AUTOMATION AND EVALUATION OF SOFTWARE FAULT PREDICTION

Bora Lamçe
ble17001@student.mdh.se

Examiner: Federico Ciccozzi
Mälardalen University, Västerås, Sweden

Supervisor: Wasif Afzal
Mälardalen University, Västerås, Sweden

June 15, 2018
Acknowledgments

First and foremost, I would like to express my deep and sincere gratitude to my supervisor, Wasif Afzal, who has provided me with unlimited guidance, recommendations and advice during this thesis work. It was through his dedication and supervision that this thesis came to life. I am thankful to his support during our meetings.

Besides, I would like to thank the EUROWEB+ Scholarship Programme for giving me the possibility to further my studies at Mälardalen University. I am grateful to Mälardalen University for making it easier for me to restart the academical path. The excellent educational system and infrastructure they provide motivated me to further proceed with this thesis work.

Last but not least, I am extremely grateful to my dearest ones for always encouraging and supporting me in my work. Most of all, I am grateful to my brother, who brightens up my everyday making it easier to work on this thesis.
Abstract

Delivering a fault-free software to the client requires exhaustive testing, which in today’s ever-growing software systems, can be expensive and often impossible. Software fault prediction aims to improve software quality while reducing the testing effort by identifying fault-prone modules in the early stages of development process. However, software fault prediction activities are yet to be implemented in the daily work routine of practitioners as a result of a lack of automation of this process. This thesis presents an Eclipse plug-in as a fault prediction automation tool that can predict fault-prone modules using two prediction methods, Naive Bayes and Logistic Regression, while also reflecting on the performance of these prediction methods compared to each other. Evaluating the prediction methods on open source projects concluded that Logistic Regression performed better than Naive Bayes. As part of the prediction process, this thesis also reflects on the easiest metrics to automatically gather for fault prediction concluding that LOC, McCabe Complexity and CK suite metrics are the easiest to automatically gather.
Table of Contents

1 Introduction 7
 1.1 Motivation & Problem Formulation .. 7

2 Background 9
 2.1 Software Fault Prediction .. 9
 2.2 Software fault information ... 10
 2.3 Software metrics ... 10
 2.4 Fault prediction techniques ... 11
 2.4.1 Statistical Methods ... 11
 2.4.2 Machine Learning Methods ... 12
 2.5 Prediction Method evaluation .. 13
 2.5.1 WEKA 10-folds cross-validation .. 13
 2.5.2 Confusion Matrix .. 13
 2.5.3 Precision ... 13
 2.5.4 Recall ... 14
 2.5.5 F-measure .. 14
 2.5.6 ROC Curve .. 14
 2.5.7 Precision-Recall Curve ... 15

3 Related Work 16

4 Method 17
 4.1 Construct a Conceptual Framework .. 17
 4.2 Develop a Plug-in Architecture .. 17
 4.3 Analyze and design the Plug-in .. 17
 4.3.1 Software Metrics Identification .. 17
 4.3.2 Project Identification ... 18
 4.3.3 Prediction Methods Identification 18
 4.4 Build the plug-in ... 19
 4.5 Experimentation, Evaluation and Observation 19
 4.5.1 Experimentation .. 19
 4.5.2 Evaluation ... 19
 4.5.3 Observation .. 19

5 A Reflection on Metrics Gathering 20

6 A Software Fault Prediction Tool 22
 6.1 SFPPlugin Components ... 22
 6.2 SFPPlugin Users Perspective ... 23
 6.3 SFPPlugin Advantages ... 27

7 Prediction Method Evaluation Results 28
 7.1 Incorrectly classified instances ... 28
 7.2 Confusion Matrix Rates .. 29
 7.3 Precision Rates ... 30
 7.4 Recall Rates ... 32
 7.5 F-measure Rates .. 33
 7.6 Area under ROC curve .. 33
 7.7 Area under PR curve ... 34
 7.8 Result Summary .. 34

8 Discussions 37
9 Limitations

9.1 Study design limitations .. 38
9.2 Data limitations .. 38
9.3 Impact limitations ... 38

10 Conclusions and Future Work 39

References .. 42
List of Figures

1. Research question work flow ... 8
2. Software fault prediction process 9
3. ROC curve illustrations ... 14
4. SFPPlugin flow graph ... 23
5. Enable Fault Prediction .. 23
6. Training data ... 24
7. Show Fault Prediction View ... 25
8. Fault Prediction View ... 25
9. Fault Prediction Results View .. 26
10. Fault Prediction Evaluation View 26
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Confusion Matrix example</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>List of tools for metric gathering</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Arff attribute description</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Data distribution</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Incorrectly classified instances</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Classification result table</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Precision result table</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Recall result table</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>F-Measure result table</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Area under ROC result table</td>
<td>34</td>
</tr>
<tr>
<td>11</td>
<td>Area under PR Result Table</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>Result summary according to datasets</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>Result summary according to performance measures</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>All versions composed datasets performance compared to single versions</td>
<td>36</td>
</tr>
</tbody>
</table>
1 Introduction

A great amount of the software development budget is dedicated to software testing and to quality assurance activities [1]. Consequently, this indicates the importance of testing during the software development lifecycle. Through the years, software systems have grown to be larger and more complex, thus making the task of providing high-quality software more difficult. Software engineers’ aim is to deliver a bug-free software to the end user. To acquire such confidence, the software needs to be exhaustively tested, resulting in an expensive, tedious and, sometimes, an impossible task. Testing is often limited due to resources and time restrictions. Predicting fault-prone code helps practitioners focus their resources and effort on the fault-prone modules, thereby improving the software quality and reducing the maintenance cost and effort [2]. Software fault prediction makes it possible to detect faulty code during software development and prevents faults from propagating in other parts of the software. Moreover, it is a process that helps optimize testing by focusing on fault-prone modules, identifying the refactoring candidates and improving the overall quality of the software [3].

Project managers can greatly benefit from software fault prediction. They can measure the quality of the work during the development phases by continuously measuring the fault-proneness of a module. Through fault prediction, the project manager can detect the needs for refactoring and assign tasks based on that information and therefore improving the efficiency of the process. Fault prediction related issues are classified by Song at al. [4] in three main categories:

1. Evaluating the number of faults still present in the system;
2. Investigating the correlation between different faults;
3. Classifying system modules as fault-prone or non-fault-prone.

This thesis focuses its work on the third issue presented above. This issue presents the ability to mark a module as fault-prone or non-fault-prone and thus providing the developers with an insight of how the quality assurance activities should be oriented. To enable this classification, researchers, through the years, have used statistical and machine learning methods.

The process of prediction is intuitive and easy to understand. A prediction method learns how the system behaved previously through historical attributes of the system (metrics) and historical bug reports. At this point, the model knows that faulty modules will manifest certain attribute values. Baring this information, the model can classify the modules of the current version of the system as fault-prone or non-fault-prone.

However, this process is far from perfect and reliable. There are still many issues for which we cannot find a definitive answer i.e What are the attributes that guarantee the best predictions and how to collect them? What is the best way to collect bug reports and, most importantly, what are the best methods for fault prediction? These questions include an extensive area of study that is well beyond the scope of this thesis. The focus of this thesis is the study of automated metrics collection process, the evaluation of fault prediction models and the development of a usable fault prediction tool.

1.1 Motivation & Problem Formulation

Files and classes containing faulty code can be detected by analyzing data collected from previous releases of a project, or if no previous releases exist, data collected from similar projects. An important part of achieving successful fault prediction in a project is the selection of the metrics and techniques used to predict the faults. Fault prediction metrics, techniques, and methods have been widely studied during past years [5] [6] [7]. This study aims to develop a software fault prediction tool, evaluate two prediction methods with respect to prediction performance and to reflect on the ease of gathering software metrics. Guo et al. [8] suggested the need for a similar tool in 2004 where software development organizations are encouraged to analyze their own data repositories for better fault detection.

Building this tool provides a perspective on all the stages of the software fault prediction process. From the selection of the open source projects, the selection and evaluation of the easiest metrics to use, the collection of these metrics, the selection and evaluation of the prediction methods, and
the implementation of these methods. This all will result in a software prediction tool that can be later incorporated in the practitioners’ daily routine.

The aim of this thesis is to automate the process of fault prediction, to evaluate the performance of two fault prediction methods using the automated solution and reflect on the ease of gathering software metrics. The prediction methods will be evaluated based on prediction performance [9] on open source projects using measures such as Precision, Recall, F-measure, Area Under Curve (AUC) and Area Under Precision-Recall Curve. These measures will be described in Section 2.5.

In order to reflect on automating the prediction process, the thesis will investigate which metrics are easy candidates for collection to make predictions.

This thesis evaluates two of the most known software fault prediction methods (Naive Bayes and Logistic Regression) in an environment that can potentially be used on an everyday workspace for software developers such as Eclipse. Eclipse IDE is an open source and widely used development environment [10] and thus can be a useful solution for many developers. This is the main motivation behind the decision to develop the Eclipse plug-in during this thesis and to evaluate the prediction methods facilitated by the plug-in implementation.

The problem formulated in this section is summarized by the following research questions.

- **RQ 1**: Which metrics are easy candidates for automatic collection for software faults prediction?
- **RQ 2**: How can we implement an open source available tool for software fault prediction that integrates with developers’ integrated development environment (IDE)?
- **RQ 3**: Which of the implemented fault prediction methods perform the best when using the implemented tool?

In RQ1, we will reflect on our experience during the process of gathering metrics. In RQ2, we will demonstrate the implementation of an open source prediction tool that can be available and integrated into the developers’ environment. In RQ3, we will evaluate the performance of the prediction methods using the implemented tool on open source data. All three RQs are strongly related to each other as the output for the previous is used as the input for the next. The work flow of this thesis in terms of these RQs is presented in Figure 1.

![Figure 1: Research question work flow](image-url)
2 Background

This section presents a background to the software fault prediction problem, software metrics, fault prediction techniques and prediction model evaluation.

2.1 Software Fault Prediction

Software fault prediction is the process of improving the software quality and testing efficiency by early detection of fault-prone modules. This process reduces testing effort while still ensuring software quality. Based on the predictions gathered from the fault prediction process, project managers can organize their resources in a way that focuses the majority of the testing effort in the modules marked as fault-prone [11].

