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Abstract

Reliable sensor readings are important for running a heat and power plant. Process and
sensors degenerate during plant operation. This can be handled by on-line data treatment. It
works in three steps; first large errors in measurements are detected, then the errors are
isolated and removed. The third step is general data estimation that both reconcile data by
using redundant data and estimates sensor values.

In the first part of the work (report 1) in this thesis, the hypothesis that data estimation can
be done despite degradation in both process and sensors was tested. The focus was on
systematic errors in sensors. Three different models were theoretically evaluated for data
treatment purposes. A first principles model was chosen and the data treatment method was
built with the components; classification, detection, isolation and data reconciliation.

Extensive testing with a flue gas channel process model resulted in a second work (paper
1). The testing revealed drawbacks considering estimation of the size of the gross error and
problems handling different magnitudes in connected mass flows.

The third work (paper 2) was an article on Bayesian networks (BN) for decision support on
soot blowing superheaters in a bio-fuelled boiler. The aim was to construct a tool for
prediction of situations where abnormal fouling is at risk and to give advice on preventive
actions. To test if qualitative and quantitative methods could benefit from each other, a
combination of first principles models and Bayesian networks was built. It turned out that the
combination was necessary. The problem would have been sub-optimal if only BN had been
used for modelling and the alternative with only first principles models would not have been
possible with the resources at hand.

Fault isolation is one of the key components in a data treatment where gross errors are
present. Analytically solving the estimation of a gross error had shown being difficult (report
1 and paper 1). A novel approach for isolation was therefore proposed in the fourth part of the
work (paper 3). An optimisation approach with time window and penalty multiplier was
tested for isolation. It turned out to work excellently.

The report and the three papers are complemented with a literature review. Each main
method is followed by a selected method showing basic computations and principles of data

treatment.
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Nomenclature

A Linear flow process model

A; Set of equations with measured variables

A Set of equations with unmeasured variables
ANN Artificial neural networks

AVTI Average number of Type I error

BN Bayesian networks

C Incidence matrix

¢ An element in incidence matrix C

cov Covariance

e Normal distributed noise, added to true signal
g Linearly independent columns of A, (rank of A,)
GE Gross error

GLR General likelihood ratio

GT Global test

1 Total number of samples

i Counter of samples

L Number of variables

LCT Linear combination technique

M Total number of rows

m Counter of row

X Measurement error covariance matrix

MILP Mixed integer linear programming

MINLP Mixed integer nonlinear programming

MT Measurement test

N Total number of columns

n Counter of columns

NLP Nonlinear programming

NT Nodal test

OP Overall power

PCA Principal component analysis

pdf Probability density function

P Permutation matrix

P, Permutation matrix of undetermined mass flow
(0] Test quantity

O, Part of Q connected to undetermined mass flow
r Residual

v



Ry Vector showing linear dependence between unmeasured determinable and unmeasured

indeterminable variables

R, Part of R connected to undetermined mass flow
N Data set of sensors containing gross errors
8y Standard deviation (letter index)

S Measured signals (number index)

T Total number of time samples

t Counter of time samples

U Data set

u Unmeasured

Ug Determinable unmeasured variables

u; Indeterminable unmeasured variables

14 Covariance matrix

v Degrees of freedom

w Weight matrix

w Element in weight matrix W

X Estimated state

Xp Non-redundant variables in measured matrix A,

X, Redundant variables in measured matrix A,

¥y Measured state

Virue Flow vector without noise and gross error

YVimeas Measured flow vector

Vineas,GE Measured flow vector containing gross error

Zip Modified critical value for multiple hypothesis tests

L eritical Theoretic critical value for chi-square distribution that do not contain gross errors
o Dampening

Osig Significance level (limit of Type I error)

s Modified significance level o, , when using multiple hypothesis tests
y Test quantity for chi-square-tests

r Gamma probability density function

o Gross error

& Bounds on the process model residual

u Penalty function multiplier

u Mean value

H, Mean value of x

Hy Mean value of y
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1 Introduction
Measuring properties are essential for plant control and monitoring. Constant strife for

improved plant efficiency demand better control, which often means more instrumentation.
The sensors are used for on-line computation of e.g. plant operation cost, emissions, heat
power, etc. These applications need reliable on-line measurement data. A known problem is
that sensors in the same location show different values. Regarding one as faulty or not reliable
often solves this or an average computation is made. The use of simulators make it possible to
both measure and compute the same state variable, it makes the situation complex when it
comes to selecting reliable sensors and what sensor readings to believe in.

These problems can be solved by a method able to handle redundant information and
estimate the state of the process. The three components; gross error detection, isolation and
data reconciliation can be put together to form a system meeting the demands mentioned. The
research area of data reconciliation and gross error detection spans over many research areas,
such as signal analysis, statistics, optimisation, process control, information theory, etc.
Complex industries have much to gain from data treatment. The development in the field is
fastest in the nuclear power generation and the chemical process industry. An accident in
these industries may be disastrous with consequence in both causalities and company
bankruptcy, [Hoo04]. Other areas using this kind of data treatment are the mining industry
and the conventional power generation industry.

The chain from sensor signal to operator interaction must be considered to find optimal
solutions. The economic considerations on number of sensors and maintenance costs must
also be included when choosing if, and by what degree the technique is to be implemented.

The core of data treatment in this thesis is data reconciliation (DR). DR algorithms can
handle random noise in the measurements, but they cannot handle systematic and large errors.
A protective layer of gross error detection and gross error isolation are therefore vital parts of
a data treatment system. The goal of the data treatment is to deliver a data set, which is closer
to the true process state than raw data. This data set is ready for use in applications on the next
level in the hierarchy. Tools and techniques used for data treatment aiming to deliver state
estimation using sensors measurements and process models under degradation is the topic of

this thesis.
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Figure 1. Data treatment structure.

In the thesis the common steps in data treatment are followed, see Figure 1, and each
method is explained, but first the motives and the research approach are defined. A literature
review on methods used until today is presented. Data treatment is broken down into pieces
and explained part by part. Classification, detection, isolation and data reconciliation sections
are closed by examples, to help the reader to follow the thread throughout the thesis. The
same process model is used in all examples. Results are presented in form of summaries of the
attribution of each article to the research task. Everything is then concluded and the future
research outline is drawn.

For the reader not acquainted with the terms used in gross error detection and data
reconciliation, but who is familiar with the Swedish language, a short wordlist is available in

Report 1, in the appendix.



1.1. Motives
Plant safety is important for all process industry. It is a total concept to be implemented on

every level. Some tasks in plant safety may be either fully automated or partially automated
complemented with dialogue with plant operators. The main motive is to handle degradation
in both sensors and process on-line by exploiting both sensor network and sensor signals
together with a process model. Advantages are increased product quality and plant safety, less
unplanned plant shutdowns and more knowledge about the process when implementing such a
system. Chemical and nuclear plants are a potential threat for people and environment, thus
data treatment is one of the steps to prevent accidents by monitoring plant measurement

equipment and the overall process and sensor degradation.

system
reliability

degradation

Apgn 10

Uncertginty

Figure 2. Fundamental factors in system reliability, [Wat89].

When components in Figure 2 fail then the effects are ranging from a not properly working
plant to total disaster. Examples of accidents are found in e.g. the reports by Doyle [Doy72]
and Kletz [KIe98] on recovery boilers. The Bhopal gas accident with more than 3000
causalities was the wake up call for implementing plant safety, [Hoo04]. In the context of

plant safety, data treatment is the part that handles degradation in sensors and processes.



Diagnosis of a sensor as an individual is well developed in signal analysis, but there are
much more information to be gained from the sensors. For example DR and gross error
isolation techniques explores the qualitative information given in a sensor network and a
process model together with the measured signals. The qualitative process model together
with different levels of quantitative information given by e.g. standard deviations has
potential as powerful tools for diagnosis.

In thermal processes, like heat and power plants, there are typically hundreds up to
thousands of sensors installed for control, monitoring and alarm purposes. Some of these are
maintained routinely. Why not all are in the maintenance program is due to the maintenance
cost and also of lack of insight in what cost a faulty sensor can cause if it is used for control or
as input for economical calculations.

No calibration and faulty installation is a cause for economical losses for process plants.
Example of this is found in the paper by Wang et al., [Wan01], where data reconciliation is
applied on a Chinese refinery resulting in reduced losses. It is the attractive concept of using
(existing) process models together with existing sensors to increase plant availability and
plant measurement usability that is exploited in this thesis to handle degradation in process

and sensors.

1.2. Research approach
Hypothesis of this thesis:

Quantitative and qualitative methods can deliver a data set in balance from state

estimation point a view, despite degradation in process and sensors.

To test this hypothesis the following tasks have been performed: a study was performed for
three different process-modelling techniques and gross error detection techniques.
Measurement data was gathered for major parts of the complete flue gas channel in a heat and
power plant. Gross error detection and data reconciliation system was programmed and tested
to be evaluated in depth. The system consists of first principles model, hypothesis test for
gross error and isolation by sequential test. The complete data treatment system was
programmed and evaluated. Positive and negative qualities were summarised in Report 1.

Sensitivity analysis on quality measures was performed on a modified heat and power plant
scheme from Report 1. The results are presented in Paper 1. A combined approach of physical
models and a Bayesian network was applied for the superheaters in a heat and power plant.

The purpose was to investigate whether it is possible to predict how frequent soot-blowing of



the superheaters need to be performed to avoid a plant shutdown before annual revision. A
secondary objective was to examine which measurements needed to be put into the Bayesian
network and which needed to be put into physical models. A decision support for when to
soot-blow was constructed and presented in Paper 2.

Two different formulations were tested for isolation of both gross error and dampening
through isolation. The intention was to improve the performance of isolation and also to
estimate both bias and dampening in the measured signal with a novel method proposed in

Paper 3.

