BE, the driver
assistance stream could be considered time-critical as delays would affect drivers safety and are
thus assigned priority TT.

The GPS node, connected to the front switch, periodically fetches position date and transmit
it to the head processing unit for navigation assist. The audio receiver (AV Audio) node, con-
nected to the left switch, generates a stream of high-quality media and transmits to the media
sink (AV Sink) used by an entertainment system. As neither the GPS or AV Audio node fulfil any
time-critical function, the priority class of these traffic flows are set to BE.

Lastly, the bulk traffic (BULK) node represents an open connection to the internet that con-
tinuously transmits bulk data to the head processing unit. The purpose of the bulk traffic in this
use case is to populate the link between switches, demonstrating the ability of TSN to provide
deterministic behaviour over Ethernet despite traffic load as well as the effect of frame preemption.
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As the bulk traffic represents a data stream generated outside the scheduled traffic, meaning the
exact period and size of packages is unknown at it the time of scheduling, is not assigned a dedi-
cated flow within the use case and is sending BE traffic to the head unit independently of the rest
of the nodes. The network uses gigabit Ethernet connections between every node which transfers
at a data-rate of 1 Gbit/s with a transfer delay of 0.1µs. The processing delay is set to 5µs for
each switch. Table 1 presents the traffic characteristics in the use case.

TSN Network

CAM

GPS

Control 1

AV Sink

Control 2Control 3

Control 4

AV Audio
BULK Switch 3

Switch 2

Switch 1

PUCAM

Head unit

Figure 9: Use case - network topology

Flow
id

Source Destination
Size

Bytes
Period
µs

Priority

1 CAM PUCAM 786 500 BE
2 CAM Head Unit 786 500 TT
3 GPS Head Unit 640 200 BE
4 AV Audio AV Sink 1472 100 BE
5 Control1 Head Unit 768 100 TT
6 Control2 Head Unit 768 100 TT
7 Control3 Head Unit 768 100 TT
8 Control4 Head Unit 768 100 TT

Table 1: Traffic characteristics in the use case

The use case contains four different configurations on the same network topology. These four
configurations are:

1. All gates open with no frame preemption

2. All gates open with frame preemption enabled

3. Gate schedule with no frame preemption

4. Gate schedule with frame preemption enabled

The purpose of these four configurations is to demonstrate the application of the tool under various
situations and to establish how the configuration affects end-to-end delays for different TSN flows.
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6.2 Modeling of the Use Case with the TSN-configuration tool

The system-level software architecture of the use case is modelled with three different models of
nodes, provided by NeSTiNg: VlanEtherHostSched, VlanEtherHostQ and VlanEtherSwitchPre-
emptable. VlanEtherSwitchPreemptable acts as TSN switches which can be configured to use gate
schedules and frame preemption and are used to model all the switches in the network. VlanEther-
HostQ is a simple node which generates traffic continuously thought settings in the INI file and is
used to model the BULK node. VlanEtherHostSched generates traffic based on the configuration
of the TSN-configuration tool and records TSN-specific statistics when receiving packages from
TSN flows. VlanEtherHostSched is used to model every other node in the network besides BULK.
The properties of the links are specified according to the information presented in Section 6.1 In
addition to these proprieties, the BULK traffic is manually configured to send 1250 bytes packets
every 10µs to the head unit using the lowest priority of BE. With this extra traffic, the queue for
the connection between switch 1 and 2 is intentionally receiving more traffic than it can drain. This
is done to show the effect of a fully populated link in TSN and how different configuration affect
this. The finished network topology file can be seen in Figure 10. No start offset was used for any