As a result of the software fault prediction process, the software modules are classified as fault-prone or non-fault-prone. The modules are classified by classification methods based on the software metrics and fault information gathered from previous releases of the software [2]. In other words, software attributes, and previously reported fault information collected in the software’s previous releases are used to train prediction methods that can later classify a module in the new version as fault-prone or not fault-prone. Thus, whenever an error is reported in a module in the old versions of the software, that module is marked as faulty and its metrics are measured. This information is then provided as training data to the prediction model that uses it to forecast the fault-proneness of that module in the new releases [12].

![Software fault prediction process](image)

Figure 2: Software fault prediction process

Fault prediction is key in elevating the quality of a software while still optimizing the costs of the resources. By using fault prediction tools, the project manager can allocate the most resources to the modules that are classified as fault-prone. Early detection of the faults is thereby, cost-effective and minimizes the maintenance effort for the system [11].

The task of predicting fault-prone modules can be complex. The process of gathering data from previous versions of the software can be time-consuming, tedious and error-prone. With the intention of simplifying this process, several automation gathering tools have been proposed through the years. However, the challenges are not done yet, the data gathered is often imbalanced where most of the modules are marked as not faulty and what about the projects that do not have any previous metrics or fault data, the projects that just have started their development. Gathering good training data is crucial to the quality of the predictions.

The most important components in a software fault prediction process are software fault data, software metrics, and fault prediction techniques. To gather a better understanding of the process the next section will provide a brief description of each one these components [13].
2.2 Software fault information

Software fault information contains all the information about the faults reported during the software life-cycle. Version control systems are used to store source code and change management systems are used to store the fault data reported [12]. The datasets containing source code information are listed according to their availability [5].

- **Private**: The datasets are not publicly available. Neither the source code or the fault information can be accessed. The studies concluded that these types of data sets are not repeatable.

- **Partially public**: Only the source code and the fault information are available, but the code metrics are not available. In this case, the author has to extract the metrics from the code and match them to the fault information. This is the case in our study since the tool is to be used in the organization’s repositories where they have access to their source code and fault information but the metrics have to be calculated for the sake of the fault prediction.

- **Public**: The source code, fault information, and metrics are available to be used publicly [5].

One of the major issues regarding fault data in the source dataset is imbalanced data. The majority of the modules are labeled as non-fault-prone whereas the remaining part is labeled as fault-prone. Thus, data distributed this way can affect the fault prediction methods performance. Nevertheless, to deal with this issue, it is often recommended to oversample the minority in order to balance the data [14]. Regardless of this, in this thesis, we did not use any techniques to improve imbalanced data. The reason for this is that our tool is meant to be used in the real world where we do not have an insight into the balance of the data. Implementing techniques of data balancing may affect datasets that are not imbalanced.

2.3 Software metrics

Software metrics represent the values of measurements on software attributes. Metrics are used for quality assurance, performance measurements, debugging, cost estimation. Most importantly, they are vital to the process of fault prediction [15]. Different metrics can be used in software fault prediction and they are categorized as follows [5]:

- **Traditional Metrics**: This category includes metrics mostly based on the size and complexity of the program:
 - LOC (Line of codes) - Is the most basic metric and calculates the number of executable instructions in the source code. Many studies have shown a moderate correlation between the lines of code in a module and the faults present in that module [5].
 - McCabe Cyclomatic Complexity (MCC) [16] metric - Cyclomatic complexity is a source code complexity measurement that is calculated by measuring the number of linearly-independent paths through a program module. The average value of the Cyclomatic Complexity can help identify whether or not a class is more prone to faulty behavior [11]. Cyclomatic complexity was fairly effective in large post-release environments using Object-Oriented languages but not in small pre-release environments with procedural languages [5].
 - Halstead [17] - Halstead measures the program vocabulary, length, effort, difficulty through the number of operands and operators present. Halstead’s metrics reported poor results and were estimated inappropriate for fault prediction [5].

- **Object-Oriented Metrics**: Object-Oriented metrics are the most used metrics in the studies of fault prediction. They are designed to measure attributes of source code developed in Object-Oriented languages. One of the most used is the Chidamber and Kemerer suite [18]. The CK suite includes these metrics:
 - Coupling between objects CBO - Measures the degree to which methods declared in one class use the instance variables or methods defined in another class.
– Depth of an inheritance tree DIT - The distance of this object from the base class (Object) in the inheritance tree.
– Response for a class RFC - It is defined as the sum of the number of methods in one class and the number of remote methods called by this class.
– Weighted methods per class WMC- Is an object-oriented metrics that measures the complexity of a class. It is often calculated as the sum of the complexity of all the methods included in the class.
– Number of children - Is calculated as the number of immediate subclasses in the class hierarchy.
– Leak of cohesion of methods - Measures the dissimilarities between the methods in one class.

Object-oriented metrics are considered as good fault predictors [5].

- Process Metrics: Are metrics like process, code delta, code churn, history and developer metrics. These metrics are usually extracted from the combination of source code and repository [5] [19].

2.4 Fault prediction techniques

Fault prediction techniques are classifiers that use inputs such as previous fault information and software metrics to classify the current modules of the system as fault-prone or non-fault-prone. In the literature, there are two well-known categories of prediction methods: Statistical Methods and Machine Learning Methods. We will now describe one representative method for each of these categories.

2.4.1 Statistical Methods

Logistic Regression

Logistic regression [20] is the most commonly used statistical method [21]. This method can predict the dependent variable from a set of independent variables. We are interested in using binary logistic regression. In binary logistic regression, the dependent variables tend to be binary, just as in our case where we are trying to define if one module is faulty or not. The independent variables that can be used to predict the faulty modules are the metrics described above. There are two types of logistic regression, univariate logistic regression and multivariate logistic regression.

- Univariate logistic regression formulates a mathematical model that represents the relationship between the dependent variable and each of the independent variables.
- Multivariate logistic regression is what is used to construct a fault prediction model. In this method, the metrics are used in a combination. Multivariate logistic regression is calculated in the Equation 1

\[
prob(X_1, X_2, ..., X_3) = \frac{e^{(A_0 + A_1 X_0 + ... + A_n X_n)}}{1 + e^{(A_0 + A_1 X_0 + ... + A_n X_n)}}
\]

(1)

Where prob is the probability of a module being classified as faulty and \(X_i \) are the independent variables. Univariate logistic regression is just a special case an in the Equation 2

\[
prob(X_1, X_2, ..., X_3) = \frac{e^{(A_0 + A_1 X_0)}}{1 + e^{(A_0 + A_1 X_0)}}
\]

(2)

There are two methods that can be used for the selection of the independent variables. The Forward selection which examines the variables one by one at the time of entry. Backward elimination, on the other hand, includes all the variables to the model from the start. It then deletes the variables one by one until a stop criterion is fulfilled. The backward elimination is reported to perform slightly better than the forward selection in the fault prediction problem [21].
This thesis is using the Logistic Regression implementation provided by WEKA \(^1\) API in the classifier SimpleLogistic \([22]\) \([23]\). In this classifier builds a multivariate, forward selection linear logistic regression model.

2.4.2 Machine Learning Methods

Machine learning methods make use of example data or past algorithms to solve a given problem \([24]\). In our study, we want to use machine learning to predict whether a specific module will be faulty or not based on the previous fault data collected and the metrics collected from the project.

Naive Bayes Classifier

Naive Bayes is a classifying machine learning technique that is not only easy to implement but also very efficient in the fault prediction problem \([3]\). Grounded on the Bayesian Theorem, this method will rule if an object is part of a specific category based on the features of that object. Similarly, for the software fault prediction model, the method classifies the modules as fault-prone or non-fault-prone based on the metrics measured in the modules \([25]\). Moreover, the Naive Bayesian Theorem states as follows in Equation 3

\[
P(C|F_1, F_2, ..., F_n) = \frac{P(C)P(F_1, F_2, ..., F_n|C)}{P(F_1, F_2, ..., F_n)}
\]

Where:

- \(P(C|F_1, F_2, ..., F_n)\) is the probability of observing a certain category, faulty or non-faulty, given certain values of metrics.
- \(P(C)\) is the probability of observing a certain category, faulty or non-faulty.
- \(P(F_1, F_2, ..., F_n|C)\) is the probability of encountering these metric values in this specific category.
- \(P(F_1, F_2, ..., F_n)\) is the probability of observing these metric values alone.

Assuming independence so that the metrics are independent from each other, equation 4 can be written:

\[
P(C|F_1, F_2, ..., F_n) \sim P(C)\prod_{i=1}^{n} P(F_i|C)
\]

The probability of observing the category of faulty or non-faulty given the metric values is proportional to the probability of observing this category multiplied by the probability of observing metric 1 \((F1)\) in the category \(C\) multiplied by the probability of observing the metric 2 \((F2)\) in the category \(C\) and so on for each feature \(F\).

What the Naive Bayes classifier does is that whenever a new module is introduced to the new releases, it can calculate based on its metrics, the likelihood that this module is faulty or not. It will then compare the probabilities of the two classes and the one with the largest value is the category that is predicted.

\[cassify(f_1, f_2, ..., f_n) = \max \arg P(C = c)\prod_{i=1}^{n} P(F_i = f_i|C = c)\]

The model is first fed with training data which include the calculations of the metrics for the modules in the project and the information whether or not these modules resulted faulty in previous releases. Later in the process, this data is used to predict whether in the new release the modules will be faulty or not.

This thesis is using WEKA’s API implementation for Naive Bayes in the class appropriately named NaiveBayes \([26]\).

\(^1\)https://www.cs.waikato.ac.nz/ml/weka/
2.5 Prediction Method evaluation

This section is dedicated to the description of the methods and measures used to evaluate the performance of the prediction methods. The prediction methods are evaluated using an implementation of WEKA API 10-fold cross-validation into the proposed fault prediction tool. From the cross-validation results, we have extracted the following measurements to use in the evaluation of the prediction methods. Selection of these evaluation measurements is based on previous studies on that rank the best measures to use in the context of fault prediction models evaluation [9].

2.5.1 WEKA 10-folds cross-validation

Cross-validation is a statistical method used to evaluate machine learning algorithms. During the evaluation, the dataset is divided into two main segments: one segment used for training the model and the other segment used for testing classification of the model. The most common form of cross-validation is the k-fold cross-validation. This kind of validation divides the dataset into k equal folds. The first k-1 folds are used to train the model while the last fold is used to test the prediction computed by the prediction method. This process is repeated k times to ensure that the training and testing sets are crossed over and the data points are validated [27].