1.3. Problem definition
Measuring the true state of the process is essential for control and optimisation of a plant.

In many processes the instrumentation and the process itself are affected by degradation and
thus the measurements contain errors. Process models are difficult to maintain due to changes
in process parameters combined with degeneration of the sensors. The problem of state
estimation becomes interesting for any plant owner in the light of the costs for not running a
plant optimally. Increasing operation safety by determining the plant state is also interesting,
especially in nuclear power plants, but this is not in the scope of this thesis. Perhaps the
greatest benefit is the possibility to decrease the number of unplanned plant shut-downs due to
the tools provided. There are plants where degradation is not seen as one of the major
problems, despite that these plants benefit from the possibilities of state estimation,
classification of sensors and data reconciliation to reduce measurement noise.

The overall problem of handling degradation is interesting for the research community
because of its complexity and challenges in integrating diverse methods like statistics,
optimisation and modelling of thermal processes. Heat and power plants got all the
challenging aspects and is therefore an interesting playground for trying new methods to solve
the problem of handling degradation in sensors and the process. Thus it is possible to maintain
a good estimation of the process state. Many other research areas such as advanced control,
plant optimisation and functional maintenance greatly benefit from methods capable of
estimating the true state of the process and estimating sensor readings of degrading or

malfunctioning sensors.

1.3.1. Cause of degradation in heat and power plant process and
sensors

Energy and environmental taxes and fees have pushed power plant owners to experiment

with new fuels to lower costs. Fuel flexibility is more important than ever before, and it is



possible to meet this requirement with improved boiler technologies such as fluidised beds
and circulating beds. Fuels earlier used only for heat water production is now introduced in
heat and power plants, and these plants operate at higher temperatures. Also new chemical
reactions are activated. The experience of combusting these new fuels and mixes of fuels in
heat and power plants are increasing. Normal degradation of sensors and process in heat and
power plants are mainly due to:

Corrosion
Fouling

Erosion

High temperature

Unbalance in plant heat balance or flue gas flow pattern cause problems. This can be due to
use of fuels not intended or flaws in the plant design. The degradation causes listed above can
force a shut down of the plant for maintenance. However, normally a certain degree of
degradation is accounted for. Faster degradation in sensors is possible if they are positioned
where they are exposed to erosion, corrosion or fouling. The same reasoning can be applied
on the process if fuel quality differs from the expected, regarding for example moisture,
alkali, sulphur, metals and properties such as; size distribution and burn-out rate.

Temperature sensors have a drift due to ageing and the high temperature they are working
in. Positioning is important for temperature sensors in sections where large temperature
gradients may occur. Pressure sensors are sensitive to clogging and also need careful
positioning. Most plants are shut down and revised annually. During periodic maintenance
and revision the process is controlled and the sensors are calibrated. Not all sensors are

calibrated annually.

1.3.2. Effect of degradation in heat and power plant process and
sensors

It is essential to control or reduce degradation of important sensors for alarm, control,
optimisation and maintenance, primarily to reduce risk for personal injury, and secondly to
minimise costs. Examples of effects from degradation are:

Nuisance alarms, delayed alarms and not triggered alarms.
Non-optimal controller set point and loss of control.
Non-optimal overall plant optimisation.

Faulty economic and environmental reporting.

Damages on process.



Initial degradation can cause delayed alarms due to change in dynamics or because of a
biased sensor. Nuisance of false alarms due to degrading sensors is important when it comes
to the plant operator situation. In power plants, clogging of pressure sensors and mass flow
sensors is an effect of fouling. Erosion is due to streaks of flue gas transporting bed sand or
fuel particles hitting boiler walls or other components and thus causing damage. Heat
exchangers are also exposed to erosion, often in combination with fouling. Some parts of the
boiler are exposed to corrosion and are protected, but corrosion can appear on surfaces not
designed for aggressive chemicals, due to e.g. fuel mix properties. All the mentioned
phenomena can cause plant shutdown, and need to be monitored to take preventive actions
and plan maintenance. It is difficult to measure when this degree of degradation moves into
the field of loss of control, especially when the degradation is slow and controllability is lost
within the alarm limits.

There are tools for detection of degradation using statistics, but they need to be performed
off-line by an engineer. To solve the problem by increased maintenance is costly. Sensors
showing the same value over time can be faulty even though quality measures like standard
deviation and drift trends show excellent values. This kind of degradation is causing loss of
control and prevent maintenance because no fault is indicated, the fault remain hidden until
extensive data mining have been performed to find such sensors.

Optimisation, financial reports, environmental reports and other top applications using
measurements also suffer from degrading sensors. Examples of how degrading sensors and
process can affect a process can, for example, be found in reports on recovery boilers used in
pulp and paper industry [Doy72] and [K1e98]. The Black Liquor Recovery Boiler Advisory
Committee has documented 156 explosions and 450 near-miss incidents in the last 35 years.
Following quote from Lefebvre and Santyr [Lef92] comment the report. “In addition to
equipment damage, some of the more severe explosions have resulted in injury or even death
of operating personnel. There have also been several hundred emergency shutdowns where
the fear of an explosion has led to a forced outage. The frequency of explosions has remained
relatively constant over the years, and the problem cannot be considered solved”. More

examples are found in [Doy72] and [K1e98].

1.4. Literature review
In data treatment several research fields are involved such as; graph theory, optimisation,

statistics and modelling. The mathematics needs to be complemented by engineering

knowledge to achieve an efficient system for data treatment. An efficient system for data



treatment thus demands many disciplines to interact. Chemical, mineral, control and nuclear
power engineers close to applications in respectively area have performed much of the
research. The three key problems; detection, isolation and data reconciliation have been
developed more or less in parallel. Reviews have been written from the artificial intelligence
perspective [Gri92], and more specific on steady state data reconciliation, [Cro96].
Bagajewicz wrote a short review [Bag00] grasping the fundamentals of model-based data
treatment and sensor location. Recently Venkatsubramanian published a three-part review on
process fault detection and diagnosis, [Ven03a], [Ven03b] and [Ven03c]. The key problems

are further reviewed with a timeline in the following sub-sections.

1.41. Detection
The first methods for detection were statistical tests, later Kalman filter (KF) [Kal60],

principal component analysis (PCA) [Ton94], artificial neural networks (ANN) [Ter93] and
Bayesian networks (BN) [Pea88]. These were applied for detection purposes. Detection is
used for identifying if there are one or more errors in data, but nothing can be said about the
number or location of the errors in these tests. A time-line can be drawn for the development

of such tests:

1963 | A batch test called global test (GT) is proposed by Reilly and Carpani [Rei63], at a
conference. The test is a statistical hypothesis test for normal distribution of random
errors in the measurements. At the same conference the nodal test (NT) was

proposed by Reilly and Carpani. NT is a hypothesis test on each equation residual.

1982 | Mah and Tamhane proposed a hypothesis test, the measurement test (MT) [Mah82],
based on the adjustments made in the data reconciliation. The adjustments are tested

for normal distribution.

1987 | Tamhane, [Tam88a] and [Tam88b], proposed a gross error detection method based
on Bayesian networks (BN).

1993 | Terry and Himmelblau, [Ter93], proposed an ANN for steady-state gross error

detection in measurement on a heat exchanger.

1994 | Tong and Crowe, [Ton94], proposed a principal component test for detection of

gross errors.

2001 | Marshall proposed a gross error detection method based on analysis of the residual

from a linear programming solution, [Mar01].

2002 | Rollins et al., [Rol02], propose a method for batch detection of gross errors in
dynamic processes, the dynamical global test (DGT).




1.4.2. Isolation
When a gross error is detected then the next step is to isolate it. A search method is usually

applied. Methods for simultaneous detection and isolation have been proposed e.g. general
likelihood test (GLR), modified iterative measurement test (MIMT), unbiased estimation
technique (UBET), and linear combination technique (LCT). The timeline is partly extracted
from the chapters “Treatment of Gross Errors” in [RomO0] and “Multiple gross error

identification strategies for steady-state processes” in, [Nar00], described below.

1965 | A serial elimination algorithm was first proposed by Ripps, [Rip65], later extended
by Nogita 1972, [Nog72], this approach eliminates one measuring element at a time
from the set of measurements and each time checks the value of a test function,

subsequently choosing the consistent set of data with the minimum variance.

1975 | Almasy and Sztano, [Alm75], suggested a procedure based on the statistical
properties of the measurements. The method is limited to systems containing a
single element with systematic error, and those cases where the ratio of the extreme

error to the dispertion of the regular error is not too small.

1976 | Mah et al., [Mah76], extensively studied the problem of the identification of the
source of gross errors and developed a series of rules based on graph-theoretical
results that enhance the effectiveness of the algorithmic search. Exploiting the
topology of the process and using available statistical information a test function for
each node in the flow graph is developed which is used in an identification scheme

by searching along the internal streams.

1981 | Romagnoli and Stephanopoulos, [Rom81] and [Rom83], developed a method to
sequentially process the constraints in a recursive way to avoid solving the full-scale

reconciliation problem, thus speeding up the computations.

1986 | Serth and Heenan, [Ser86], developed a test based on the measurement test called
the modified iterative measurement test (MIMT), which uses a serial elimination

strategy to detect and identify multiple biases in measuring instruments.

1987 | The general likelihood ratio was proposed by Narasimhan and Mah, [Nar87]. The
method uses a serial compensation strategy (SCS) based on multiple hypothesis tests

for any type of error. A simulator must be used to generate signature vectors for

each error, later used for identification and isolation.




1992

Rollins and Davis, [Rol92], proposed the unbiased estimation technique (UBET).
This approach simultaneously provides unbiased estimates and confidence intervals

of process variables when biased measurements and process leaks exist.

1996

Rollins et al., [Rol96], propose the linear combination technique (LCT), which is a
method using nodal tests on single nodes and combination of nodes. A set of rules

decrease the number of hypothesis tests efficiently.

1996

Dunia et al., [Dun96], propose a principal component isolation algorithm. A sensor

validity index is evaluated for each sensor to identify the faulty sensor.

1999

Jiang and Bagajewicz proposed in a series of articles a method for simultaneous
identification of leaks and measurement biases and estimation of error magnitudes

called the dynamic integral measurement test (DIMT), [Jia99].