Figure 10: OMNeT++ network description for the use case

of the flows, meaning the four configurations shared the same topology and traffic characteristics,
but with different gate schedules and switch settings. The first two configurations operate with all
gates open, meaning that at any given time switches will always transmit packages from the highest
non-empty queue available. The seconds two configurations use a gate schedule which is open for
TT traffic only for a period of 50µs, and switches after that to only allow BE traffic for 50µs. Note
that this gate schedule is defined without using any optimization algorithm. This schedule is set
for the ports which connections the switches together. Besides this difference, all configurations
share the same TSN schedule and routing setup. Additionally, for the two configurations which
utilized frame preemption the link from switch 1 to switch 2 as well as from switch 3 to switch 2 is
set to enable preempting of frames in the INI file. Configuration of the flow schedule and routing
was done through the TSN-configuration tool, depicted in Figure 11.
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Figure 11: TSN flows configured in the TSN-configuration tool

Simulation time of the use case was 1 second for each configuration. While this is a low amount
of simulation time, as the network model is configured to receive more traffic than it can process,
the queue would eventually reach capacity and terminated the simulation prematurely. As such,
the simulation time was set so the simulation finished before this occurred. The statistics collected
was written into a VEC file at the end of each simulation. Finally, the TSN results were extracted
using the TSN-configuration tool and are presented in the next subsection.

6.3 End-to-end Timing Analysis of the Use Case

In addition to the main focus of this thesis, exploring automatic configuration of TSN networks in
simulated environments, extraction of TSN-related statistics it also covered as an opportunity to
further extend the usability of the tool. In this subsection the results recorded from the use case
is presented.

6.3.1 Configuration 1 - All gates open with no frame preemption

Table 2 shows the end-to-end delays results from the first configuration. As the first configuration
uses an open gate policy without any frame preemption, these results works well as a baseline to
compare with the other results. We can note that the control signals have a small variation of

Flow ID Source Destination
Minimum

µs
Maximum

µs
Average
µs

1 CAM PUCAM 58.904 450.904 436.947
2 CAM Head Unit 44.032 56.156 48.918
3 GPS Head Unit 49.488 956.924 925.873
4 AV Audio AV Sink 47.196 47.196 47.196
5 Control1 Head Unit 31.324 49.932 42.159
6 Control2 Head Unit 17.968 28.268 22.525
7 Control3 Head Unit 24.448 34.748 29.005
8 Control4 Head Unit 30.928 46.348 35.495

Table 2: End-to-end timing analysis results of the use case with configuration 1

about 15µs, but never exceeds an end-to-end delay of 50µs. The audio stream, represented in flow
4, has a consistent delay of 47.196µs. Audio stream (flow 4) and Control 4 stream (flow 8) have
been set to be transmitted with the same period and they are also sent with the same path links.
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As flow 8 has a higher priority, it will always reach switch 2 before the audio stream and thus result
in the consistent delay. Also worth noting is that the average end-to-end delay for flow 1 and 3
increases throughout the simulation run. While initially, the packages arrive reasonably early, as
time passes the link queue between switch 1 and 2 and as a result packages in flow 1 and 3, well
as the BULK traffic, spend an increasing amount of time queued in switch 1.

6.3.2 Configuration 2 - All gates open with frame preemption enabled

Flow ID Source Destination
Minimum

µs
Maximum

µs
Average
µs

1 CAM PUCAM 59.160 451.944 440.816
2 CAM Head Unit 44.032 54.332 48.709
3 GPS Head Unit 49.488 953.068 923.591
4 AV Audio AV Sink 47.196 47.196 47.196
5 Control1 Head Unit 31.340 47.708 42.049
6 Control2 Head Unit 17.968 28.268 22.628
7 Control3 Head Unit 24.448 34.748 29.108
8 Control4 Head Unit 30.928 47.004 35.607

Table 3: End-to-end timing analysis results of the use case with configuration 2

Table 3 shows the end-to-end delays results from the second configuration. The results are quite
similar to the previous configuration, with only flow 2 and 5 achieving a small improvement in
the average end-to-end delay. In this configuration, flow 2 and 5 can preempt the BE traffic from
switch 1 to switch 2 produced by GPS and BULK, which explains this improvement in delay. In
contrast, flow 8 gained a minuscule increased in delay which is noteworthy. Going from switch 3
to switch 2, flow 8 only has one flow that it could preempt, namely flow 4. Flow 4 shares the same
period as flow 8 but has a lower priority and larger payload. Due to the larger payload, flow 8 will
always finish transmitting to switch 3 before flow 4 and as a result, will always be processed first.
It is possible that if the audio stream used a smaller payload, the end-to-end delay of flow 8 would
be improved as it could preempt the audio stream. The small increase of end-to-end delay for the
remaining flows could likely be caused by packages from flow 2 and 5 arriving earlier.