In the software fault prediction tool, we used WEKA’s 10-fold cross-validation. The dataset provided is segmented into ten equal folds. Additionally, WEKA stratifies the data. This means that the data is rearranged to ensure a uniform distribution of each class. Nine out of the ten folds train the prediction model. Later, the trained model is used to predict fault-proneness in the last fold. The results gathered from the prediction of the last fold are compared with the real classes of the fold and the evaluation metrics are computed. These steps are repeated ten times.

2.5.2 Confusion Matrix

All the necessary information for the prediction models evaluation is found in a confusion matrix [28]. This matrix contains information about the instances classified by the predictor and how they relate to the real class of the instances. The data gathered by this matrix is later used to calculate numerical or graphical evaluations. The data gathered in such matrix [29] are presented in Table 1.

- a - The number of non-faulty modules predicted correctly (true negative).
- b - The number of non-faulty modules predicted incorrectly (false positive).
- c - The number of faulty modules predicted incorrectly (false negative).
- d - The number of faulty modules predicted correctly (true positive).

<table>
<thead>
<tr>
<th>Defect predicted</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect module</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Table 1: Confusion Matrix example

2.5.3 Precision

Precision is the rate of correctly classified instances from all the instances classified in that class [9]. In the fault prediction problem, precision is the rate of correctly identified faulty modules from all the instances classified as faulty as in Equation 6. The same logic is valid for non-faulty predictions in Equation 7.

$$\text{Precision}_{\text{Faulty}} = \frac{\text{Correctly Faulty Classified Instances}}{\text{Overall Faulty Classified Instances}}$$ \hspace{1cm} (6)
\[\text{Precision}_{\text{Non-Faulty}} = \frac{\text{Correctly Non-Faulty Classified Instances}}{\text{Overall Non-Faulty Classified Instances}} \]

(7)

2.5.4 Recall

Recall or Probability of Detection (PD) is the rate of correctly classified instances from all the instances of that class [9]. In the fault prediction problem, Recall is the rate of correctly identified faulty modules from all the real faulty modules as in Equation 8. The same logic is valid for non-faulty predictions in Equation 9.

\[\text{Recall}_{\text{Faulty}} = \frac{\text{Correctly Faulty Classified Instances}}{\text{Overall Faulty Instances}} \]

(8)

\[\text{Recall}_{\text{Non-Faulty}} = \frac{\text{Correctly Non-Faulty Classified Instances}}{\text{Overall Non-Faulty Instances}} \]

(9)

2.5.5 F-measure

F-measure [30] integrates Recall and Precision. In addition, it also includes a weight factor \(\beta \) which is used to regulate the weight given to Recall.

\[\text{F-measure} = \frac{(\beta^2 + 1) \times \text{Precision} \times \text{Recall}}{\beta^2 \times \text{Precision} + \text{Recall}} \]

(10)

\(\beta \) is set to 1 when the weight of Precision and Recall is the same. In the other cases, a bigger \(\beta \) indicates a bigger Recall weight. \(\beta \) provides this measure with a better flexibility than the ones mentioned previously by manipulating the cost assigned to Recall and Precision [29].

2.5.6 ROC Curve

In general, in module classification, a higher True Positive Rate (TP) will always be at the expenses of a higher False Positive Rate (FP) and the other way around. The true positive rate represents the probability of detection of a faulty module and the false positive rate is the portion of non-faulty-modules that are classified as fault-prone. Receiver Operating Characteristic (ROC) Curve depicts the relationship between the TP and FP and is a graphical generalization of the more numerical measurements discussed above [31]. It offers a visual representation of the probability that a classifier will correctly classify a module as faulty and the probability that this classification is a false alarm.

![ROC Curve Illustrations](a) ROC curve example (b) ROC curve sections)

Figure 3: ROC curve illustrations

Figure 3a is a graphical example of how the ROC Curve may look. The orange line represents a random classification. A classifier who labels the modules as fault-prone or non-fault-prone purely
based on randomness will provide us with a similar looking ROC graph. The green line is an ideal classification where all the modules are correctly classified. This represents the best classifier that we can use. Whereas the blue line represents a more realistic view of the ROC curve. This is the kind of curve that we are hoping to see during the evaluation of the fault prediction methods used in this study.

A numeric representation of the ROC curve is AUC (Area Under a Curve) which is often written as the area under the ROC curve. Therefore, this evaluation method is directly connected to the ROC method. Additionally, not all regions under a curve are interesting for the software prediction problems. The figure 3b represents the four main regions in a ROC graph. The region with low rates of True Positives (Region C), the region with high rates of False Positives (Region B), or both indicates poor performance for the classification models. Thus, it is desirable that a classification method indicates the highest value under the area A. Studies [9] have shown that the area under region A is a more reliable measurement of the performance of the method than the area under the entire curve of ROC.

2.5.7 Precision-Recall Curve

Another way to graphically assess the quality of the classifiers is by using a Precision-Recall Curve. This curve depicts the relationship between the Precision in the y-axis and the Recall, also known as the True Positive rate, in the x-axis. The area of most interest in this curve is the one where there are a high recall and a high precision rate. According to studies [9], this curve may reveal deeper performance differences between the classifiers. In spite of that, this is not a better evaluator than ROC curve but it comes in handy when the results form the ROC curve are not conclusive enough.
3 Related Work

A wide range of studies provides evidence about the most successful methods, metrics, and techniques used to achieve good software fault prediction. All these studies provide a good body of knowledge and share lessons learned for those who want to adopt fault prediction in practice [15]. In this section, we decided to review mostly literature review studies since we feel that they include all the necessary progress made in this area. All literature review papers below are presented in a chronological order according to the publishing date.

The main purpose of Wahyudin et al. [15] study was to provide a review for existing studies in the software fault prediction area in order to facilitate the use of software fault prediction in a particular organization or project. They proposed a framework that takes care of this problem. They concluded that many of the reviewed studies did not take into account the problem of missing fault information that many practitioners face in their projects and thus, they provide incomplete results. An important issue raised in this paper is that, apart from the results provided to the practitioners by the prediction models, they also need an additional measure to indicate the reliability of these results. They need to be sure that they are not endangering product quality by missing critical defects because the prediction falsely labeled a module as non-fault-prone.

Catal [3] reviewed the most relevant studies from 1990 up to 2009 in terms of the fault prediction method they used, metrics they selected and the source code they used. This literature review concluded that in most of the studies, the most popular metrics were method level metrics and the most popular prediction models were machine learning models. They also identified Naive Bayes as a robust machine learning mechanism for software fault prediction.

Hall et al. [32] reviewed 36 studies with the main intention of discovering what impacts the prediction model performance. This study found evidence that the models performed better in larger contexts and that the maturity level does not have any effect on the performance of the model. A combination of static, process and Object-Oriented metrics helped the prediction models perform better. Process metrics alone did not perform as well as expected and the Object-Oriented metrics performed best. Naive Bayes and Logistic Regression are the modeling techniques that gave the best results.

According to Radjenović et al. [5], the performance of a software prediction model is influenced mostly by the choice of the metrics. The difference in performance between different techniques is not relevant but the difference of performance for different metrics is considerable. This study aimed to depict the state-of-art available on the metrics in software failure prediction. They studied 206 studies. The overall effectiveness of size metrics was estimated as moderate with a stronger correlation with pre-release studies and small projects. The complex metrics were not considered bad fault predictors with the McCabe metric leading the category. Moreover, the Halstead metrics did not provide effective results. Finally, the object-oriented metrics are the most used and the most effective. More specifically, the CK metric suite provided the highest performance among Object-Oriented metrics. Some of the CK metric suite where classified as not reliable. The MOOD and QMOOD metrics provided poorer performance. Process metrics resulted more likely to predict post-release faults.

Malhotra [6] on the other hand studied the machine learning techniques used for fault prediction. In this study, it was clear that Machine Learning techniques outperform the other statistical techniques. The best performance metrics were the Object-Oriented metrics in compliance with the other studies in this area. Malhotra also stated that the application of the machine learning techniques in software fault prediction is still limited and they encouraged new studies to be carried out in order for the results to be easily generalized.

Based on the findings of the different literature reviews for the fault prediction problem our study aims to introduce a software fault prediction tool built on the prediction methods known to literature to perform the best. Furthermore, this study will contribute to the body of knowledge of the prediction methods performance by evaluating the Naive Bayes and Logistic Regression predictors when used in our tool. Through this process, we will also pay close attention to the metrics that are the easiest to be collected.
4 Method

In order to address the problem in Section 1.1, the thesis is conducted according to the system development methodology presented in [33]. It should be noted that although it is a development methodology, there is an evaluation component of the methodology (step 5), covering the evaluation of prediction performance. Moreover, in the analysis and design of the system (step 3 below), the thesis reflects on the ease of capturing the metrics used for making predictions. The system developed is an Eclipse Plug-in thus from now one we will refer to the system as the plug-in.

The following steps in the plug-in development methodology are carried out:

4.1 Construct a Conceptual Framework

The construction of a conceptual framework in this thesis work is concerned in building a solid knowledge of the problem’s domain and creating and stating meaningful research questions that help shape the rest of the work. To present a solid state-of-art knowledge, we aimed at reviewing the most important studies in software fault prediction, metrics used for software fault prediction and prediction methods. For the purpose of this thesis, we decided to focus our main attention to the literature review studies on software fault prediction. We argue that the literature review studies depict a clear picture of the studies conducted through the years in the software fault prediction area. Furthermore, through these studies, we identified the most relevant papers to our thesis and discarded the most non-relevant ones.

The collection of the software fault prediction literature studies was conducted through the databases “Scopus” and “IEEEExplore”. In both databases, the query used to find the papers was: “software fault prediction” OR “software defect prediction” OR “bug prediction” AND “literature review”

Each collected paper is considered relevant if it concerns one of our main topics i.e: software fault prediction, software metrics or prediction methods. Moreover, we only considered papers written in English and that presented final results for each study reviewed. All the relevant papers collected through this process are reviewed thoroughly and the findings are presented in the Section 3.

Lastly, in light of the knowledge gathered, this thesis is focusing on responding to the three research questions presented in Section 1.1

4.2 Develop a Plug-in Architecture

This phase is dedicated to designing a solution for the problem stated in the previous phase.