2002

Abu-el-zeet et al., [Abu02], developed a detection and isolation algorithm based on

the clustering technique by [Che98] and the isolation method by [McB95].

1.4.3. Data reconciliation
Detection, isolation and data reconciliation (DR) form an overall data treatment method.

DR is the method of correcting measured values to fulfil the process model and restrictions.

The parts in data treatment can be more or less interlaced. Here the data reconciliation and

estimation part of the methods proposed in literature are reviewed. Many data reconciliation

methods use a least squares method to minimise the impact of noise in the measured data.

With the improved computer power, different mathematical programming approaches have

become interesting for on-line applications. Data treatment methods have developed from

handling the basic linear case with all streams measured, to handling; unmeasured streams,

nonlinear constraints, dynamic nonlinear systems, multiple gross errors, errors in both process

(e.g. leaks) and sensors (e.g. gross errors). With dynamics involved hold-ups in the process

and drift in sensors are also considered.

1961

Kuehn and Davidson, [Kue61], is mentioned as the first to propose data
reconciliation. They analytically solved a linear data reconciliation problem where
the process was in steady-state with all variables measured and no gross errors

present.
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1969-
1976

Viaclavek et al analysed data reconciliation in a series of articles [Vac69], [Vac72],
[Vat73] and [Vac76], and worked out the basic principles in data reconciliation of
exploiting the process topology to reduce the general problem to a smaller one only
incorporating measured variables. They also put forth the concepts of observability

and redundancy.

1975

Mabh et al. sorted out the relationship between algebra and graph theory in a paper in
1975, [Mah75]. In the same paper gross errors and process leaks were treated for a
simulated refinery process, showing that the data reconciliation improved
measurement accuracy. In order to reduce the size of the general data reconciliation
problem, Mah et al. proposed a method for separating the problem into two sub-

problems.

1980

Knepper and Gorman put the focus on nonlinear data reconciliation. Their approach
was to use successive linearization followed by solving a linear programming (LP)

problem, [Kne80].

1983

Crowe et al., [Cro83], separated measured and unmeasured variables with a
projection matrix based on the QR-factorisation algorithm. Classification is an
important step in data reconciliation to reduce the size of the general estimation

problem.

1986

Crowe et al., [Cro86], expanded the projection matrix method to handle bilinear

equation systems.

1992

Liebman et al., [Lie92], applied nonlinear programming technique (NLP) with a

moving horizon window on a nonlinear and dynamic process.

1993

Terry and Himmelblau, [Ter93], proposed a method that via ANN performed data

reconciliation on the sensors monitoring a heat exchanger.

2000

Soderstrom et al., [Sod00], presented a large-scale industrial application of a
dynamic data reconciliation strategy based on the work of Liebman et al, [Lie92].

NLP was used for solving the data reconciliation and estimation problem.

2001

Soderstrom et al., [Sod01], proposed a method for simultaneous gross error
identification and reconciliation based on a mixed integer linear programming

(MILP) problem formulation.

2003

Bagajewicz and Cabrera, [Bag03], studied a gas pipeline system and proposed an
iterative process to solve the data reconciliation problem to account for the error of

the approximate mass transfer model equations.
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2 Data Treatment
Data treatment is here the layer of algorithms between raw sensor measurement and

applications using measurement values. Recall Figure 1 of the data treatment system. Data
treatment methods presented here, all use model-based approaches and therefore it is natural
to first introduce the process model and the sensors used to measure process state in the real
process. Classification of sensors is performed to determine what parts of the system that can
be used for detection, isolation, data reconciliation and estimation. Detection is not an
essential part of a data treatment system, but it prevents unnecessary search for errors by only
triggering isolation when an error is detected. Isolation is the search for one or more detected
errors. Data reconciliation is the task of reducing measurement noise by using a process
model to compute estimates of the measured value. Finally, estimation of not measured values
and computation of error magnitude is the last data treatment step before presenting the data

to the top applications.

2.1. Process models
The models concerned here are abstract models built of data and knowledge. The model is

mathematical and incorporate relation between the variables. It captures the important
features. The motives to build models are described by Williams [Wil99], in the following
three quotes:

e “The actual exercise of building a model often reveals relationships which were not
apparent to many people. As a result a greater understanding is achieved of the
object being modelled.”

e “Having built a model it is usually possible to analyse it mathematically to help
suggest courses which might not otherwise be apparent.”

e “Experimentation is possible with a model whereas it is often not possible or
desirable to experiment with the object being modelled. ...”

The second quote is the most important for the purposes of detection, isolation and data
reconciliation. The first quote addresses the importance of a model for diagnosis and the third
the possibility to do experiments without risk. Process models are important for many tasks in
a thermal process. The models treated here can be used for on-line purposes e.g. fault
diagnosis, gross error detection and isolation, process control, state estimation and many other
applications. Here mathematical models are intended for state estimation and diagnosis of the
process and the sensors it models. In both applications it is important to have a dialogue with

the process plant engineer when reconciling or diagnosing with help of a model, because the
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model is just a mirror of a sub-set of the real process variables and their relations, nothing
more.

How to choose what kind of process model that is suitable for an application is set by what
the model is supposed to be used for, what process data are available and by economical
constraints. A first principles model is typically more engineering intensive to build and is
more expensive than to create a data-driven model. Data-driven model needs a data set for
building and also a validation data set.

Analytical models built on first principles are powerful, but demand much time to build. On
the other hand, the model is reusable in another way than what is the case for a purely data-
driven model, e.g. if the process is retrofitted. An example of a data-driven model is the
Bayesian network model; it can be both data-driven and knowledge-based depending on how
much of the network and probability tables that are derived from data and from process
operator and engineer knowledge.

There are two main principles of how to build a model; analytical models based on
relations between variables and parameters observable in physical reality, for example the
heat transfer coefficient. Data-driven methods extract relations from a data set, where the
model is a fit between given input and output. A parameter in the data-driven model is seldom
coupled to physical reality.

Different amount of information is needed for different purposes in plant operation. For
alarm purposes, the absolute value of the sensor is enough to check if a threshold value is
violated or not. This is done momentarily. If a longer time span for decision or preventive
action is needed due to process dynamics and risk, then the information for momentarily
triggered alarms is not sufficient. A database for storage of measurement data must then be
created. Compressed information such as standard deviations, average values, trends, and so
on can be exploited from the historian. If the data is further exploited then data-driven models
can be extracted from process measurement data. These models can be used for predictions
and early warnings, [Wei0O1].

The problem of degradation mentioned in the problem section cannot be eliminated for
data-driven process models built from measurement data, because there cannot be certainty
that data do not contain gross errors or other faults generated from degraded sensors.
Updating the model regularly and calibration of sensors used for model building can help to
handle the problem. A data-driven model is not valid if one of its inputs is removed. The same
problem does not exist for an analytical model, if the variables are classified to determine

observability in the model each time a sensor is malfunctioning.
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2.2. Sensors
Sensors are needed for control and monitoring. In a heat and power plant, typically mass

flows, temperatures and pressures are measured throughout the steam, flue gas and water
systems. The most common temperature sensors are working with two different principles;
one is the change of resistance in a material, proportional to the change of temperature. These
sensors are used for measuring low to medium high temperatures. The second principle of
thermocoupling is the change of galvanic potential between two different materials
proportional to temperature. Thermocouples can work with high temperatures and are stable
over time. Measuring gas temperatures inside the boiler at about 1400 K, (in a solid fuel
boiler), is not possible with a physical body in the flue gas stream. Measurement methods
such as laser technology and heat cameras are used at such high temperatures.

Pressure is measured as absolute pressure with vacuum as zero on the measurement scale or
as relative pressure with atmospheric pressure as zero. The principle of a sensor body that
change potential or capacitance with pressure is used in all pressure ranges. Single sensors are
installed to measure absolute or relative pressure for control or alarm.

Mass flow can be measured by using two pressure sensors on each side of a contraction to
measure the pressure drop. The correlation between flow and pressure drop is known for
different geometries, thus the pressure drop can be used for computing mass or volume flow.
Other techniques for mass flow measurement are ultra-sound, gravimetric and calorimetric
method, [OIs94]. For a boiler the flow composition measurements are used for combustion
control and emission reports. The oxygen content is measured to control combustion airflows.
Emission reports are based on components such as; Nitrogen oxides, Sulphur dioxide, Carbon
monoxide and particulates.

Sensor placement and the sensor accuracy are fundamental for performance of any data
treatment system based on sensor readings, but this is out of the scope of this thesis. However,
this topic needs some attention for pedagogic reasons. The problem of sensor location has
been investigated by Bagajewicz, [Bag97]. An additional handful of researchers have also
addressed this topic, [Ali96] and [Ra099]. Positioning the sensors can many times be more
important for overall accuracy than the measured standard deviation of a specific sensor in the
test bench.

Placement of a sensor can be optimised if parameters as observability, standard deviation,
accuracy and so on can be coupled to costs. Such an optimisation gives the minimum

instrumentation for producing a product of a given quality. However, this approach is not
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easily implemented due to that the accuracy of a sensor is dependent on placement and the
environment the sensor is working in.

Trends of increased automation and function-based maintenance raise the demand for
automatic diagnose and decision support to the plant operators and maintenance staff. Plants
in general are not equipped with enough instrumentation to give redundancy in sensors, which
is the theoretical base for analytical diagnosing of an error in a sensor. Installing
instrumentation enough for diagnosing sensor errors make it possible to estimate the true
process state. It opens the field for the methods described earlier, and also new top
applications like advanced control and functional maintenance. The cost for extra
instrumentation and maintenance are weighted against benefits from automated diagnosis,
early alarms and improved overall control of the process.

A sensor can deviate from the calibrated curve due to many factors. Some of these factors
can be corrected by performing new calibration. The alternative is to correct these errors by
some tuning parameter or to implement a data treatment system that provides on-line

correction by data reconciliation or estimation of the sensor reading.