6.3.3 Configuration 3 - Gate schedule with no frame preemption

Flow ID Source Destination
Minimum

µs
Maximum

µs
Average
µs

1 CAM PUCAM 85.34 900.492 592.007
2 CAM Head Unit 44.032 44.528 44.033
3 GPS Head Unit 65.92 901.68 899.910
4 AV Audio AV Sink 79.232 79.232 79.232
5 Control1 Head Unit 30.928 32.592 30.978
6 Control2 Head Unit 17.968 19.632 18.018
7 Control3 Head Unit 24.448 26.112 24.498
8 Control4 Head Unit 37.408 39.072 37.458

Table 4: End-to-end timing analysis results of the use case with configuration 3

Table 4 shows the end-to-end delays results from the third configuration. In this configuration
switch gates only allowed either TT or BE traffic to be sent for a period of 50µs, after which the
gate state is inverted for another 50µs. According to the results, it is clear that every flow that
uses TT priority class has a much more consistent end-to-end delay throughout the simulation.
Considering that during the first configuration, no TT flow ever exceeded 50µs, it is reasonable
that the TT packages can be transmitted within one gate cycle. On the same note, the end-to-end
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delay of flow 1 and 3, which in previous configurations increased over the simulation time due to
overpopulated link, has further increased in this configuration. This is reasonable, as the network
was not capable of keeping up with the rate of BE traffic when all gates were open, limiting the
window of transmitting to 50µs would only exacerbate the load on the network.

6.3.4 Configuration 4 - Gate schedule with frame preemption enabled

Flow ID Source Destination
Minimum

µs
Maximum

µs
Average
µs

1 CAM PUCAM 85.340 900.492 592.007
2 CAM Head Unit 44.032 44.528 44.033
3 GPS Head Unit 65.920 901.680 899.910
4 AV Audio AV Sink 79.232 79.232 79.232
5 Control1 Head Unit 30.928 32.592 30.978
6 Control2 Head Unit 17.968 19.632 18.018
7 Control3 Head Unit 24.448 26.112 24.498
8 Control4 Head Unit 37.408 39.072 37.458

Table 5: End-to-end timing analysis results of the use case with configuration 4

Table 5 shows the end-to-end delays results from the fourth configuration. The result of enabling
preemption is identical to the previous configuration which did not enable preemption when the
gate schedule is employed. This is due to how the gate schedule is constructed, only allowing one
type of traffic at any given time. Since BE traffic will never transmit during the TT cycle, it
will never be preempted. As an effect of this, the traffic flow will be identical and unaffected by
the addition of preemption. If the gate schedule would have included a period where both traffic
classes were allowed to transmit, the effect of frame preemption would likely have been noticeable.

6.4 Discussion

This subsection summarizes the observations related to the use case and the TSN-configuration
tool. Obtained simulation results from the use case are discussed, and key points for improving
usability TSN configuration are presented.

Out of the configurations, the most prominent difference could be seen in a comparison between
two configuration policies: (1) all gates open, (2) gate scheduled. The result provides a good exam-
ple as to why using a priority mechanism alone is not sufficient to provide deterministic behaviour
on the network. Open gates policy increases the utilization factor of the link, because the link is
always available for all packets regardless of their priority. However, it can affect the end-to-end
latency of the high priority packets by lower priority traffics, such as BE. The gate schedule, on
the other hand, provided much more consistent end-to-end delay for the time-sensitive TT traffic
by ensuring no other traffic is transmitted for the scheduled duration.