The aim of this thesis is to answer all three research questions presented in Section 1.1 through the development of a software fault prediction tool.

The proposed tool is an Eclipse plug-in that can predict faulty modules in Java developed projects. The environment and the language chosen are both very commonly used, thus providing a solution for many developers. Furthermore, this combination is also very comfortable given the author’s knowledge and experience, thus increasing the chances of achieving quality results.

4.3 Analyze and design the Plug-in

In this phase, we analyze the requirements and the design of the tool.

Now it is important to define what will the tool measure and how will the results be produced and measured. As discussed in the Section 2.1, there are three major components in the software fault prediction process: software metrics, fault data, and prediction methods. During the design process, we carefully weighed the options for each component.

4.3.1 Software Metrics Identification

For the identification of the metrics to be used by the prediction tool, we first identified all the software metrics used for software fault prediction throughout the literature. All the metrics were then categorized according to the type of measurements they perform in the code and their
reported performance in the literature. Afterwards, for every metric group, we searched for an
Eclipse compatible tool that can ease the collection of these metrics.

The selection criteria for the metrics collection tool are:

- Tools collecting highest performing metrics are preferred to the others.
- The tool has to be open source.
- The tool can be integrated into an Eclipse environment.
- The tool can collect metrics for Java code.

The selected tool is an open source called Metrics 1.3.10. It is also an Eclipse plug-in which
collects most of the metrics used in software fault prediction. Nevertheless, this tool fails to
collect Halstead metrics but provides a wide range of object-oriented metrics. According to the
studied literature, object-oriented metrics are the ones that provide the highest performance in
fault prediction and the Halstead metrics are often reported as weak predictors. Thus, we do not
consider the leak of the Halstead metrics as a downside.

Later on, based on the reflections on the gathering of the metrics depicted in Section 5 the
selected metrics are from the metrics: Lines of code, McCabe’s cyclomatic complexity, and from
the CK metrics suite: Weighted methods per class, Depth of inheritance tree, Number of classes,
Direct class coupling, Lack of cohesion of methods.

4.3.2 Project Identification

The projects selected in this step are the ones that will ultimately be used to test the fault
prediction tool. They will also be used to reflect on the performance of the fault prediction models
implemented in the tool. The selection criteria for the identification of these projects are:

- The source code of the project can be accessed.
- The source code of the project is written in Java.
- The fault information (bug reports) of the project can be accessed.
- Relevant code metrics can be accessed.

Open source projects are preferred for research as their results can be validated through rep-
etition of the studies. Moreover, open source projects are often more creative and fast-changing
since the defects are fixed rapidly [34].

Projects matching the criteria are provided by the Metrics Repository [35]. It offers several
open source projects together with real bug reports and metrics relevant to our study. In each of
the projects there is data for different versions, making this a great source of information. This
is a dataset that is also widely used in previous studies of software fault prediction. We selected
four projects to work within this study: Tomcat, Ivy, Ant, Log4J. We feel that these projects are
a good representation of different kinds of data, making our study complete and representative.

4.3.3 Prediction Methods Identification

The methods selection is based on a careful literature review. The main requirement for the
selection was the prediction performance. Given the great number of classifiers used for fault
prediction, it is important for this study to compare the performance of two of the classifiers which
are expected to perform better than the all the others. Moreover, these classifiers are implemented
in a tool that is expected to be compatible with a daily work environment and therefore it is only
suitable to use the best classifiers in order for the predictions to be as accurate as possible.

Naive Bayes and Logistic regression are chosen for implementation and evaluation in this study.
This decision is greatly influenced by the results of Malhotras [6] and Halls [32] literature reviews.

2https://github.com/qxo/eclipse-metrics-plugin
4.4 Build the plug-in

For the implementation of the software fault prediction plug-in, we decided to modify the existing code of Eclipse plug-in used to gather the metrics. This method ensures that both functions of metrics gathering and fault prediction are integrated together smoothly and effectively. This decision also helped in speed the time of building the project since it provided us with an existing project configuration and infrastructure. Subsequently, the plug-in was developed in an incremental fashion. The main functions were identified and implemented in iterations. Every iteration included testing and feedback from the supervisor of this thesis. The identified iterations are listed below.

1. Modification of Metrics 1.3.10 to adapt to the selected metrics.
2. Implementation of the new Software Prediction Views
3. Implementation of the prediction methods (Integration with WEKA).
4. Implementation of the evaluation functions.

4.5 Experimentation, Evaluation and Observation

After the final product is created, it is time to experiment to ensure that everything is running as it should be. Furthermore, as an important part of this study, the evaluation of the implemented prediction methods through the tool is conducted.

4.5.1 Experimentation

During this phase, the plug-in is tested on different open source projects to ensure it’s smooth running in different projects. All the open-source projects identified in section 4.3.2 are imported in different running instances of the plug-in and predictions for each of them are made.

4.5.2 Evaluation

This phase describes the methodology used to evaluate the prediction methods implemented in the plug-in. All the evaluations are done through our tool with the help of WEKA API. The steps undertaken to complete the evaluation are listed below:

1. Import and build the projects data source in a running instance of the plug-in.
2. Export historic metrics and fault information for the projects in different versions.
3. Build .arff files for each of the datasets.
4. Run the prediction functions on each of the projects with different datasets (same project but different historical versions).
5. Collect and save evaluation measurements for each dataset.

4.5.3 Observation

In order to be able to draw a conclusion on the data gathered from the evaluation section, we designed a set of tables that are presented in Section 7. The purpose of the tables is to present the evaluation information in a more readable and comprehensive way. The tables grouped the information by evaluation measures, prediction method and prediction class. The observation of these tables helped to create an opinion on the performance of both prediction methods. The conclusions of such work will be presented in Section 7.
5 A Reflection on Metrics Gathering

Metric gathering is the best way to gather an inside information about your software. As mentioned numerous times previously, this information can be used to predict if part of the software is going to manifest faulty behaviors. Even though this is an important part of the fault prediction process, it can be a tedious and difficult task. One of the biggest claims of our tool is that it will offer automation of the prediction process so that it can be used in the everyday developer’s workspace. For this to happen, it is important to identify which of the metrics are easy candidates for automatic gathering and what tools can be integrated into the environment that can ease the process of gathering. All of these concerns are addressed as a response to RQ 1.

To answer the first research question, a reflection of the experience during metrics gathering in the development of this tool is presented. It is important to clarify that our research for metrics is driven by the fact that our tool is built to work in an object-oriented environment.

The metrics gathering process has begun with the search for a reusable tool for automatic metric collection that can be ultimately used by the fault prediction tool. The metrics gathering tool has to convey the set of rules described in Section 4.3.1. For the sake of the discussion, we are re-proposing the rules again in this Section:

- Tools collecting highest performing metrics are preferred to the others.
- The tool has to be open source.
- The tool can be integrated into an Eclipse environment.
- The tool can collect metrics for Java code.

This research led to a few different metric gathering tools that can gather different kinds of metrics. Table 2 shows all the tools we considered as a possibility for gathering metrics for software fault prediction.

<table>
<thead>
<tr>
<th>Tool Name</th>
<th>Licence</th>
<th>Java Language supported</th>
<th>Metrics supported</th>
<th>Integrable with Eclipse</th>
</tr>
</thead>
<tbody>
<tr>
<td>jpeek</td>
<td>Free</td>
<td>Yes</td>
<td>Cohesion Metrics</td>
<td>No</td>
</tr>
<tr>
<td>cloc</td>
<td>Free</td>
<td>Yes</td>
<td>Lines of code</td>
<td>No</td>
</tr>
<tr>
<td>CodeAnalyzer</td>
<td>Free</td>
<td>Yes</td>
<td>Line of code</td>
<td>Yes</td>
</tr>
<tr>
<td>CCCCC</td>
<td>Free</td>
<td>No</td>
<td>Lines of code</td>
<td>No</td>
</tr>
<tr>
<td>Ohcount</td>
<td>Free</td>
<td>Yes</td>
<td>Lines of code</td>
<td>No</td>
</tr>
<tr>
<td>Metrics</td>
<td>Free</td>
<td>Yes</td>
<td>Lines of code, Complexity, CK metrics suite, Robert Martin suite</td>
<td>Yes</td>
</tr>
<tr>
<td>JMT</td>
<td>Free</td>
<td>Yes</td>
<td>Lines of code, CK metrics suite</td>
<td>Yes</td>
</tr>
<tr>
<td>cjmk</td>
<td>Free</td>
<td>Yes</td>
<td>CK metrics suite</td>
<td>Yes</td>
</tr>
<tr>
<td>Cyvis</td>
<td>Free</td>
<td>Yes</td>
<td>Lines of code, Cyclomatic Complexity</td>
<td>Yes</td>
</tr>
<tr>
<td>JHawk</td>
<td>Not-Free</td>
<td>Yes</td>
<td>Lines of code, Cyclomatic Complexity, CK metric suite, Halstead</td>
<td>Yes</td>
</tr>
<tr>
<td>JavaNCSS</td>
<td>Free</td>
<td>Yes</td>
<td>Cyclomatic Complexity</td>
<td>Yes</td>
</tr>
<tr>
<td>SLOCCount</td>
<td>Free</td>
<td>Yes</td>
<td>Lines of code</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2: List of tools for metric gathering

We were able to find 9 tools that can collect Lines of Code, 4 tools that can collect Cyclomatic Complexity metrics, 4 tools that CK suite metrics, 1 tool that collect cohesion metrics, 1 tool that collects Robert Martin suite metrics and 1 tool that collects Halstead. With this results we
consider Lines of code, Cyclomatic Complexity and CK suite the easiest metrics to automatically
gather through existing tools. A further reflection on metrics gathering was that it is very difficult

to find tools that collect Halstead metrics. We found one tools that can collect Halstead metrics
but it is not open source and thus violates one of the rules of tool selection.

This led to the decision to not use Halstead metrics in the fault prediction process. On the
other hand, the considerable number of tools available for collecting traditional metrics such as
Lines of code, McCabe cyclomatic complexity, and CK suite metrics together with the description
of such metrics as good predictors in literature [5] reinforced our idea of using these metrics to
predict faulty modules in our fault prediction tool.