2.3. Classification of sensors
For complex processes the number of sensors is large. An attempt to set up the general

estimation problem for such a process will result in very large equation systems.
Classification of sensors was introduced to reduce the general estimation problem. Véclavek
[Vac69] was the first to propose classification. Later other variable classifications methods
have been proposed to divide the general data reconciliation problem into two smaller sub-
problems and in most cases reduce the problem significantly. Mah and co-workers proposed
classification based on graph theory in 1976, [Mah76]. A great step forward was taken when
Crowe developed a projection matrix method in 1983, [Cro83]. The unmeasured sensors are
eliminated from the constraints equations by premultiplying them with a projection matrix.
Later Crowe extended this method to the bilinear case, [Cro86]. Pai and Fisher, [Pai87],
developed an algorithm using Crowe’s method on nonlinear functions by successive
linearization. For the linear case the projection matrix method solve the classification problem
in a straightforward manner without iteration. The projection matrix method is solved more
efficiently by QR-factorisation; this was first proposed by Swartz, [Swa89], and later by
Sanchez and Romagnoli, [San96].

Beside the major methods for classification such as graph theory and projection matrices,

Romagnoli and Stephanopoulos solved the classification problem by an output set assignment
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algorithm, [Rom81]. Sanchez, et al developed a program package for this in 1992 called
PLADAT, [San92]. PLADAT is an algorithm examining what information each equation
supplies (redundancy and observability) and thereby dividing the sensors into subsets. Other
methods for classification have been developed by Joris and Kalitventzeff 1987, [Jor87],
Simpson et al., [Sim92] and Madron, [Mad92].

Observability and redundancy are defined by Narasimhan, [Na00], as: “A variable is said to
be observable if it can be estimated by using the measurements and steady-state constraints”,
and redundancy: “A measured variable is said to be redundant if it is observable even when its
measurement is removed”. As mentioned, one of the goals with classification is to reduce the
general estimation problem. The general estimation problem is a composition of two
problems. Mah, [Mah90], defined them as:

“The problem of improving the accuracy of process data so that they are consistent with
material and energy balances of the system is known as data reconciliation. Simultaneously,
there is also the problem of estimating unmeasured process variables, which is known as
coaptation.” Thus, Mah has defined coaptation as the problem to be solved after classification,
in absence of gross errors. Which sensor belongs to what sub-problem, see Figure 3, is
answered by performing classification of the sensors. First the data set is divided into
measured and not measured data sets. By classification the measured and not measured data

sets are divided in four groups, [Sa92]:

la. Overdetermined or redundant. These variables may be adjusted in
the data reconciliation problem.

1. Measured
1b. Just measured. Variables not able to be determined from other

sensors. Must be taken directly from measurements. Cannot be adjusted.

2a. Determinable. Variables not measured, but possible to estimate from

balance equations in the coaptation problem.
2. Not measured

2b. Indeterminable. Cannot be determined.
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2.3.1. Example of classification by graph theory
Graph theory deals with nodes and directed edges connecting the nodes. A signal graph is

outlined in Figure 3 for a small mass flow with both measured and unmeasured signals.

Figure 3. Signal graph. Black coloured signals are measured. White coloured signals are unmeasured.

The signal graph can be used to classify the sensors into the categories presented in the
previous section. In graph theory observable and non-observable are denoted as accessible
and nonaccessible. Romagnoli, [Rom00], define accessibility as: ”We define a node i to be
nonaccessible from node «a if there is no possibility of reaching node i by starting from a
measured node a. Otherwise it is accessible”, and determinability as: “We define a node i as
determinable if any path going to node i always starts in a measured node”.

Look at Figure 3, and use first the definition of accessibility and then determinability. The
following results will appear: Nodes 5 and 7 are accessible. Node 6 is nonaccessible. Node 5
is determinable. Nodes 6 and 7 are indeterminable. If we look at the four groups defined

earlier then nodes 1, 2, 3 and 4 are measured. Nodes 1, 2 and 3 are over-determined.

2.3.2. Example of classification by matrix projection
The matrix projection method has so far been used on linear and bilinear process models. In

this example a small linear process model is considered. The process model in Figure 4 will
be used in all the following examples. A fluid is flowing through a small system containing

three junctions. The mass balance equations for this process are:

s, +5,—85,=0 Eq.2.1
S;+5,—8,=0 Eq.2.2
Ss+8,—8,=0 Eq.2.3
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The equations Eq. 2.1 to Eq. 2.3 are normally extracted from a flow-sheet diagram like the
one below in Figure 4. The connection between two nodes is called edge in graph theory
[Deo74] and arc in mathematical programming, [Win95]. The following text is mainly a

subject of matrix projection and graph theory and edge is natural in this context.

Figure 4. Flow-sheet diagram.

From the flow-sheet for Eq. 2.1 to Eq. 2.3 an linear process model 4, which here is the
same as the incidence matrix C, can be built, where “1” is for an edge to a node and “-1” is for
an edge from a node, and finally “0” is nonexistent edge for a particular node. To couple the
matrix 4, to a discussion about equations and sensors, then A4 can be interpreted to contain the
three equations Eq. 2.1 to Eq. 2.3 in the rows and the seven mass flow sensors in the columns

from left to right.

Eq. 2.4

If the measured variables are in the vector x and the unmeasured in the vector u, then the

mass balance equation is written as:

X
A-{ :|=0 Eq. 2.5
u

A can be divided into two parts; one containing the measured variables, 4;, and the other
containing the unmeasured variables, A4,. For the measured variables 1, 2, 3 and 4 we get the
matrix 4;,

1 1 -10
4=|0 0 1 1 Eq. 2.6
00 0 O

and for the unmeasured variables 5, 6 and 7 we get the matrix 4»:
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Eq.2.7

The overall mass balance with both measured and unmeasured variables can be written as:
A -x+A4,-u=0 Eq. 2.8

Matrixes A; and A, need further treatment to find the sensors that are: redundant, just
measured, determinable and indeterminable. A robust method for decoupling the sensors from
each other is QR factorisation. This factorisation is similar to the projection matrix proposed
by Crowe [Cro83]. QR factorisation of A4, gives the permuted matrixes Q,, R, and the

permutation matrix P,, where index u is for unmeasured variables:
A, u=Q,-R,-P,-u Eq.2.9

If we use that the rank of 4, (rank is the same as the linearly independent s columns) then
we can partition Q, and R, into Q,;, Q.2, R,; and R,;, where Q,; and R,; are the s columns of

O, and R,,.

s

= -
A, -u=|0, O, ||Ra Rol|-P.u Eq. 2.10
0 0

Where the determinable unmeasured variables u, are the s upper rows of the permuted

vector u and the indeterminable «; are the remaining lower rows of u:

p Md
u=P -
. Eq.2.11

i

The permuted unmeasured streams are,

U=\5s Eq.2.12

Ss
u =
d s Eq.2.13

u,=[s,] Eg.2.14
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thus the unmeasured variables are decoupled into determinable and indeterminable. There
is one last operation left; this is to ensure that the determinable variables are not dependent on
the indeterminable. After some manipulation of , Eq. 2.5, Eq. 2.8, Eq. 2.9 and Eq. 2.10, we
get:

1
u, =—R, -0,

T

i

1
A x—=R, R,-u
[N ——

P Eq.2.15

and the rows in the product R;, that are not zero indicate that u,; and u; have a dependency.
From the example we get:

-1 0 S5
-R, ‘R,= ) corresponds to s Eq.2.16

6

In the steady-state mass flow, stream ss is dependent on s;, ss is therefore also
indeterminable. Stream s;5 is independent of s; and remain determinable. The fact that s now
is indeterminable do not affect the status of ss5. In Figure 4 we see that 55 can be determined
from the measured streams s3 and sy.

Both Romagnoli [Rom00] and Narasimhan [Nar00] have shown that the projection matrix
developed by Crowe [Cro83] is the same as the transpose of the matrix O, in Eq. 2.10. Using
this knowledge about the projection matrix it is possible to decouple the variables x connected
to the measured matrix 4; into redundant x, and non-redundant x,:

“1 0
o

LJ Eq.2.17
0 0

x, and x, are substituted for their sensor numbering and thus give:

11
0, -4-x=[-1 0 0]-]0 0
00

(QMZT~A1)~x=[—1 -1 1 0]

Eq.2.18

The right hand side of Eq. 2.18, from the projection tells us that the first three measured
variables; s;, s> and s3 are redundant because they are linearly dependent i.e. not zero. s, is
projected as non-redundant or just measured. Now the classification is completed and the

results are:
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x, =|s, Eq.2.19
S3

xn = [S4] Eq. 2.20

U, = [Ss] Eq.2.21

S6
u, =
s, Eq.2.22

Where x,. include redundant measured variables, x, non-redundant variables, ug
determinable unmeasured variables and u; unmeasured indeterminable variables.

The strength of including a classification algorithm in a data treatment system is that all the
measured variables and unmeasured variables are monitored on-line for their status. Thus it is
easy to determine how much information the present set of functioning sensors can provide.
As shown, this can be gained by treatment of a signal graph and linear (or linearized) process
equations. How the information from classification is being used will be developed in the

following sections.

2.4. Some basic properties used in statistics
Noise and fluctuations in the process are common in real applications and probably give

sensor readings that are distributed around a mean value. The mean value u, standard
deviation s, and covariance are important properties when doing statistical calculations. The

mean value y,, for variable y, is calculated as:

I
— g Eq. 2.23

H, 7

where [ is the number of samples and index y is indicating measures computed for y. The

mean value is used for calculation of the standard deviation,

I
Z(yi _'uy)z
i=1
I-1

Eq.2.24

where the standard deviation s, is the square root of the variance. Variance is the expected
square of the distance from the mean value and the standard deviation is thus the expected

distance from the mean value, [Ada96]. Finally a covariance can be computed:

21



Z(xi _/ux)(yi _/uy)

= Eq.2.25
cov(x,y) == q

-1
Covariance shows how variables correlate. In the general case with N variables in columns
and M observations in the rows, with corresponding counters » and m, it is convenient to use

the vector form for covariance. The samples of all y are ordered in the matrix, Y-

Yn Y o Vi
Y= y:21 y:n y:2n Eq. 2.26
Yot VY2 7 VYuw

The measurement covariance matrix can then be expressed in matrix form as, [Rus00]:

1 r
cov(Y)=——Y'Y Eq. 2.27
=3 4

In this thesis different hypothesis tests are presented. To perform a hypothesis test, we need
a null hypothesis, Hy and an alternative hypothesis, H,. For the test we choose significance
level ay;, that tells the uncertainty in the test. If ayig is 5% then there is 5% chance of rejecting
the null hypothesis when it should have been accepted, [Fre00]. This is also called Type I
error or in everyday words; false alarm. A Type II error occurs when the alternative
hypothesis is rejected although it is true. The test includes a test quantity that is computed,
and then evaluated, to decide if the null hypothesis is rejected or not.