The main propose of this use case was to demonstrate the usability of the tool. With eight different
TSN flows going across the network with multiple destinations, manually configuring would have
been moderately challenging. To this end, the automatic configuration tool made the configuration
process considerably quicker and simpler. Every flow could quickly be viewed at a glance, as seen
in figure 11, and understood without requiring the user to open any other files. The different effect
mechanism, such as frame preemption and gate scheduling, made on the network was also clearly
displayed in the use case. The use case also had some limitations. The configuration in the use case
could be made more complex to improved end-to-end delays and present more of the tool capability.
For instance: utilizing start offsets can help avoid all flows transmitting at the same time or using
multiple priority classes to allow more complex schedules. Furthermore, the benefits of automatic
configuration are more prominent when working with larger networks. To this end, the current use
case could be expanded with additional nodes and flows to further demonstrate the tool’s usability.
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Usability is always a difficult thing to examine, as it is not an exact valued one can measure
but instead something that the user experiences. With this in mind, after manually configuring
TSN in NeSTiNg, considering some of the cumbersome qualities with this process and comparing
it to the TSN-configuration tool, five key areas where the TSN-configuration tool improved usabil-
ity were identified. The following subsection will discuss some of the key areas were usability is
improved through automation:

6.4.1 Improvement area 1 - Recollect of network properties

One of the more noticeable advantages with using the TSN-configuration tool in comparison to
the previous manual configuration is that the user is no longer required to remember or look up
the different network properties. Every node is presented in the configuration tool along with their
address and connections. Consider the following scenario: in the presented use case, manually
adding a TSN flow from CAM to PUCAM would require looking up the address of PUCAM,
what switch it is connected to, which port this connection is on and so on until reaching CAM. In
contrast, the TSN-configuration tool tracks all this information automatically and generates the
required input as needed. As a result, the user never needs to remember, write down or check any
property in the network, making the configuration process simpler.

6.4.2 Improvement area 2 - Manual inputs

Both the configuration files for the TSN schedule and switch routing are written in XML. This
means that the manual configuration process involves writing or modifying XML entries by hand.
While employing a standalone XML editor can help elevate this, the user still has to manually
input properties such as node name and make sure the entries contain everything required which
can be particularly difficult when the user is inexperienced working with NeSTiNg. Users should,
in general, have to do as little manual inputs as possible, which is the core concept of the TSN-
configuration tool itself. Along with generating the configurations files, the tool is designed to limit
manual inputs to only when they are necessary. Some examples of this can be seen in how the user
is never required to write any node name, selects queue priority from a drop-down list instead of
manually writing it and how flow ID is automatically assigned during schedule generation.

6.4.3 Improvement area 3 - Visual aid

Another issue that comes with working directly with the configuration files is that is can be difficult
at a glance to see and understand what the configuration actually will do. The network can contain
many flows which make the XML file challenging to navigate. The path and destination node for
a specific flow can not be examined without comparing the INI file for the address and routing
configuration for the path. The TSN-configuration tool improves this area by offering a simple GUI
where the user can add, modify or remove TSN flows without requiring any previous knowledge of
how to work with NeSTiNg. All information relevant to the network simulation such as topology,
proprieties and schedules is all presented in one place. The tool further improves this area by
offering visualization aid of gate schedules, by presented in a diagram where state entries are
proportional to the duration.

6.4.4 Improvement area 4 - Efficiency

Efficiency is an important aspect of usability. Minimizing unnecessary parts of the process helps to
reduce the amount of time the user requires for performing their intended task. In the comparison
of usability for manual and automatic configuration, efficiency is not as straightforward as the
other improvement areas. It could be argued that manual configuration is a more time-efficient
method, partially in some scenarios where only a few values are modified, as it is more direct and
does not require any other files to be loaded at the same time. On the other hand, generating
every XML entry automatically instead of by hand could be view as the more efficient option.
Considering a user that needs to check related files such as topology and routing, using the TSN-
configuration tool could be argued as removing unnecessary parts of the process and improving
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efficiency. Furthermore, the tool also offers a quick procedure for extracting TSN related statistics
from simulation results.