A tool that proved to be of great help in this study is the Metrics 1.3.10 Eclipse plug-in. This
is a tool easy to use and gathers different kinds of metrics. Moreover, Metrics is an open source
tool, written in Java with the same nature (plug-in) tool we intended to develop. These are the
reasons that led us to the decision of using this tool as the foundation to build our new tool upon.
In order to reflect our finding on the easiest metrics to collect, we modified the Metrics source code
to extract only Lines of code, McCabe’s cyclomatic complexity, and from the CK metrics suite:
Weighted methods per class, Depth of inheritance tree, Number of classes, Direct class coupling,
Lack of cohesion of methods. These metrics are used as the basis of prediction in our plug-in and
as the basis for the prediction methods evaluation.
6 A Software Fault Prediction Tool

In this section, we describe our new Software Fault Prediction Tool for Eclipse IDE as a response to RQ 2. This is an Eclipse IDE plug-in called SFPPlugin that can be used to optimize quality assurance resources while still improving the quality of the software by predicting faulty modules in the projects.

6.1 SFPPlugin Components

The purpose of this plug-in is to predict the modules that have a high probability of containing faults in a specific project. To make this happen, we need a few components as described in Section 2.1 and clearly depicted in Figure 2. The main parts are training data (historic metrics and historic fault data), new metrics (calculated from the source code) and the prediction method.

During the development of the SFPPlugin, we have modified the code of an existing metric gathering Eclipse plug-in: Metrics 1.3.10 to add the prediction capability. Metrics 1.3.10 measures the source code attributes in the form of metrics. This tool allows the gathering of a lot of metrics and in different levels of project hierarchy (project, package, class, method). For the purpose of our implementation, we extracted only the metrics that are relevant to us (LOC, McCabe Complexity, CK suite) at the level of class metrics.

These metrics make for the new metrics part of the prediction process. Another input necessary for the prediction is the training data. These data should be recorded by the tool users in an Attribute-Relation files (.arff) file that should contain metrics from the previous versions of the software matched with bug reports from these versions. This file will contain the description of the instances and their attributes used for the prediction. All the attributes present in this file are described in Table 3.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loc</td>
<td>Lines of code metric</td>
</tr>
<tr>
<td>mccabe</td>
<td>McCabe cyclomatic complexity metric</td>
</tr>
<tr>
<td>wmc</td>
<td>Weighted methods per class metric</td>
</tr>
<tr>
<td>dit</td>
<td>Depth of inheritance tree metric</td>
</tr>
<tr>
<td>noc</td>
<td>Number of classes metric</td>
</tr>
<tr>
<td>dcc</td>
<td>Direct class coupling metric</td>
</tr>
<tr>
<td>lcom</td>
<td>Lack of cohesion of methods metric</td>
</tr>
<tr>
<td>class</td>
<td>Prediction class (true for faulty modules and false for non-faulty ones)</td>
</tr>
</tbody>
</table>

Table 3: Arff attribute description

The training data is used to train a Naive Bayes predictor and a Logistic Regression predictor. For the implementation and the evaluation of the predictors, we have integrated WEKA API into the SFPPlugin. The trained predictors are then used to predict new instances using metrics gathered from the source code. The results of the predictions are displayed in a new view. Figure 4 is an overview of the flow graph SFPPlugin and it is a more elaborate version of the graph in Figure 2 adapted to our specific tool.
6.2 SFPPlugin Users Perspective

From the users perspective, the plug-in is easy to use and understand. A first prerequisite inherited from the Metrics 1.3.10 plug-in is that the project needs to be opened in an Eclipse perspective that shows Java resources as source folders, that can be Java or Java Browsing perspectives. The plug-in needs to be firstly enabled. By right-clicking on the project, the user needs to open the properties options for the project. The Fault Prediction properties interface will look like as in Figure 5. The user needs to check the Enable Fault Prediction check box.

Next, the user needs to add the training data to the project. The training data is entered in a .arff file. Before the prediction, the user needs to save the Arff file in the root of the project and the file needs to be constructed according to the format shown in Figure 6. The attributes of the instances are described in Table 3 and under the @Data section, the user needs to type the metrics and the fault information of the previous versions of the software. At this point, the user has to rebuild the project as a way of allowing the plug-in to read the fault information file just added.
Now everything is set up and ready for conditioning fault prediction activities. Under the Eclipse views in Figure 7, the user can select Fault Prediction View. The Fault Prediction view looks like in Figure 8. All the metrics used for the prediction of fault-proneness of the classes are listed in this view by class files. These are the metrics calculated from the source code of the current version of the project. To see the predictions made for each entry of the list, the user must select the button on the top right of the view. This button opens a new view shown in Figure 9, very similar to the first one, but now it includes the results of the prediction for the Naive Bayes and the Logistic Regression predictors. The user can see the predictions for all the class files and for both the predictors in one view. A class is labeled as “fault-prone” if the predictor concluded that it may be possible to be a fault in this class according to historic data and to source code metrics or it is labeled as “non-fault-prone” otherwise. The user can use this information to manage his quality assurance resources in a more efficient way.

The results provided by the predictors will be different from one another. As will be demonstrated later in the Section 7, the performance of the predictors differs from dataset to dataset. The decision of which predictions is better to use cannot be a personal preference of the project manager. To ease the choice and to provide further insight on how the predictors are performing on the users dataset, we also implemented a simple evaluation view. On the top right of the Prediction Results View, the user can select the Evaluate Prediction button and a view similar to the one in Figure 10 will appear. This view is really simple and only prints out basic performance information provided by WEKA after performing a 10-fold cross-validation on the training data provided by the user. The view does not involve any kind of interpretation of the results. The user is expected to draw his own conclusions.

However, this study also includes a performance evaluation of the Naive Bayes and Logistic Regression predictors in Section 7 on different kinds of open source datasets. This evaluation is followed by a discussion that draws general conclusions of which of the predictors has the best performance based on the datasets considered in this study.
Figure 7: Show Fault Prediction View

Figure 8: Fault Prediction View
A step by step description of how a user can interact with the SFPPlugin is shown below:

1. Open Java Perspective;
2. Enable Fault Prediction;
3. Add the training data in format .arff to the root of the project;
4. Rebuild Project;
5. Open Software Fault Prediction view;
6. Select the project;
7. Wait until all the metrics are calculated;
8. Click on the prediction button;
9. The prediction can be seen in the Prediction Results view;
10. Click the Evaluation button;
11. Evaluation for both methods using the provided dataset can be seen in the Evaluation view.
6.3 SFPPlugin Advantages

We believe that this plug-in is a great addition to the developers' toolbox in their day-to-day work. It will increase the developer's confidence and efficiency while coding and testing by directing their attention to the fault-prone modules. The fault prediction problem is complex and greatly depends on many factors that are sometimes impossible to predict during the development of such tools, like the balance of the data or the properties of the code. These factors affect the performance of different predictors in different ways. SFPPlugin uses more than one predictor for the prediction of the same data providing this way a degree of flexibility on different kind of data. The users of the SFPPlugin can choose to which of the prediction to take into account based on the evaluation of both predictors. Furthermore, since SFPPlugin is using WEKA API it can be very easy to add new prediction methods and evaluation measurements in the later versions of the tool. We are opening the source code for the SFPPlugin\(^3\) in hope that it can help further studies in this field. Contributions are always welcomed to improve or add new features to this tool.

\(^3\)https://github.com/boralamec/SFPPlugin
7 Prediction Method Evaluation Results

The objective here is to show the difference in performance between the fault prediction methods Naive Bayes and Logistic Regression based on the tool we created. This section will also serve as a response to RQ 3. The classifiers are evaluated in four open source projects: Tomcat, Ivy, Ant, Log4J. The metrics and bug reports for these projects are imported from the Metrics Repository 0.2.2 contributed by Jureczko [35]. The data collected for each dataset and the distribution of the data between faulty classes and non-faulty ones are depicted in Table 4. Metrics Repository 0.2.2 contained a few versions of the projects. More specifically, it contained 1 version for Tomcat, 3 versions for Ivy, 5 versions for Ant, and 3 versions for Log4J. The amount of data between the different versions of the software varies from 122 records for the smallest dataset (Log4J v1.1) to 1162 for the biggest one (Tomcat v6.0.389418). For each dataset, we have combined the data of all available versions to form a bigger dataset. This is in hope to get an insight on how the classifiers perform in bigger datasets and to conclude if it's better for the project manager to combine data from different versions or just the last version.

The data distribution includes datasets with imbalanced data such as Tomcat (v6.0.389418), Ivy (v1.4 & v2.0), Ant (all versions), and datasets with more balanced data Ivy (v1.1) and Log4J (all versions). It is important to mention that we are aware of the problems that come during evaluation based on imbalanced data [36]. However, the evaluation of the classifiers in this study is focusing on the performance of these classifiers in real datasets used by companies that will use SFPPlugin. This data may be very well imbalanced or balanced depending on different projects. One of the reasons why we selected datasets with different distribution is so that we can represent both situations.

The methods are evaluated using the SFPPlugin implemented in the study. The tool uses WEKA API and 10-fold cross-validation. We have run the tool one time for each of the datasets exported from the Metrics Repository. Each dataset is divided into 10 segments, 9 of them are used as training sets and the last one is used as a testing set. The results gathered from each run are gathered and organized in the following subsections.

<table>
<thead>
<tr>
<th>Total</th>
<th>Faulty</th>
<th>Not-Faulty</th>
<th>Faulty Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomcat v6.0.389418</td>
<td>1162</td>
<td>77</td>
<td>1085</td>
</tr>
<tr>
<td>Ivy v1.1</td>
<td>135</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>Ivy v1.4</td>
<td>321</td>
<td>16</td>
<td>305</td>
</tr>
<tr>
<td>Ivy v2.0</td>
<td>477</td>
<td>40</td>
<td>437</td>
</tr>
<tr>
<td>Ivy All</td>
<td>933</td>
<td>119</td>
<td>814</td>
</tr>
<tr>
<td>Ant v1.3</td>
<td>187</td>
<td>20</td>
<td>167</td>
</tr>
<tr>
<td>Ant v1.4</td>
<td>295</td>
<td>40</td>
<td>255</td>
</tr>
<tr>
<td>Ant v1.5</td>
<td>401</td>
<td>32</td>
<td>369</td>
</tr>
<tr>
<td>Ant v1.6</td>
<td>523</td>
<td>91</td>
<td>432</td>
</tr>
<tr>
<td>Ant v1.7</td>
<td>766</td>
<td>115</td>
<td>651</td>
</tr>
<tr>
<td>Ant All</td>
<td>2142</td>
<td>298</td>
<td>1844</td>
</tr>
<tr>
<td>Log4J v1.0</td>
<td>153</td>
<td>34</td>
<td>119</td>
</tr>
<tr>
<td>Log4J v1.1</td>
<td>122</td>
<td>37</td>
<td>85</td>
</tr>
<tr>
<td>Log4J v1.2</td>
<td>282</td>
<td>189</td>
<td>93</td>
</tr>
<tr>
<td>Log4J All</td>
<td>557</td>
<td>260</td>
<td>197</td>
</tr>
</tbody>
</table>

Table 4: Data distribution

7.1 Incorrectly classified instances

The first measure of the evaluation is the percentage of incorrectly classified instances for both classifiers, and it is represented in Table 5. The incorrectly identified instances are both faulty instances incorrectly classified as non-faulty-prone and non-faulty instances incorrectly classified
as faulty-prone. A quick glance at the table shows that Naive Bayes has a higher percentage of incorrectly classified instances on all the evaluated datasets. The difference between the classifiers goes as high as 9,056%.