Here most of the hypothesis tests are goodness-of-fit tests. In these tests an assumption is
made about how the tested variable or variables are distributed. This is exemplified in section

2.6.2.

2.5. Normal and chi-square distributions
In the following sections the sensor readings are assumed to be normally distributed around

a mean value. A normal distribution with a mean value # = 0 and standard deviation s = 1 is
shown to the left in Figure 5. To the right in Figure 5 is a similar dashed curve, but it has a

different mean value y = 2 and standard deviation s = 1.
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Figure 5. Probability density function curves for normal distribution.

Solid curve has # =0 and dashed curve has 4 = 2.

The curve above is calculated from the normal distribution probability density function
(pdf) [Mat02]:

1 ~(Gp)
e 29 Eq.2.28

y_s~ 2

Where y in this case is the height of the curve. The probability p, for x to be in an interval
between x; and x; is equal to the solution of Eq. 2.29, which is the integral over the pdf in the

interval.

SO —(x—;zz)z
e 2 Eq. 2.29

The chi-square distribution is a special case of the gamma distribution, [Mat02]. Later in
this section it is used in a hypothesis test for determining if a set of measurement samples

contain gross errors. The distributions are families of curves.
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Figure 6. A curve from the chi-square pdf.

The chi-square pdf is computationally more expensive to evaluate than the normal

distribution pdf. The chi-square pdf'is:
() .
P (x)= %w%l ¢ for x>0 Eg. 2.30
r
2

where T is the gamma function, & are the degrees of freedom and x is the sample value.
Analysis shows that the gamma function of a half integer is the same as a chi-square

distribution, [Hog78]. The gamma function is expressed as:

F(%)= o].x%_l e Vdx Eq. 2.31
0

There are tables with values for the chi-square distribution for each degree of freedom and
value of the significance level ay;,. The chi-square probability distribution function is a family
of curves with different appearance due to degrees of freedom. Degrees of freedom are
explained by Weiss, [Wei04], in the following quote, ‘The number of degrees of freedom in a
problem, distribution, etc., is the number of parameters which may be independently varied’.
The statistical degrees of freedom are often called redundancy in the field of data

reconciliation. Here degree of freedom r is defined by a short expression, [Rom00]:
r=l-g Eq.2.32

Where / is the number of measured variables and g is the number of estimated variables.
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2.6. Detection of gross errors
Presence of gross errors in measurement data decrease efficiency of data reconciliation,

[Rom00] and [Nar00]. Thus gross errors need to be removed before data reconciliation.
Detection is the first step to perform to be able to remove a gross error. When talking about
detection it is also important to discuss what to detect. According to Kesavan [Kes97] the
types of faults that occur in a chemical process include process parameter changes,
disturbance parameter changes, actuator problems and sensor problems. This is applicable to
the heat and power plant industry as well. There is no strict definition of gross error, but the
one used here was stated by Veverka and Madron in 1997, [Mad97]:

“Statistically, a gross error is an error whose occurrence as realization of a random variable
is highly unlikely”.

This definition leaves everything that the data reconciliation cannot handle to the detection
and isolation algorithms to solve. A model of measurement is introduced to define what it is
the tests aims to detect in the sensors. From the data reconciliation point of view the measured
signal can be divided into three main components; the estimated true state of the process x, the
gross error d, and the random noise e. From these components the measured signal, y, can be
modelled as:

y=x+td+e Eq.2.33

Noise e is assumed to be normal distributed and have an expected mean value equal to zero.
The gross error d is assumed to be independent of signal magnitude. If the gross error can be
detected, then an isolation algorithm is triggered and if possible the gross error is isolated and
removed. Here the focus is on statistical hypothesis tests.

The development began in the 1960s. Ripps proposed a method based on measurement
elimination in 1965, [Rip65]. Reilly and Carpani proposed the statistical hypothesis batch test
called global test at a conference, [Rei63]. This test was followed by a number of statistical
tests: general likelihood ratio test [Wil74], measurement test [Alm75], and nodal test
[Mah76]. The mentioned tests where further developed during the 1980s. Besides the
statistical hypothesis tests for gross error detection, other techniques have been proposed, for
example; artificial neural networks, Bayesian networks, principal component analysis and
Kalman filter [Mak95]. Recent developed methods [Rol00] are in the field of multiple gross

errors detection in dynamic processes.
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2.6.1. Tests for detection
In this section hypothesis tests are presented e.g. global test, nodal test, measurement test

and general likelihood ratio test. Gross error detection is used to activate the computational
expensive search for gross error only when there are detectable gross errors present.
Goodness-of-fit tests have shown to be quite good for the task, [Sun03]. Assumptions are
independent variables and normal distributed noise in the variables with zero mean. The tests
aims to detect if an observed frequency deviate from an assumed theoretical frequency more
than can be expected by pure chance. The first proposed goodness-of-fit test for gross error

detection was the global test, [Rei63].

Global Test (GT)

The global test uses the residual » of a linear process model in matrix form 4, and the
measured variables in the vector y. If the process model is interpreted as constraints, then the
residual represents the violation of the constraints expressed in a vector. The residual vector
can be used to compute a test quantity for a collective test for gross errors. If there are no
gross errors present then the residual follows a normal distribution with zero mean. The

residual of the process model and the measurements is computed as:
r=d4-y Eq. 2.34

To form a test quantity for the global test, first the covariance needs to be computed.
Below, the covariance matrix J is calculated from the residual vector r, and the number of

variables n:
V=—m-rr Eq.2.35

If the measurement error covariance matrix X is known, then 7 can be calculated according

to:

V=4-2-4" Eq. 2.36

There are many difficulties to obtain the measurement error covariance matrix and this is
investigated in the book by Narasimhan, [Nar00], pages 77-81. Also Morad et al., [Mor99],
have investigated this. There are doubts if the more sophisticated methods to get the error
measurement covariance matrix are better than the straightforward direct method. The direct
method is often used to obtain the measurement error covariance matrix directly from process
data, but it can be discussed whether this is a good method since the data used for

computation can be contaminated with gross errors. The variables are weighted according to

26



the inverse of the covariance matrix, ¥, and then form the global test statistic, y, that follows a

chi-square-distribution with degrees of freedom equal to the rank of 4.
y=r"-Ver Eq.2.37

The variance is here a measure of how reliable a measurement is for a process in steady
state. It can be discussed if it is good because an increase or decrease of variance for a sensor
in good shape can in both cases mean that the sensor is degrading or affected by e.g. fouling.

The null hypothesis is that there are no gross errors present in the measurement data. This
can be falsified by the global test. Gross error is probably present if y exceeds the theoretical
value of the chi-square-distribution at the chosen level of significance ay, and v degrees of
freedom, this conclusion relies on the assumption that each sensor signal got a normal
distribution. If the null hypothesis is not rejected, data is probably free of gross errors or the
gross errors have eliminated each other and are thereby concealed. The latter is improbable if
there are many measurements and high interconnection between the sensors. In a mass
balance model, large magnitude in a signal with high standard deviation can conceal smaller

magnitudes and cancel the possibility to find gross errors in them.

Nodal Test (NT)

A total of M constraints are tested for gross error. The residual 7; of each constraint follows
a normal standard distribution. Because we have M tests instead of one batch test as in the
global test, the probability increase that the null hypothesis is rejected. The limit o, needs to
be modified to handle multiple hypothesis tests, without changing the significance level. The
modified oy, called f can be computed as, [Rol92]:
.

— sig
B YA Eq. 2.38

The null hypothesis of the nodal test is: Data is normal distributed and the test quantity, 7,
follows a normal distribution. The alternative hypothesis is: Data is not normally distributed.

The test statistics to be evaluated is,

I

@A Eq. 2.39

where 7; is the residual of constraint i, and V7 is the corresponding covariance value in the

diagonal of V. The critical value Z; g, is determined from a standard normal distribution table
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with input of . If y > Z; 4, then the null hypothesis is rejected and the residual for constraint

m is probably containing a gross error.

Measurement Test (MT)

The measurement test is a test on the computed adjustments. This test is dependent on a
data reconciliation algorithm that conserves the information about the normal distribution in
the variables into the adjustments. Adjustments are computed after the data reconciliation step
as the difference between the measured value y and the data reconciled estimates x. Similar to

the nodal test a test quantity is computed and tested for normal distribution.

General Likelihood Ratio (GLR)

This approach of gross error detection needs a model of the system. Leaks can be detected
by the method. A simulator is fed with data containing gross errors and leaks. The response
from the system is recorded into signature vectors. The GLR test the hypothesis, that the
measured value is contaminated with gross error or leak is less likely, than the measured
values being just normally distributed for the given measurement vector with zero mean. The
test statistic y is the ratio between the probability of the present null hypothesis and the
alternative hypothesis [Nar00]:

Prir|H, }

V= SUPW Eq. 2.40

Here sup is the calculation of the supremum over all possible values of the parameters in
the hypothesis. Calculation of Eq. 2.40 is made for all signature vectors. The test uses
multiple tests, compare the nodal test, and it also needs modification of the significance level

o to B as in Eq. 2.38 before comparing the test statistics to a chi-square distribution.

2.6.2. Example of gross error detection by global test
In this example of gross error detection, the process scheme in Figure 4 is used. The

example got the following scenario: all mass flows are measured. One of the mass flow
meters has been partially clogged/fouled and show lower mass flow than its true value.