6.4.5 Improvement area 5 - User error

Due to how OMNeT++ and NeSTiNg work together, it is not always clear when something is
missing or incorrect in the configuration files. Configuration files are only read during the start
of the simulation. As these files are ordinary text files without any dedicated text editor, no
indication will be given when entries are malformed, missing critical information or using wrong
names during manual configuration. The TSN-configuration tool addresses this improvement area
in several ways: user inputs are validated and only accept correct values. Each step in the flow path
is verified to be a valid step in the topology. The output is automatically generated, which ensures
that the XML file is structured correctly. However, it is worth noting that these measures do not
entirely prevent user error, but instead helps to reduces the likelihood of unintended inputs.
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7. Conclusion

The purpose of this thesis was to investigate automatic configurations of TSN network when work-
ing with TSN simulations. In order to address this topic, the necessary background knowledge
was explained such as the core network concepts, TSN and the mechanisms that guarantee deter-
ministic behaviour as well as the network simulation framework NeSTiNg based on OMNeT++.
The related works of TSN simulation and automation were presented, which concluded that most
research on the subject of TSN simulation is concentrated on modelling a small subset of TSN
mechanisms and that few simulation frameworks currently are publicly available which can model
TSN. A prototype tool was developed capable of generating TSN configuration using a GUI and
was implemented as a plug-in for the OMNeT++ IDE to be used with NeSTiNg, a TSN simulation
framework. The propose of the tool was to be a proof of concept, used to demonstrate and exam-
ine how automatic configurations of TSN could aid usability when working with simulated TSN
frameworks. The design of the tool was presented, examine the software components, different
approaches of implementation and some argumentation for the decisions done in the design. In
order to demonstrate the usability of the tool, a use case inspired by the vehicle industry was
modelled with one network topology and four configurations. The discussion examined the result
gained through the tool, the usability of the tool and how it facilitates the configuration process.
It concludes by identifying and provide arguments for five different key areas of improved usability
related to TSN simulation tools, including (1) facilitating recollection of the network, (2) enabling
automatic configuration, (3) increasing user-friendliness of a TSN simulation platform with a GUI,
(4) increasing efficiency and usability of a TSN simulation platform, (5) minimizing user error.

7.1 Reflection on the research question

The research question proposed in this thesis, How can TSN configuration be automated to improve
the usability of the TSN simulation tools?, is answered in the discussion section 6.4, the design de-
scription 5. as well as through the TSN-configuration tool itself. Discussion highlighted five areas
of usability, including (1) facilitating recollection of the network, (2) enabling automatic config-
uration, (3) increasing user-friendliness of a TSN simulation platform with a GUI, (4) increasing
efficiency and usability of a TSN simulation platform and (5) minimizing user error, which are
improved through the automated process of TSN configuration. The design description establishes
how the process is carried out and can be replicated. Finally, the TSN-configuration tool provided
a proof of concept which demonstrates the improvements in usability gained through automation
of TSN simulation tools.

7.2 Future work

In its current state, the TSN-configuration tool will not assist the user in creating viable schedules.
The user has to consider a lot of information about the network properties and schedule accord-
ingly. However, most of these properties are already available inside the TSN-configuration tool.
Automating the planning of schedules would be very useful when working with TSN networks and
could be achieved using some form of SMT solver. Furthermore, the tool currently offers a simple
way to extract the simulation results for TSN specific statistics. However, this could be possible to
automatically analyze these results and provide useful feedback to the user. This feedback could
indicate when time-triggered traffic spends a significant amount of time in a queue or suggest
changes to improve latency. This could be an opportunity for future work.
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[1] F. Dürr and N. G. Nayak, “No-wait packet scheduling for IEEE time-sensitive networks
(TSN),” ACM International Conference Proceeding Series, vol. 19-21-Octo, pp. 203–212, 2016.