7.2 Confusion Matrix Rates

Table 6 is a representation in terms of rate of the confusion matrix for each project.

- **TP** - True Positive is the rate of instances that are correctly identified as faulty;
- **FP** - False Positive is the rate of the instances that are incorrectly identified as fault-prone. That is non-faulty modules classified as fault-prone;
- **TN** - True Negative is the rate of instances that are correctly identified as non-fault-prone;
- **FN** - False Negative is the rate of instances that are incorrectly identified as non-fault-prone. That is faulty modules that are classified as non-fault-prone.

This table is a good representation of how each predictor has labeled each instance and the rate of the correctness of each label. Hence, this table is a great source of information for many other evaluation measurements.

The main objective of the fault prediction process is to minimize the quality assurance effort and costs by orienting the tests to more fault-prone modules. Although this is true, the predictions are far from perfect and always include a percentage of incorrectness as clearly demonstrated in Table 5. However, this percentage does not provide enough information for the classifier evaluation. The cost of classifying a faulty module as non-fault-prone one is different from the cost of classifying a non-faulty module as a fault-prone one. The later is mostly a matter of increased resource cost since the project manager will instruct to test this module thoroughly given that according to the prediction it may have some faults, even though it does not contain any. This kind of errors will not affect the final quality of the product but are critical in projects with budget constraints. On the other hand, classifying a faulty module as non-fault-prone may risk the final quality of the product. The mislabeled module may not be tested thoroughly and the faults may be detected later in the process or even pass undetected until the user encounters them. The cost of such scenarios is huge, especially in a safety critical system.

As can be seen, a prediction method with a low FN is very important in the fault prediction problem. From the data gathered, Naive Bayes had the lowest FN rates in most of the datasets like

<table>
<thead>
<tr>
<th></th>
<th>Naive Bayes</th>
<th>Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomcat v6.0.389418</td>
<td>10,499%</td>
<td>6,626%</td>
</tr>
<tr>
<td>Ivy v1.1</td>
<td>35,555%</td>
<td>29,629%</td>
</tr>
<tr>
<td>Ivy v1.4</td>
<td>8,411%</td>
<td>5,296%</td>
</tr>
<tr>
<td>Ivy v2.0</td>
<td>10,691%</td>
<td>8,805%</td>
</tr>
<tr>
<td>Ivy All</td>
<td>14,898%</td>
<td>12,754%</td>
</tr>
<tr>
<td>Ant v1.3</td>
<td>12,299%</td>
<td>10,695%</td>
</tr>
<tr>
<td>Ant v1.4</td>
<td>24,905%</td>
<td>15,849%</td>
</tr>
<tr>
<td>Ant v1.5</td>
<td>9,226%</td>
<td>8,728%</td>
</tr>
<tr>
<td>Ant v1.6</td>
<td>17,017%</td>
<td>16,826%</td>
</tr>
<tr>
<td>Ant v1.7</td>
<td>12,663%</td>
<td>11,357%</td>
</tr>
<tr>
<td>Ant All</td>
<td>14,052%</td>
<td>13,071%</td>
</tr>
<tr>
<td>Log4J v1.0</td>
<td>15,032%</td>
<td>14,379%</td>
</tr>
<tr>
<td>Log4J v1.1</td>
<td>18,852%</td>
<td>13,934%</td>
</tr>
<tr>
<td>Log4J v1.2</td>
<td>38,297%</td>
<td>24,113%</td>
</tr>
<tr>
<td>Log4J All</td>
<td>32,316%</td>
<td>28,545%</td>
</tr>
</tbody>
</table>

Table 5: Incorrectly classified instances
Logistic regression had the lowest FN rates in fewer datasets like Ivy v1.1, Log4J v1.2, and Log4J All. Log4J v1.0 had the same FN rates for both prediction methods, labeling half of the faulty modules as non-fault-prone. Naive Bayes is also performing better in the True Positive (TP) category, meaning that Naive Bayes is correctly detecting a rate of faulty instances. It presents better rates is 9 out of 15 datasets including Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.4, Ant v1.5, Ant v1.7, and Ant All. Logistic Regression has better True Positive rates in only 5 out of 15 datasets including Tomcat v6.0.389418, Ivy v1.1, Log4J v1.1, Log5J v1.2, and Log4J All. The dataset Log4J v1.0 had the same TP rates for both classifiers.

Dissipate this, Logistic Regression has better rates in the False Positive (FP) category presenting lower values comparing to Naive Bayes is 11 out of 15 datasets including Tomcat v6.0.389418, Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant v1.6, Ant v1.7, Ant All, and Log4J v1.0. Logistic Regression has also better rates in the True Negative (TN) category with lower values compared to Naive Bayes in 13 out of 15 datasets including Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant v1.6, Ant v1.7, Ant All, Log4J v1.0, Log4J v1.1, Log4J v1.2, and Log4J all.

It is also important to notice that the TP rates and the FN rate for datasets Ant v1.4 and Ant v1.5 using the Logistic Regression fault prediction method are equal to 0 and 1 respectively. This means that all the faulty modules are classified as non-fault-prone and just a few of the non-faulty modules are classified as fault-prone.

<table>
<thead>
<tr>
<th></th>
<th>Naive Bayes</th>
<th>Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>Tomcat v6.0.389418</td>
<td>0.247</td>
<td>0.059</td>
</tr>
<tr>
<td>Ivy v1.1</td>
<td>0.349</td>
<td>0.097</td>
</tr>
<tr>
<td>Ivy v1.4</td>
<td>0.125</td>
<td>0.043</td>
</tr>
<tr>
<td>Ivy v2.0</td>
<td>0.350</td>
<td>0.057</td>
</tr>
<tr>
<td>Ivy All</td>
<td>0.185</td>
<td>0.052</td>
</tr>
<tr>
<td>Ant v1.3</td>
<td>0.300</td>
<td>0.054</td>
</tr>
<tr>
<td>Ant v1.4</td>
<td>0.475</td>
<td>0.200</td>
</tr>
<tr>
<td>Ant v1.5</td>
<td>0.375</td>
<td>0.046</td>
</tr>
<tr>
<td>Ant v1.6</td>
<td>0.297</td>
<td>0.058</td>
</tr>
<tr>
<td>Ant v1.7</td>
<td>0.452</td>
<td>0.052</td>
</tr>
<tr>
<td>Ant All</td>
<td>0.305</td>
<td>0.051</td>
</tr>
<tr>
<td>Log4J v1.0</td>
<td>0.500</td>
<td>0.050</td>
</tr>
<tr>
<td>Log4J v1.1</td>
<td>0.541</td>
<td>0.071</td>
</tr>
<tr>
<td>Log4J v1.2</td>
<td>0.460</td>
<td>0.065</td>
</tr>
<tr>
<td>Log4J All</td>
<td>0.377</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Table 6: Classification result table

7.3 Precision Rates

Table 7 represents the Precision rates for both classifiers for the predictions made for both classes (fault-prone and non-fault-prone). It is calculated as the rate of correctly identified instances in a specific class to the overall number of instances classified in that class as explained in the Section 2.5.3.

For the dataset Tomcat v6.0.389418, Naive Bayes predicted 83 instances as fault-prone, from which 19 are correctly predicted the other 64 instances are actually non-faulty instances classified as fault-prone. That means that the Precision of Naive Bayes in the dataset Tomcat v6.0.389418 for the fault-prone class is 0.229. The Logistic Regression, on the other hand, predicted 12 fault-prone modules, form which 6 are correctly predicted and the other 6 instances are incorrectly classified.
Table 7: Precision result table

<table>
<thead>
<tr>
<th></th>
<th>Fault-Prone</th>
<th></th>
<th>Non-Fault-Prone</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naive Bayes</td>
<td>Logistic Regression</td>
<td>Naive Bayes</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>Tomcat v6.0.389418</td>
<td>0.229</td>
<td>0.500</td>
<td>0.946</td>
<td>0.938</td>
</tr>
<tr>
<td>Ivy v1.1</td>
<td>0.759</td>
<td>0.613</td>
<td>0.735</td>
<td>0.686</td>
</tr>
<tr>
<td>Ivy v1.4</td>
<td>0.133</td>
<td>0.333</td>
<td>0.954</td>
<td>0.953</td>
</tr>
<tr>
<td>Ivy v2.0</td>
<td>0.359</td>
<td>0.417</td>
<td>0.941</td>
<td>0.925</td>
</tr>
<tr>
<td>Ivy All</td>
<td>0.344</td>
<td>0.500</td>
<td>0.888</td>
<td>0.879</td>
</tr>
<tr>
<td>Ant v1.3</td>
<td>0.400</td>
<td>0.500</td>
<td>0.919</td>
<td>0.911</td>
</tr>
<tr>
<td>Ant v1.4</td>
<td>0.297</td>
<td>0.000</td>
<td>0.896</td>
<td>0.848</td>
</tr>
<tr>
<td>Ant v1.5</td>
<td>0.414</td>
<td>0.000</td>
<td>0.946</td>
<td>0.920</td>
</tr>
<tr>
<td>Ant v1.6</td>
<td>0.519</td>
<td>0.537</td>
<td>0.864</td>
<td>0.857</td>
</tr>
<tr>
<td>Ant v1.7</td>
<td>0.605</td>
<td>0.750</td>
<td>0.907</td>
<td>0.897</td>
</tr>
<tr>
<td>Ant All</td>
<td>0.492</td>
<td>0.600</td>
<td>0.894</td>
<td>0.881</td>
</tr>
<tr>
<td>Log4J v1.0</td>
<td>0.739</td>
<td>0.773</td>
<td>0.869</td>
<td>0.870</td>
</tr>
<tr>
<td>Log4J v1.1</td>
<td>0.769</td>
<td>0.917</td>
<td>0.823</td>
<td>0.847</td>
</tr>
<tr>
<td>Log4J v1.2</td>
<td>0.935</td>
<td>0.817</td>
<td>0.460</td>
<td>0.637</td>
</tr>
<tr>
<td>Log4J All</td>
<td>0.845</td>
<td>0.767</td>
<td>0.633</td>
<td>0.688</td>
</tr>
</tbody>
</table>

as fault-prone. From this data, the Precision of Logistic Regression for the fault-prone class in the dataset Tomcat v6.0.389418 is 0.5.