A vector is created containing noise to be reconciled and gross error to be detected. The
true values for measurement vector yare: [2 2 4 1 5 3 8] (kg/s). For simulation a 5%
relative noise is added to all measurements, and we get the (simulated) measured values, Vieas

= [1.9398 1.9031  4.0987 0.9945 52159 29898  7.9349] (kg/s). Due to
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clogging/fouling a gross error of -3 kg/s is introduced in sensor 5. Adding this error to yeas
gives the vector yueasce = [1.9398  1.9031 4.0987 0.9945 2.2159 2.9898 7.9349].
Assume the measured values are normally distributed, thus the residual of a linear equation
system is also normally distributed. Measurement covariance matrix is here an identity
matrix. The graph is transformed to the incidence matrix 4, see Eq. 2.4. Now the global test is
used to detect gross error in the measured values Vieqs and Vieas,ce. The global test quantity is
calculated for measured vector according to Eq. 2.37. The null hypothesis is: the residual
follows a chi-square distribution and thus the measurements do not contain gross error if

<Z

writical.v» WNETE Zeriticary 18 the theoretic threshold for chi-square distribution with v degrees
of freedom and significance level of 95%. Z.icay is tabulated in literature for degrees of
freedom and significance level, [Fre00]. In this case degrees of freedom equal to 3, and
significance level 95%. With these inputs we get the critical test quantity value:

Zcritical,v = 7654

Eq.2.41

The test quantity y; for the measured vector y,.e.s containing only measurement noise may
be formulated as below after substituting the residual » in Eq. 2.37 with Eq. 2.34, the resulting

expression is:

71:(A'ymeas)T.Vil.(A'ymeas) Eq.2.42
giving:
7, =0.1539

For the vector ymes,ge containing both measurement noise and gross error of -3 kg/s in

sensor 5, the test quantity v, is calculated as in Eq. 2.42:

V2= (A * Y meas GE )T v (A ) ymeas,GE) Eq. 2.43
giving:
v, =15.793

The test quantity y; computed for vector s, is less than the critical value Z,,iicar v, thus the
null hypothesis is not rejected and the measured vector y,..s is not considered containing
gross error. This implies that deviation in measured values is explained by random noise in

the sensors. The second test quantity y, computed from the vector ye.s gz shows to be larger
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than the critical value Ziicar» Thereby the null hypothesis is rejected implying that y.eqsce

contain one or more gross errors.

2.7. Isolation
The task of the isolation algorithm is to search for errors. If a gross error or other fault is

found then the error either eliminated or corrected. Isolation of errors may be seen as a
protection for the following data reconciliation algorithm, see Figure 1. Most data
reconciliation algorithms cannot handle errors in data. Ripps proposed isolation of gross
errors in 1963, [Rip63]. The first isolation algorithms were based on graph theory. Data
driven techniques such as artificial neural networks (ANN), [Arr03], Bayesian networks (BN)
[Wei01] and Kalman filters (KF) [Mak95] have also been proposed for isolation. The growth
in computational power has also opened up for optimisation by mixed integer programming
(MIP). MIP gives rise to very large optimisation problems even for a moderate sized sensor
network when multiple simultaneous errors are considered. A common way to handle this is
to make a single fault assumption or a “few faults” assumption. In a work by Gatzke [Gat01],
two simultaneous errors was the limit of maximum simultaneous errors, thus the search tree is
pruned to a manageable size.

When to use multiple and single fault assumptions is depending on how often errors occur,
the length of sampling time, complexity of the system and its equations, need for isolation of
multiple errors, and of course the cost compared to the benefit of the system. The cost incur
from extra sensors and their maintenance, hardware for the software, installation cost and
implementation of the software in the system. The benefits of isolation are; shorter time to
find sensor and process faults, and a possibility to estimate the size of the fault. If the fault is
both isolated and known in size then the plant can be in operation without need to shut down
until next maintenance is scheduled, thus expensive unscheduled shutdowns can be avoided.

The idea is to perform single gross error isolation for each sensor end then eliminates the
sensor containing a gross error until all sensors have been tested for gross error. How the
algorithm can be performed is shown in Figure 7. The benefit is that this method only
increases proportional to the number of sensors in computational work. The drawback is that
it is not a completely robust method, because the sequence of elimination of the errors has an
effect on which the next detected and isolated sensor will be.

If the signals are consequent by time and increasing/decreasing, the probability for a real
fault increases, while a shifting signal may just be noise. See 2.7.4 for an example. An

algorithm built to isolate more than one gross error has a search tree that grows exponentially
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with the number of simultaneous gross errors the algorithm needs to isolate. Different
methods have been proposed to decrease the exponential growth. For example the linear
combination technique (LCT), [Rol96], use conclusions about the interconnections in the
graph to prune the search tree. Adjustability tells if a variable can be adjusted or not, [Sun03].
This information can be used for eliminating sensors that are not adjustable from the search

tree.

2.7.1. Isolation of single gross error based on statistical hypothesis
test

In the data set T contains t sensors. A test quantity Q is computed for each sensor. The
criterion for the test quantity is checked for each sensor and on basis of that a sensor t is

picked containing gross error. Indication of gross error is the largest value of all Q.

Data set T

Y

Compute a test
property @, for each
sensortin T.

¥

Assign the gross error
tao the sensart in T with
max of the property Q.

End of algarithm.
Sensort isolated to contain
gross errar.

Figure 7. Isolation based on statistical tests for single gross error.

Isolation of one gross error in a sensor is performed by a straightforward method sufficient
for small applications. When the sensors increase in number, the possibility of more than one

simultaneous error increase and multiple errors must be assumed. The straightforward search
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method is common for data-driven methods that seldom use loops in the algorithm. Multiple

gross error search methods based on statistical tests can use the search method for single gross

error, but then it is incorporated in a loop.

2.7.2. Isolation of multiple gross errors based on statistical

hypothesis test
Here the sequence for search of single gross error is complemented with a detection of

gross error test. When no more gross errors are detected the loop terminates. Each gross error
found is put into the data set S and is eliminated from the data set T. Thus, all sensors

containing gross error is in the data set S when the loop terminates and the sensors without

gross error are in data set T.

Data set T

Detect if there are any gross
errors in data set T

Compute a test
property 3, for each
sensortin T.

|

Assign the gross errar
to the sensort in T with
max of the property Q.
Put t in data set 5 and
delete t from data set T.

End of algorithm.
Data set S containing the
gross errars and reduced
data set T with no gross
errars.

Figure 8. Isolation based on statistical tests for multiple gross errors.

The above problem can also be solved in one problem formulation using either linear or
nonlinear mixed integer programming (MILP and MINLP). Often nonlinear programming

(NLP) is used as a reference method. Solving a NLP-problem is time consuming and is not

yet thought of as usable in on-line applications.
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2.7.3. Isolation of gross error by solving a sequence of nonlinear

programming problems
DatasetT

Solve optimisation
Increase t problem for a gross
error in sensor t

NO Have every t been YES

computed?

End of algorithm.
The gross error is
isolated to the sensor

t corresponding to
the minimum
objective function
value

Figure 9. Isolation based on solving a sequence of nonlinear programming problems.

Solving a sequence of NLP problems give an objective function value for every sensor in
the process. The general problem set up for NLP problems and the ability to handle time
window, give possibility to incorporate different types of faults. For example the time window
can be used for estimating fault development or dynamic faults like dampening, which is not

possible to detect in a steady-state solution.
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2.7.4. Example of isolation by solving a sequence of NLP problems
We continue on the previous example, with the given matrix 4, and the measured vector

Ymeas,or = [1.9398  1.9031 4.0987 0.9945 2.2159 2.9898 7.9349] containing a gross
error of -3 kg/s in sensor number 5. Suppose a gross error was detected. The isolation
algorithm is activated and the task is to isolate a single gross error. We choose the method of
solving a sequence of NLP problems for isolation:

min 3, v )+ ﬂii(ﬁcx )2]

i=l n=1 i=l m=1\ n=1

St Vi =X, nzn', i=l..1 Eq. 2.4
Vin=%,+0, n=n', i=l..,1I

Where y is the sensor reading, x is the estimated value of a sensor reading, ¢ is an element
in the incidence matrix 4, u is the penalty function multiplier, gross error J, and M, N and [
are total number of rows, columns and samples, respectively. The sensor evaluated in each
solution is #’, the other N-1 sensors are not changed. To be able to exploit the features of the
time window approach, 10 samples are simulated. The 10 samples shown in Table 1 below

are used as input to the NLP problem in Eq. 2.44.

Sensor reading [kg/s]

S1 52 S3 S4 S5 S6 S7
1.9934 2.0062 4.0233 0.9807 2.0996 3.0382 8.1164
2.0315 2.0170 3.9402 0.9887 2.0316 3.0055 7.8238
1.9589 1.9771 3.9818 0.9987 2.1022 3.0144 7.9316
1.9978 2.0097 3.9323 1.0165 2.1140 3.0143 7.8115
2.0312 2.0110 4.0403 0.9796 1.9812 2.9813 7.8665
2.0333 2.0339 3.9903 1.0228 1.9118 3.0555 8.1078
1.9944 2.0121 4.0903 1.0070 1.9368 2.9779 7.8751
1.9991 1.9909 3.9927 1.0055 1.8928 2.9721 8.0434
1.9675 2.0121 3.9492 1.0044 2.0015 2.9947 8.0166
2.0442 1.9842 3.9804 0.9904 1.9779 2.9679 7.9577

Table 1. Sensor readings with gross error in sensor 5 equal to -3 kg/s in each sample.
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Results from solving the sequence of problems Eq. 2.44 with the samples in Table 1 are

shown in Table 2 below.

Sensor S1 S2 S3 S4 S5 56 S§7
Estimated gross

0.018 0.018 1.484 2.986 -2.967 -2.948 2.948
error [kg/s|
Objective

1765 1765 1324 873 4 896 896
Sfunction value

Min!

Table 2. Result from solving a sequence of NLP problem for each sensor to isolate the gross error.