[2] S. Corrigan, “Controller Area Network Physical Layer Requirements,” Texas Instruments
Application Report , SLLA270-January, pp. 1–15, 2008.

[3] J. D. Decotignie, “Ethernet-based real-time and industrial communications,” Proceedings of
the IEEE, vol. 93, no. 6, pp. 1102–1117, 2005.

[4] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Durr, S. Kehrer, and K. Rothermel, “NeST-
iNg: Simulating IEEE Time-sensitive Networking (TSN) in OMNeT++,” Proceedings of the
2019 International Conference on Networked Systems, NetSys 2019, no. February, 2019.

[5] “OMNeT++ discrete event simulator,” https://omnetpp.org/.

[6] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang, “A time-sensitive networking (TSN)
simulation model based on OMNET++,” Proceedings of 2018 IEEE International Conference
on Mechatronics and Automation, ICMA 2018, pp. 643–648, 2018.

[7] C. D. Carothers, D. Bauer, and S. Pearce, “Ross: A high-performance, low-memory, modular
time warp system,” Journal of Parallel and Distributed Computing, vol. 62, no. 11, pp. 1648
– 1669, 2002.

[8] A. Sobeih, J. Hou, L.-c. Kung, N. Li, H. Zhang, W.-P. Chen, H.-Y. Tyan, and H. Lim, “J-sim:
A simulation and emulation environment for wireless sensor networks,” Wireless Communi-
cations, IEEE, vol. 13, pp. 104 – 119, 09 2006.

[9] B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D. Carothers, and L. V. Kale, “Preliminary
evaluation of a parallel trace replay tool for hpc network simulations,” in Euro-Par 2015:
Parallel Processing Workshops, S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E.
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A Installation guidelines

This section provided instruction on how to install OMNeT++, NeSTiNg and the TSN configura-
tion plug-in. The instructions given here use OMNeT++ version 5.4.1 as this was the version used
during the TSN-configuration plug-in tool implementation. However, the tool and instructions
given in this section should still work on more recent versions of OMNeT++ and NeSTiNg. Linux
(Ubuntu version 16.04) was the operating system used for this work.

1.1 OMNeT++

In the case you are installing OMNeT++ on a Linux distributing or macOS, you will also need to
install additional packages described in the user manual 14. Otherwise, do the following steps:

1. Download the 5.4.1 version of OMNeT++ 15.

2. Extract the omnetpp-5.4.1 folder where you want to install it.

3. Open a bash prompt and navigate to the folder.

4. type ”. setenv” in the terminal.

5. type ”./configure” in the terminal.

6. type ”make” in the terminal.

7. If everything was correctly installed, type ”omnetpp” into the terminal to start OMNeT++.

8. Close the welcome screen and go to the workbench. You will be prompted to make a folder
for the workbench. Then, continue with making a new folder.

9. After creating a folder for the workbench, you should be prompted to install INET along
with an example project, deselect both.

Done, you should now have OMNeT++ installed with an empty workspace.

1.2 NeSTiNg

NeSTiNg is available through a public git repository16. If you are having problems installing
NeSTiNg along with the required INET, please look for the latest instruction available on the git
repository.

1. Open a bash prompt and navigate to your workbench folder that you have set up, previously..

2. Download NeSTiNg by typing ”git clone https://gitlab.com/ipvs/nesting.git” in the terminal.
You need to install git if you do not already have it.

3. Type ” git clone –branch v4.1.2 –depth 1 https://github.com/inet-framework/inet.git” to
download INET v4.1.2

4. You should now have INET and NeSTiNg in your Workspace. Open OMNeT++ and go to
file− > import.

5. Select general− > ExistingProjects into Workspace and press next.

6. Select the Workspace as the root directory. INET and NeSTiNg should now appear. Select
both and press next.

7. INET and NeSTiNg should now appear in your Workspace. Build both projects by right-
clicking and selecting ”Build Project”.