The aim of a good predictor is to have as high of a Precision as possible in order to know that most of the instances classified in a specific class are true to that class. From the measurements gathered on all the datasets, the Logistic Regression classifier has the highest Precision for the fault-prone class in most datasets like Tomcat v6.0.389418, Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.6, Ant v1.7, Ant All, Log4J v1.0, and Log4J v1.1. Naive Bayes, in contrast, presents higher Precision for the fault-prone class in fewer datasets like Ivy v1.1, Ant v1.4, Ant v1.5, Log4J v1.2, and Log4J All. Notice that the Precision of Logistic regression for the fault-prone class for the dataset Ant v1.4 and Ant v1.5 is 0 since in these datasets, Logistic regression did not classify correctly any of the faulty modules.

At the same time, the roles are inverted in the non-fault-prone class where Naive Bayes is the one that presents the higher Precision in most of the datasets like Tomcat v6.0.389418, Ivy v1.1, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant v1.6, Ant v1.7, Ant All, Log4J v1.0, and Log4J v1.1. Naive Bayes, in contrast, presents higher Precision for the fault-prone class in fewer datasets like Ivy v1.1, Ant v1.4, Ant v1.5, Log4J v1.2, and Log4J All. Notice that the Precision of Logistic regression for the fault-prone class for the dataset Ant v1.4 and Ant v1.5 is 0 since in these datasets, Logistic regression did not classify correctly any of the faulty modules.

However, the measurements of Precision does not tell the full story regarding performance as a classifier can present a higher rate of Precision because the overall number of instances classified in a specific class is low. An excellent example of this situation is the one depicted in the second paragraph of this subsection for the Tomcat dataset. Naive Bayes actually correctly classified a higher number of instances in faulty class and at the same time, it incorrectly classified a higher number of non-faulty instances and thus lowering the rate of Precision. Again, classifying non-faulty modules as fault-prone increases the cost of quality assurance but does not affect the overall quality of the software. While Logistic Regression has a higher Precision rate because it predicted a low number of instances as faulty overall. This means that a lot of the true faulty instances are classified as non-faulty and this is clearly depicted for the lower Precision rates in the non-fault-prone class. Depending on the application, whether a safety critical application or a budget constrained, one kind of error can be preferable to the other.

Overall, the Precision rates for the fault-prone class in most of the datasets are low and rarely reaching the 0.5 rate. The datasets presenting better Precision rates for both classifiers, rates over 0.6, are the more balanced datasets. This is expected since in the more imbalanced datasets the classifiers will tend to overclassify instances in the more dominant class, in this case, the
7.4 Recall Rates

Recall rates for both classes (fault-prone and non-fault-prone) are presented in Table 8 where Recall (also known as Probability of Detection) is calculated as the rate of correctly identified classes to the overall instances of that class as explained in Section 2.5.4.

Naive Bayes has correctly predicted 19 faulty-prone modules out of 77 faulty modules that are in the dataset Tomcat v6.0.389418, while Logistic Regression has correctly predicted only 6 out of 77 faulty modules in the same dataset. This makes for a recall of 0.247 for Naive Bayes and 0.078 for Logistic Regression.

In support of the discussion in Section 7.3, Naive Bayes presents the higher Recall rates for the fault-prone class in most of the datasets. This means that Naive Bayes correctly classified more faulty instances compared to Logistic Regression. The datasets in which Naive Bayes performed better in terms of Recall are Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant v1.6, Ant v1.7 and Ant All. Logistic regression had higher rates regarding the fault-prone class in almost the whole Log4J dataset, Tomcat v6.0.389418, and the Ivy v1.1 dataset. In the Log4J v1.0 dataset, both classifiers had similar Recall rates for the fault-prone dataset. Once again, notice that Recall rates for the classification of Ant v1.4 and Ant v1.5 by Logistic regression are 0 since this classifier did not correctly classify any faulty instances in these datasets.

On the contrary, in the non-fault-prone class, Logistic Regression has the highest Recall rate. This classifier dominates in 12 out of 15 datasets. More specifically, in datasets like Tomcat v6.0.389418, Ivy v1.1, Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant v1.6, Ant v1.7, Ant All, Log4J v1.0 and Log4J v1.1. Naive Bayes ranked higher in the non-faulty-prone classes only in datasets like Ivy v1.1, Log4J v1.2 and Log4J All.

Just as in the Precisions case, the Recall rates are quite low in the case of faulty-prone class and a correlation between higher rates for both classifiers and more balanced data can be drawn.

The relationship between Precision and Recall is very important when evaluating the performance of the classifiers. This relationship will be better depicted in the later sections when we will describe it through the F-Measure measurements and the Precision-Recall curve.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Fault-Prone</th>
<th></th>
<th>Non-Fault-Prone</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naive Bayes</td>
<td>Logistic Regression</td>
<td>Naive Bayes</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>Tomcat v6.0.389418</td>
<td>0.247</td>
<td>0.078</td>
<td>0.941</td>
<td>0.993</td>
</tr>
<tr>
<td>Ivy v1.1</td>
<td>0.349</td>
<td>0.571</td>
<td>0.903</td>
<td>0.819</td>
</tr>
<tr>
<td>Ivy v1.4</td>
<td>0.125</td>
<td>0.063</td>
<td>0.957</td>
<td>0.993</td>
</tr>
<tr>
<td>Ivy v2.0</td>
<td>0.350</td>
<td>0.125</td>
<td>0.943</td>
<td>0.984</td>
</tr>
<tr>
<td>Ivy All</td>
<td>0.185</td>
<td>0.067</td>
<td>0.948</td>
<td>0.990</td>
</tr>
<tr>
<td>Ant v1.3</td>
<td>0.300</td>
<td>0.200</td>
<td>0.946</td>
<td>0.976</td>
</tr>
<tr>
<td>Ant v1.4</td>
<td>0.475</td>
<td>0.000</td>
<td>0.800</td>
<td>0.991</td>
</tr>
<tr>
<td>Ant v1.5</td>
<td>0.375</td>
<td>0.000</td>
<td>0.954</td>
<td>0.992</td>
</tr>
<tr>
<td>Ant v1.6</td>
<td>0.297</td>
<td>0.242</td>
<td>0.942</td>
<td>0.956</td>
</tr>
<tr>
<td>Ant v1.7</td>
<td>0.452</td>
<td>0.365</td>
<td>0.948</td>
<td>0.978</td>
</tr>
<tr>
<td>Ant All</td>
<td>0.305</td>
<td>0.181</td>
<td>0.949</td>
<td>0.980</td>
</tr>
<tr>
<td>Log4J v1.0</td>
<td>0.500</td>
<td>0.500</td>
<td>0.950</td>
<td>0.958</td>
</tr>
<tr>
<td>Log4J v1.1</td>
<td>0.541</td>
<td>0.595</td>
<td>0.929</td>
<td>0.976</td>
</tr>
<tr>
<td>Log4J v1.2</td>
<td>0.460</td>
<td>0.825</td>
<td>0.935</td>
<td>0.624</td>
</tr>
<tr>
<td>Log4J All</td>
<td>0.377</td>
<td>0.558</td>
<td>0.939</td>
<td>0.852</td>
</tr>
</tbody>
</table>

Table 8: Recall result table
Table 9 is depicting the harmonic mean between Precision and Recall presented by Equation 10 and that is called F-Measure. In the evaluation implemented by WEKA, β is set to 1 and thus Precision and Recall are calculated with the same weight. By setting β to 1, Equation 10 will look like Equation 11:

$$F_{\text{measure}} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad (11)$$

The calculated data for this measure shows that Naive Bayes dominates the fault-prone class by providing a better F-measure value in most of the datasets like Tomcat v6.0.389418, Ivy v1.4, Ivy v2.0, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant v1.6, Ant v1.7, Ant All. The whole Log4J dataset together with Ivy v1.1 had better F-Measure values for the fault-prone class when using the Logistic Regression classifier. The situation is much simpler in the non-fault-prone class were in all the datasets, Logistic Regression provided higher values of F-Measure compared to Naive Bayes.

7.6 Area under ROC curve

Receiver Operating Characteristic Curve is constructed using data of True Positive Rates and False Positive Rates from Table 6 and the area under this curve is a numeric representation of the curve and a reliable measurement for fault prediction classifiers [9]. For a good predictor, it is preferable that the rate of True Positives is high and the rate of False Positives is low. This means that the predictor correctly classifies faulty instances and there the rate of non-faulty instances that are predicted to be faulty is low. Translated in an AUC metric, this means that the area under the curve has to be as large as possible. Table 10 is a summary of all the results gathered from the evaluation of the prediction methods on all the datasets. Different to all the other tables this has only one column per prediction method since the values for both classes (fault-prone and non-fault-prone) are the same. Logistic Regression has a slight advantage in performance in terms of AUC to Naive Bayes. However, this advantage is really small, one dataset, and it is not enough to conclude the predominance of one predictor over the other. Logistic Regression had a higher value of AUC in 8 out of 15 datasets. These datasets are Ivy v1.1, Ivy All, Ant v1.3, Ant v1.5, Ant v1.6, Ant v1.7, Ant All, and Log4J All. Naive Bayes had a higher value of AUC in 7 out of 15 datasets.

The results gathered from the AUC values are not conclusive. Logistic Regression has higher AUC values in only one more dataset than Naive Bayes. This slight difference can be as a result of other causes (metrics, dataset selection or data balance) and it is not enough to influence our choice of the best predictor.