In Table 2 the minimum function value from solving Eq. 2.44 is found for sensor 5, thus a
GE in sensor 5 with the size of -2.97 kg/s is the best solution that fulfils the model. This result

complies very well with the simulated GE of -3 kg/s.

2.8. Data Reconciliation
Data reconciliation (DR) is a special case of the general estimation problem. DR is the

problem of having measurements in an over-determined system satisfying all process
constraints. Unmeasured variables are either estimated simultaneously with DR in a general
estimation problem or as a separate step after the DR problem is solved. Solving DR and
estimation simultaneously is in some literature called data coaptation. Data reconciliation has
been reported in applications for mineral industry processes [Sim91], chemical production
plants [Abu03], and nuclear power plants, [Sun03]. The most active application field for
research in data reconciliation is in chemical engineering. The first method of data
reconciliation for a chemical process was proposed in 1961, [Kue61]. The methods involved
linear system equations under the assumption that all process variables were measured and
absence of gross errors. The described problem can be solved analytically by least squares
methods. Complementary methods as gross error detection and isolation where developed
parallel to DR in order to handle real DR application problems. Graph theory was connected
to the DR problem formulation by Mah et al., [Mah75]. The assumption of unmeasured
variables was not efficiently solved until Crowe [Cro83], presented the projection matrix
method. Swartz [Swa89], showed that the projection matrix operation could be solved by the

robust QR-factorisation.
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Nonlinear data reconciliation was first proposed to be solved by successive linearization by
Knepper and Gorman, [Kne80]. Liebman et al., [Lie91], showed that nonlinear programming
methods gave improvements in accuracy, but had long computation time. Liebman et al.,
[Lie92], later proposed a time window approach for dynamic data reconciliation. Russo and
Young implemented a dynamic DR algorithm in 1999, [Rus99]. Recently Soderstrom et al.,
and Gatzke et al., reported industrial implementations in chemical plants, [Sod00] and
[Gat02], using nonlinear dynamic DR strategies.

The general data reconciliation problem formulation for linear equations solved for 7
samples by a least squares method [Rom00] is here formulated as:

1
miHZ(yi - X )2
i=0

xu “

Eq. 245

st. A -x+A4,-u=0

Where y is the measured state, x is the estimated state, u is the unmeasured state, 4; is the
columns of 4 with only measured variables and A, is columns of A4 with unmeasured
variables. The simultaneous solution of data reconciliation and estimation of unmeasured
variables in Eq. 2.45 is in many cases a large task. To reduce the size of the optimisation
problem the DR problem can be divided into two sub-problems, [Cro83]. After the division of
the total problem, the next task is to solve the over-determined equations. The following sub-
problem is to estimate the unmeasured variables with data from the solution of the over-
determined equation system. The simplest DR problem with only measured variables
presented below is with linear equations with no gross errors present and the process in

steady-state:
I
minZ(yi —X; )2
T 0

st. A4-x=0

Eq. 2.46

The linear process model 4;, containing only measured variables can for example be the
conservation laws for a system with mass and energy streams. The following sub-problem

solves the linear equation system of unmeasured variables.

4, u=0 Eq. 2.47
This equation system is solved with any linear equation solution method, for example LU-

decomposition or QR-decomposition. The sensors have different measurement error; this can

be implemented in the problem formulation as a weight, w, on each sensor. How this weight is

determined does not follow any standard procedure. In [Sod00] an estimated accuracy of the
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sensor is used, which can be modified by the plant operation engineers on the basis of past
measurements and their experience and knowledge about the considered instrument. Define a
matrix W, where the weights w is put in the diagonal. Now we can formulate the weighted

least squares problem,

XU

I
minzVVii(yi _xi)z
i=0 Eq. 2.48

st. A -x+A4,-u=0
where x and u are computed to minimise the objective function value. In a one-sample
approach it is difficult to distinguish a large random noise from gross error. Data
reconciliation for the present vector y in Eq. 2.48 can be improved by computing a time series
of samples. A time window makes more data available for the problem solving and noise can
efficiently be smoothed. The cost for the decreased measurement error is increase in
computational load, which at least is proportional to the number of time steps in the time
window. The DR problem formulation in Eq. 2.48 can be extended with a time window, T
T I
n;‘in Z Z W, (yt,i X )2
=0 i=0 Eq. 2.49
st. 4 -x,+A4,-u,=0,t=1,...,T.
The solution x and u from Eq. 2.49 is ready to use for applications depending on measured
data as, plant optimisation, control purposes, diagnostics, economical and environmental

reports.

2.8.1. Example of data reconciliation
We continue on the example used throughout this thesis beginning with classification and

ending with data reconciliation. Earlier a gross error was detected in the data set and was
isolated to sensor 5. The size of the gross error was estimated to -2.97 kg/s. Use the data set
given in Table 1 and correct the measured value in sensor 5 with the estimated gross error.
Solve the data reconciliation problem Eq. 2.49 for the corrected data set in Table 3. Observe

that there are no unmeasured sensors in this case.
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Sensor reading [kg/s]

S1 s2 S3 S4 S5 S6 S7
1.9934 2.0062 4.0233 0.9807 5.0696 3.0382 8.1164
2.0315 2.0170 3.9402 0.9887 4.9836 3.0055 7.8238
1.9589 1.9771 3.9818 0.9987 5.0722 3.0144 7.9316
1.9978 2.0097 3.9323 1.0165 5.084 3.0143 7.8115
2.0312 2.0110 4.0403 0.9796 4.9512 2.9813 7.8665
2.0333 2.0339 3.9903 1.0228 4.8818 3.0555 8.1078
1.9944 2.0121 4.0903 1.0070 4.9068 2.9779 7.8751
1.9991 1.9909 3.9927 1.0055 4.8628 2.9721 8.0434
1.9675 2.0121 3.9492 1.0044 4.9715 2.9947 8.0166
2.0442 1.9842 3.9804 0.9904 4.9479 2.9679 7.9577

Table 3. Sensor readings with corrected gross error in sensor 5 equal to -2.97 kg/s.

In this case the least squares problem as in Eq. 2.46 is solved analytically, resulting in the

vector x =[2.0119 2.0247 4.0367 1.0126 5.0493 3.0526 8.1020].

Define the residual r, as:
r=x-— ytrue Eq. 2.50

where x is the vector of estimated values and y;.. is the flow vector without noise and gross
errors. What effect does the data treatment have on the errors and noise in the measured data?

Two-norm of the residual vector » is a measure of how far the true and estimated values are

from each other. The two-norm is denoted ||r|| By computing the two-norm, it is possible to

follow the contribution of each step in the data treatment.
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Step in data treatment Description of measurement vector Two-norm of r

. . True measurement 0
Simulation of real
measurements by adding | True measurement with 5% relative noise 0.1444
noise and gross error )
True measurement with gross error 3.0000
Detection True measurement with gross error and noise | 3.0722
Isolation Corrected measurement after isolation 0.1431

o Data reconciled measurement after correction
Data reconciliation ) 0.1336
of isolated gross error

Table 4. Two-norm of the residual in different steps of the data treatment.

To simulate a measurement vector, noise and gross error are added. The gross error was
detected by the global test. It was isolated to signal 5 and estimated to —2.97 kg/s in the
isolation algorithm. After signal 5 was corrected with 2.97 kg/s (and thereby the gross error
was deleted) the two-norm decreased from 3.0722 to 0.1431, a significant improvement.
However, the added noise still remains. Using a least squares method for data reconciliation,
the noise is reduced and the two-norm is further lowered to 0.1336, which is the remaining
error. This value is lower than any of the two-norms for the simulated signals. This result
implies that the treated measurements are closer to the true measurement vector than the input
measurement vectors. Thus, the data treatment has in this example shown to improve the

measurements on the whole.

2.9. Applications using treated data

Discrepancies in overall mass and energy balances are facts for most industrial processes.
Few applications can handle deterioration in sensors or the process and still have optimal
function. Below follows a list of top applications that benefits from data reconciliation.

Control

Instrumentation maintenance

Overall optimisation and production planning
Process and sensor diagnostics

Economy reports

Environmental reports
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The constant striving for higher product quality and lower production costs requires more
efficient and accurate control of each variable. Consequently, there is also an increasing
demand on sensor accuracy and reliability. Data reconciliation algorithms can lower the
maintenance costs by compensating for sensor reading errors and thus keeping performance
without physical maintenance until needed to ensure functionality. Consistent data sets after
data treatment open up the possibility for advanced control algorithms that have been
prevented by deteriorating sensor readings and changing process parameters over time.
Overall optimisation is also dependent on consistent data for optimal performance. The
impact of data reconciliation is dependent on how sensitive the objective cost function in the
optimisation is for faults in data.

Process and sensor diagnostics have much data to mine from the data reconciliation output
[Sod00]. Each sensor is continuously monitored and data about deviation from estimated
value is reported. Residuals in process models and changes from one sample to another are
examples of qualitative data that can be extracted from the data reconciliation. Economy
reports for the plant are based upon measurements of produced quantities and raw material in,
[WanO1]. The need for consistency in mass and energy balance is obvious to give a reliable
economic balance. Some countries have taxation on emissions such as, content of CO, or NOy

in flue gas. Connections to costs because of faulty sensor readings are apparent.

3 Results

Three papers and one technical report have been produced to gain insight in when the
research hypothesis can be falsified or not. Here the papers are summarised in order to present

the most important results. The papers and the report are attached in appendix.

3.1. Paper 1

A heat and power plant need accurate sensor readings to meet efficiency, environmental
and safety demands. Unreliable sensor data affect performance and control of the process,
causing economical losses. Gross error isolation and data reconciliation is one way for on-line
data treatment getting a consistent data set. The system can be put together of different
components. In this paper, it was tested how far a very simple approach can reach. With
simple it is meant that only already existing instrumentation was used and that some of the

fastest components for performing each computational task was chosen for the system.
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Figure 10. Data treatment from raw data to application.