Done, you should now be able to run TSN simulations. Try running a simulation example by
going into ”NeSTiNg− > simulations”, right-click ”example.ini” and selecting ”run as− >
OMNeT + +Simulation”

14https://doc.omnetpp.org/omnetpp/InstallGuide.pdf
15https://omnetpp.org/download/
16https://gitlab.com/ipvs/nesting
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1.3 TSN-configuration tool plug-in

A compiled version of the TSN-configuration tool plug-in is available on the git repository 17. Here
you can find the most up to date instructions on how to install the plug-in.

1. Download the latest release of the jar plug-in in the git repository releases 18.

2. Place the jar file inside ”< the− omnet− directory > /ide/plugins”.

3. Restart the OMNeT++ IDE if you have it open.

Done, the plug-in should now appear in your toolbar, as seen in figure 12. However, if the plug-in
still does not appear in the IDE, go to ”< the−omnet−directory > /ide/configuration/org.eclipse.equinox.simpleconfigurator/bundles.info”
and add the following line to the file:

org.plugin.tsnsched,1.0.0.202005181629,plugins/org.plugin.tsnsched 1.0.0.202005181629.jar,4,false

Figure 12: The plug-in appering in the toolbar

17https://gitlab.com/abbelini/TSN-plugin/
18https://gitlab.com/abbelini/TSN-plugin/-/releases
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B Using the tool

This section describes how to use the TSN configuration tool to configure a TSN simulation from
scratch and extract the TSN flows to a CSV file. It will show how to do the essential functions
of the tool, such as adding, modifying and removing flows as well as configuring port schedules.
A small example is created in this section to demonstrate this. Note that the instructions in this
section assume you have setup your project as per the instruction in the previous section.

2.1 Preparing the network

Before we can start using the tool, we first must create the topology (ned) and initialisation (ini)
files. In these instructions, we are going to use a prepared example provided in the tool release.
To make this process easier, we are going to make a folder within the ”nesting” folder to contain
all our simulation files. It is also possible to create an empty OMNeT++ project with ”nesting”
as a dependency if you want to keep your files separate from ”nesting”.

1. Download the example files19 in the repository and extract into them.

2. Move the extracted folder to nesting− > simulations, by dragging the extracted folder into
OMNeT++ directly, as seen in Figure 13, and pick ”Copy files and folders”.

3. Create a folder inside ”our simulation” called ”XML” by right-clicking as selecting New− >
Folder

4. In ”XML”, create two empty xml files by right-clicking the ”XML” folder and selecting
New− > File. Then, type ”sched.xml”. Repeat this for ”rout.xml”.

Figure 13: Importing the example files into the workspace

You should now have a folder (”our simulation”) containing an ini, ned and another folder with
two empty xml.files.

19https://gitlab.com/abbelini/TSN-plugin/uploads/ad78d33be6fd15bae3789fc4932b7de7/example.zip
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2.1.1 Notes about the NED

In case you want to expand or create a new topology from scratch, remember the following: For
the TSN configuration tool to use the node as a source for a flow, the source node must be a
”VlanEtherHostSched”. Likewise, for the tool to be able to extract TSN flows into CSV files, the
destination node must also be a ”VlanEtherHostSched” and include the following lines:

@signal[rcvdPk](type=inet::Packet);

@statistic[pktRcvdFlowId](title=”pktRcvdFlowId”; source=”flowId(rcvdPk)”; record=vector; interpolationmode=none);

@statistic[pktRcvdDelay](title=”pktRcvdDelay”; source=”dataAge(rcvdPk)”; unit=s; record=histogram,vector,min,max; interpolationmode=none);

Finally, the network must use ”VlanEtherSwitchPreemptable” switches to work properly with
TSN schedules.

2.1.2 INI

When working with NeSTiNg, every TSN switch (”VlanEtherSwitchPreemptable”) and TSN en-
abled node (”VlanEtherHostSched”) needs to be configured to the XML configuration files. Ad-
ditionally, nodes in the network (not switches) must have an assigned address. If you add nodes
or want to use another xml configuration file(s) remember to verify that every node has a unique
address and correct path to the xml schedule file.