7.7 Area under PR curve

Given that the results gathered from the values of AUC are not conclusive enough, it is recommended [9] to use the area under the PR curve to better differentiate between the performance of the predictors. The PR curve is constructed by plotting the Precision rate values in Table 7 and the Recall rate values in Table 8. The numerical estimation of the curve is the area under the curve. A good predictor will present high values of the Precision and Recall and thus translated into high values of the area under the PR curve.

An analysis of the Table 11 reveals that Logistic Regression is the predictor that provides the higher values of area under the PR curve in most of the datasets in the fault-prone class. Logistic Regression performs better in terms of the area under PR curve in 11 out of 15 datasets. These datasets are Tomcat v6.0.389418, Ivy v1.1, Ivy v1.2, Ivy All, Ant v1.3, Ant v1.4, Ant v1.5, Ant All, Log4J v1.0, Log4J v1.1, and Log4J All. Naive Bayes provides higher values of the area under the PR curve in only 4 out of the 15 datasets. These datasets are Ivy v2.0, Ant v1.4, Ant v1.5, and Log4J v1.2. In a similar way, Logistic Regression predominates the values of the area under the PR curve even in the non-fault-prone class with higher values in 12 out of 15 datasets compared to Naive Bayes that has higher values in only 3 out of 15 datasets.

7.8 Result Summary

We are now presenting all the results grouped according to datasets and to performance measures. Table 12 is a summary of how the predictors performed overall grouped according to datasets. This table was built after observing which classifier performed better in most measurements in a specific dataset. It can be easily understood that Logistic Regression performed better in most datasets in both fault-prone and non-fault-prone classes. Logistic Regression had the best performance compared to Naive Bayes in both classes in datasets like Tomcat v6.0.389418, Ivy v1.1, Ivy All, Ant v1.3, Ant v1.6, Ant v1.7, Ant All, Log4J v1.0, Log4J v1.1, and Log4J All. It had the best
Tomcat v6.0.389418 & Naive Bayes & 0.231 & 0.247 & Logistic Regression & 0.978 & 0.974 \\
Ivy v1.1 & Logistic Regression & 0.722 & 0.770 & Naive Bayes & 0.708 & 0.835 \\
Ivy v1.4 & Logistic Regression & 0.107 & 0.169 & Logistic Regression & 0.952 & 0.965 \\
Ivy v2.0 & Logistic Regression & 0.323 & 0.307 & Logistic Regression & 0.960 & 0.966 \\
Ivy All & Logistic Regression & 0.263 & 0.304 & Logistic Regression & 0.920 & 0.936 \\
Ant v1.3 & Logistic Regression & 0.337 & 0.416 & Logistic Regression & 0.943 & 0.980 \\
Ant v1.4 & Logistic Regression & 0.220 & 0.208 & Logistic Regression & 0.894 & 0.900 \\
Ant v1.5 & Logistic Regression & 0.272 & 0.261 & Logistic Regression & 0.964 & 0.968 \\
Ant v1.6 & Logistic Regression & 0.472 & 0.486 & Logistic Regression & 0.933 & 0.949 \\
Ant v1.7 & Logistic Regression & 0.540 & 0.574 & Logistic Regression & 0.955 & 0.968 \\
Ant All & Logistic Regression & 0.400 & 0.451 & Logistic Regression & 0.951 & 0.960 \\
Log4J v1.0 & Logistic Regression & 0.627 & 0.679 & Logistic Regression & 0.945 & 0.935 \\
Log4J v1.1 & Logistic Regression & 0.761 & 0.808 & Logistic Regression & 0.910 & 0.896 \\
Log4J v1.2 & Logistic Regression & 0.897 & 0.891 & Logistic Regression & 0.634 & 0.657 \\
Log4J All & Logistic Regression & 0.744 & 0.774 & Logistic Regression & 0.745 & 0.754 \\

Table 11: Area under PR Result Table

Table 12: Result summary according to datasets

Table 13 depict how the predictors performed in the different performance measurements. This table was built by summarizing the results of Tables 7, 8, 9, 10, and 11 and grouping them by evaluation measurements. Logistic Regression performed better in most projects when measuring Precision, Area under ROC and Area under PR in the fault-prone class. It performed better when measuring Recall, F-measure, Area under ROC and Area under PR in the non-fault-prone class. Overall, Logistic Regression performed better compared to Naive Bayes in most measurements in both classes fault-prone and non-fault-prone.
Table 13: Result summary according to performance measures

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Fault-Prone</th>
<th>Non-Fault-Prone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>Logistic Regression</td>
<td>Naive Bayes</td>
</tr>
<tr>
<td>Recall</td>
<td>Naive Bayes</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>F_measure</td>
<td>Naive Bayes</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>Area under ROC</td>
<td>Logistic Regression</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td>Area under PR</td>
<td>Logistic Regression</td>
<td>Logistic Regression</td>
</tr>
</tbody>
</table>

Table 14: All versions composed datasets performance compared to single versions datasets performance

Table 14 shows how the datasets composed of all the versions available perform compared to the datasets composed of single versions of the software. This table is built by comparing the results of Tables 7, 8, 9, 10, and 11, were the results of the single version datasets are compared to the ones composed by all versions of the software for each project. Overall, the combination of different versions of the software in a single dataset does not improve the predictor’s performance in most of the measurements.
8 Discussions

This section aims to give an overall view of the work and results concluded in this thesis. This thesis work was focused on answering three research questions regarding the fault prediction problem.

RQ 1: Which metrics are easy candidates for automatic collection for software faults prediction?

The experience during metrics gathering formed the knowledge that Line of code, McCabes cyclomatic complexity metrics, and CK suite metrics where the easiest candidates for automatic collection. The metrics that proved to be very difficult to collect automatically are the Halstead metrics. These lessons learned encouraged the use of Lines of code, McCabe complexity and CK suite metrics in the prediction and evaluation phases of this study.

RQ 2: How can we implement an open source available tool for software fault prediction that integrates with developers’ integrated development environment (IDE)?

This study fills the gap for an open source software prediction tool for day-to-day use in the developer’s environment. This tool is called SFPPlugin and it is an Eclipse plug-in that can predict the classes that are more likely to contain faults through Naive Bayes and Logistic Regression predictors. This is a very easy to use tool and can help practitioners in orienting their testing activities where it is more needed. Moreover, the tool offers two different predictors that provide different results for the same dataset. To help the user understand the results of the predictions for each dataset and to select the best of them in terms of performance, we also performed an evaluation of the two prediction methods on open source projects.

RQ 3: Which of the implemented fault prediction methods perform the best when using the implemented tool?

The implemented fault prediction methods in the SFPPlugin are Naive Bayes and Logistic Regression. Overall, the evaluation between the Naive Bayes and the Logistic Regression concluded that Logistic Regression performed better in most of the performance measures taken into consideration in this study. This predictor had better performance in terms of Precision, AUC and Area under PR curve for the fault-prone class and better performance in term of Recall, F-measure, AUC and Area under PR curve for the non-faulty class. However, as discussed in Section 7.3, Naive Bayes has a higher rate of correctly identifying faulty instances and a lower rate of false negatives. In some kind of applications, like safety-critical applications, Naive Bayes may be more appropriate to use than Logistic Regression as it is more important to have an over-classification of faulty modules to increase the quality of the software. In other applications though, like budget restricted ones, where it is very important to efficiently manage quality assurance resources while still providing a good software quality, is more appropriate to use the predictor with the better performance: Logistic Regression. Furthermore, the datasets which were constructed as a combination of the datasets of various versions did not improve the performance of any of the predictors.
9 Limitations

In this section, we are discussing the shortcomings encountered by this study that might influence the results discussed above.

9.1 Study design limitations

The metrics used for prediction by SFPPlugin and for the evaluation of the Naive Bayes and Logistic Regression predictors are limited by their ease of gathering and will not necessarily represent the most optimal metrics to use. This is a choice influenced by RQ1. The goal of RQ1 is to find which of the metrics are easy candidates to gather for software fault prediction and this choice propagated in the rest of the thesis work.

9.2 Data limitations

This thesis is conducted in collaboration with the university and does not have access to any privately owned data. Thus, the evaluation of the prediction methods is limited to the availability of open-source projects where we can easily collect the desirable metrics and bug reports for prediction. Furthermore, open source projects are preferred as they open to the possibility of validating the work done in this thesis through study repetition.

Moreover, the collected fault data is imbalanced in some of the datasets. The number of fault components is much smaller than the number of non-faulty components. The prediction methods may tend to classify everything as non-faulty because most of the example data they learn from are non-faulty. However, SFPPlugin is expected to be used in different kind of datasets, balanced or imbalanced, thus we believe that evaluating the prediction methods in only balanced data will be a much bigger threat to the validity of the results we present in this thesis. To generalize the results of this thesis, the evaluation of the prediction methods was conducted on datasets of different balance rates that are representative of different real-world scenarios.

9.3 Impact limitations

This tool handles only Java developed projects and is available only for Eclipse IDE. This choice limits the impact that SFPPlugin can have since it can be applied to only Java programs using Eclipse IDE. Still, the environment and the language are both very commonly used, thus providing a solution for many developers.
10 Conclusions and Future Work

In conclusion, this thesis introduced a new software fault prediction tool that can be integrated into an Eclipse IDE as a plug-in and can be used in projects developed in Java. This tool aims to be a great help in identifying faulty modules in the early stages of the development process. This would help reduce the quality assurance activities costs while still increasing the software quality. A new insight into the easiest metrics to gather was also introduced in this thesis. It is concluded that Line of code, McCabe complexity, and CK suite metrics are the easiest candidates for automatic metrics collection. Furthermore, the two prediction methods, Naive Bayes and Logistic Regression, implemented in the prediction tool are evaluated in terms of prediction performance through the tool on open source projects. This evaluation concluded that Logistic Regression presented better performance when compared to Naive Bayes on the studied datasets.

As future work, the author would like to see an expansions of the fault prediction tool that can allow the user to select different kinds of predictors and metrics to be applied. We believe that this would give the user the opportunity to customize the combinations that would work the best for the dataset at hand and according to the needs. Moreover, the author would like to see the evaluation of these prediction methods on other datasets, whether open source or private ones, in order to verify the concussions of this thesis work.
References