2.2 Configuration schedules with the tool

2.2.1 Loading the files

After the ned and ini is prepared, we can load the files we just created. Open the configuration
tool by pressing the button in the toolbar, as seen in Figure 12. The setup view will appear. Note
that you might want to move the window if you can not read it properly. In the first view, you
select which files you are working with. Press ”load file” for each of the four file types, navigate to
the ”our simulation” folder and select the respective file type. The result should look something
like Figure 14. Press ”Start” to go to the main view of the tool which displays all scheduled TSN
flows, seen in Figure (which is currently empty). To the right, you can see all the nodes present in
the network as well as the default cycle for the schedule(currently unused).

Figure 14: The plug-in when selecting files
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Figure 15: The plug-in when an empty configuring is opened

2.2.2 Working with flows

To create a new flow, simply press ”add Flow” and select a source node, shown in Figure 16. You
can pick from the list or search using the search field at the top and press ”OK”. After the node

Figure 16: Selection of host node

has been selected, a new flow in created in the list, shown in Figure 17. To remove a flow, simply
press the ”remove” button next to the flow entry.

37



Albert Bergström Automatic Generation of Simulated TSN Network Configuration

Figure 17: A new flow in the list

After the flow is created, you can specifying the flow path by pressing ”Add node”. The tool
will automatically add the next viable node if only one is possible. Otherwise, the tool presents
possible choices for the next path, as seen in Figure 18.

Figure 18: Selection of the next node in the path

The tool will allow new switches in the path until either it reaches a node (another ”NODE NAME
HERE”) or no more nodes are available which have not already been passed. To remove nodes
from a the path, double-click the rightmost node in the path. You can change the priority of a flow
through the drop-down menu and period, size as well as start delay by typing in their respective
text fields. Pressing the ”Generate configuration” generates all required text into the assigned xml
files based on the flows in this view, along with gate schedules which are covered in Section 2.2.4

2.2.3 Viewing nodes

By double-clicking a nodes in the list to the right, you will be presented node-specific information,
as seen in Figure 19. You can navigate to connected nodes by pressing the buttons one the top.
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Figure 19: Node specific view for Control node 1

Additionally, when viewing TSN switches you can see which port a node is connected to as the
buttons order is in respect to the connected nodes, which can be seen in Figure 20. For instance,
in this case port 3 is connected to switchB.

Figure 20: Node specific view for switchA

2.2.4 Gate schedule and diagram

When viewing a TSN switch in the node-specific window, press the port buttons on the bottom
to configure the gate schedule for that specific gate. The gate configuration window will appear,
seen in Figure 21.
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Figure 21: Gate schedule window for port 3 in switchA

Here you will see every entry in the gate schedule, how long it will be active and between which
time periods. You can add new entries to the gate schedule by pressing the ”ADD” button. The
state of each queue can be switch between open and closed by left-clicking it. Entries can be
removed by right-clicking on them. To change the period of an entry, left-click on it to bring up
the period windows. Pressing the ”diagram” button will bring up a diagram of the gate schedule
with sizes proportionally to their period, seen in Figure 22. Finally, press ”OK” to save the current
gate schedule or ”Cancel” if you want to undo any changes made.

Figure 22: Diagram of gate schedule
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2.3 Extract the TSN results after simulation

After configuring the schedules with the tool, the simulation can be run by right-clicking the ”ex-
ample.ini” files and selecting ”runas− > OMNeT ++Simulation”. After running the simulation,
OMNeT++ will generate results in the form of vec and sca files, assuming the ini file is correctly
configured. To extract the TSN flows, go into the result folder, right-click the vec file and select
TSNmenu− > ExtractTSNflowstocsvfile, as seen in Figure 23.

Figure 23: Extracting TSN flows into CSV file

After a while you will get an confirmation popup and the CSV file will appear in the result folder
with your results, as shown in Figure 24.

Figure 24: CSV file with the results
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