A linear steady state mass balance model was used in the optimisation algorithm for data
hypothesis test (chi-square-test) was used for gross error detection.
Single fault was assumed for sequential search in the isolation algorithm. Data reconciliation
was performed by analytically solving the weighted linear least squares problem. The
following variable estimation was also solved analytically. The system presented in Figure 10

was tested on measurement data from a flue gas channel in a combined heat and power plant

The system first calculates physical properties, and then mass flows. The flows are

classified into subsets according to redundancy. Redundancy determines to what extent a
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sensor can be used in isolation, data reconciliation, and estimation. In the considered flue gas
channel there where no hardware redundancy. Limitation to only existing instrumentation led
to an exploration of analytical redundancy. It explores not only the hardware redundancy, but
also the redundancy that can be found in relations between sensors. These relations are here
used in small physical models called soft sensors. Soft sensors provide the data treatment with
some of the needed mass flows for being able to perform isolation and data reconciliation. By

keeping the soft sensors out of the linear model the core of the system could be kept simple.

Test
la | 2a | 2b | 3a | 3b
Input
Upper limit 2 2 2 - -
Lower limit | 0.1 0.1 0.1 - -
Noise 3% real real real real
Output
OP 0.302 | 0.199 | 0.202 - -

AVTI 0.041 | 0.047 | 0.049 - -
Selectivity | 0.881 | 0.807 | 0.805 - -

Table 5. Summary of performance measures.

Testing of the total system was made in three different test set-ups, where 1 and 2 have
different noise, 2a and 2b have different time averages, 3a and 3b also got different time
averages. The results are presented in Table 5 in recommended quantities such as overall
power (OP), average number of type I error (AVTI) and selectivity. To get data enough for
statistical reasons different data sets from steady state operation was put together. The total
data set used in the tests contained about 12 000 samples. The same number of samples was
used for the simulated tests in test 1a, 2a and 2b. AVTI was kept to between 0.4 — 0.5 to get
comparable conditions for the different tests. A gross error between 0.1 to 2 times the average
mass flows was added to one of the measured mass flows. The data set with gross error was
fed to the gross error isolation and data reconciliation system.

From the results it can be seen that the performance in this case is not affected by averaging
of the measurements. A conclusion drawn from the low OP in combination of the high

selectivity is that few sensors are detected and isolated while others are not. An analyse of the
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individual measurements give that gross errors in the main mass flows are more often
detected and isolated than in the low magnitude mass flows. This can be explained by the
noise in the main mass flows masking gross errors in the low magnitude mass flows. Maybe
scaling of the signals can solve the problem. Other effects not presented is that the
unconstrained least squares method produced negative mass flows as well as unreasonable
large mass flows, but this can be taken care of with a constrained least squares solver. Until

the constrained solver is implemented the estimates are judged as unreliable.

3.2. Paper 2

In this paper the work has been performed together with Bjérn Widarsson. My part was to,
in literature, find the cause-effect relations for fouling between different variables. Bjorn built
the Bayesian network and trained it with a collected data set. In Sweden the use of biomass
for power generation in heat and power plants are common, but the experience of power
generation with biofuel is limited. The challenge is to combine biomass fuels with other fuels
to get a cheap fuel mix and at the same time reduce build-up of fouling. Here we investigated
what is affecting fouling in the flue gas channel with focus on the convective superheaters.
The different conditions affecting fouling are complex and a tool for decision support is
needed. The tool must be able to handle uncertainty in data and be transparent to the user.
Transparency is necessary to explain on what basis the decision is taken. Bayesian networks
(BN), complies with the wanted qualities and is used for building the tool.

Data for construction of the decision support is collected from the heat and power
generation plant in Visterds, Sweden. The decision support is restricted to the convective
superheaters that were identified as a problem area. Fouling is a mixture of deposited ash,
condensated gasified substances and compounds resulting from reaction between substances
on the surface and in the flue gas, that decrease the heat transfer rate in the convective
superheaters. Fouling can e.g. be prevented by changing the fuel mix, shorten the time
between soot blowing and control boiler temperature. In this work we divided fouling into
two categories: hard fouling that cannot be removed by soot blowing and soft fouling that is
removed by soot blowing. Calculating the heat transfer coefficient before and after a soot
blowing cycle can monitor both hard and soft fouling. We believe that abnormal build-up of
fouling can be prevented by strategically choosing fuel mixture and soot blow interval when
operating the plant. Thus, shutdown of the plant other than for annual cleaning can be

avoided.
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Figure 11. Bayesian network for decision support on soot blowing.

The Bayes theorem [Pea88] together with graph theory is a powerful tool for decision
support. The graph is the backbone with the known cause—effect relations. Specific plant data
are stored in the condition probability tables. The tables are produced from plant data and a
yearlong data set from the distributed control system. The relations between fuel properties
and fouling is extracted from technical reports and then put into conditional probability tables.
One application of the constructed BN is decision support on soot blowing. Before building
this decision support the decision on soot blowing relied on one variable, the steam
temperature after the superheater. With a BN many variables can be accounted for in a
decision on soot blowing. One of the main features is that preventive actions on fouling can
be taken with support of the BN.

The network is built for the superheaters in the flue gas channel and is divided in two parts.
The first part is the heat transfer part and the second is the fouling build-up part. The
combined BN for decision support on soot blowing is presented in Figure 11. Dark grey nodes
represent signals, black nodes are predictions of fouling build-up, recommendation on soot
blow is the light grey node (in the top left corner) and white nodes are trained from data. The
BN is trained on a yearlong process data set. The rest of the data is used for making test cases

to validate the BN. Decision support is given by the soot blow node and it got two states, soot
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blow or not soot blow. The decision is taken among others on the maximum hard fouling
build up in the end of the season. Test cases are prepared to test different rates of fouling
build-up for both soft and hard fouling.

Validation of the results gives that the BN make good prediction of fouling build-up in the
normal case when the plant is running at full load. In the low load and middle load region the
performance is not so good due to lack of learning data. Important to emphasise is that many
variables affecting fouling build-up are not monitored, e.g. fuel properties and particle
velocity. Not including all variables affecting fouling reduce the power of the prediction
model. However, the BN is quite easily upgraded with more data and additional variables

when they become available.

3.3. Paper 3

Isolation of gross errors in process plant on-line data is essential for optimal operation.
Isolation is normally part of a system including gross error detection, gross error isolation,
data reconciliation, and variable estimation. Here we focus on isolation of gross error and
dampening in sensors. The aim is to isolate faulty data and correct it on-line. Gross error is
defined as a systematic bias of a sensor reading. Dampening is proportional to the amplitude
in the part of the sensor reading that is fluctuating. How bias and dampening affect a sine

wave is presented in Figure 12.
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Figure 12. Effect of gross error and dampening for a sine wave. Solid line is true signal,

upper dashed line is signal with gross error and lower dashed line is dampened signal.
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Two different optimisation approaches are tested for effectiveness in isolation of gross
error, 0, and dampening, a. As early detection and isolation as possible is desirable. A time
window approach is used to enhance the performance of the algorithms. It is assumed that the
time series give extra information to the algorithm and thereby it is less sensitive than an
approach using only one sample for isolation. A problem is that real sensor readings contain
noise. However, noise cannot be reduced before gross errors and dampening is identified. The
noise reduction is performed in a following step called data reconciliation, which is not in the
scope of this article. Data reconciliation is not valid for data containing gross errors, and
therefore an efficient isolation is essential for a functioning data treatment system.

The test was conducted by adding 1 to 2% relative normal distributed noise to each sensor
reading. A time window of 10 samples was created. The same data set was used in all tests.

Gross error or dampening was simulated in one sensor for the algorithm to isolate. The
objective is to find the gross error or the dampening that result in a feasible solution of the
optimisation problem. The constraints are allowed to give a residual computed from the
constraint matrix C, and the estimated variables x. This residual is constrained by the limit, &.

Ly
mif >3, .|

adx \i=l n=1

N

st. —e<)c,.x,<¢ m=L..M, i=1..1 Eq.3.1
n=l
Yin =Xin> n#n, i=1,..,1
Vi =a-x,+6,  n=n, i=1...,1

If there is no solution for a given &, then it is increased in steps until a solution is obtained.
Variables where a solution could be found are candidates of containing either gross error or
dampening. The solution of the problem gives an estimate of the gross error or the
dampening. The second optimisation problem handles noise by introducing a penalty
multiplier x4, on the sum of the residual, thus the residual is a penalty in the objective function.
In other words the hard limit on the residual in problem Eq. 3.1 is replaced by a soft
constraint. The optimisation problem with penalty function can be written as:

S0, v S(Sen) |

n=l i=l m=1 \ n=1

min

I
abx i=l

Sbe Vi =X nzn', i=1..,1 Eq.3.2

Vin=@ %, +0, n=n', i=1..,1I

The optimisation problem Eq. 3.1 always got a solution. The minimum of the objective

function for a given sensor probably contains a gross error or dampening. Solving Eq. 3.2 can
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produce the same minimum objective function value for more than one sensor. This is not
handled here. An idea is to check the solution for sensors containing unacceptable estimated
gross errors or dampening and eliminate them.

For the problems in Eq. 3.1 and Eq. 3.2, the error candidates can be checked afterwards by
methods incorporating experience about parameters affecting gross error and dampening. Test
results were successful for isolation of absolute gross error. One third, up to half of the
sensors was isolated to a unique sensor. Two thirds were not isolated to a unique sensor but to
a data set of four sensors up to seven sensors. All of these data sets contained the sensor with
the simulated gross error. From the estimated values and gross errors in the solutions it is
possible to reduce the number of suspicious sensors in the isolated data set. Dampening was
more difficult to isolate. A reduction by 5% of the amplitude was difficult to isolate.

Obviously a larger dampening is needed for good performance.

3.4. Report 1

Distributed control systems, DCS, are nowadays widely used in heat and power plants. A
historical database combined with the DCS give possibility to use data treatment and
diagnostic tools like gross error detection and data reconciliation. Many sensors used for
alarm, control and other purposes can also be used by data treatment. One of the restrictions
for this report is to use only existing sensors.

Three different model principles are investigated as a base for data treatment. 1) A
statistical linear data driven model. 2) A model with mass balance supplemented with soft
sensors for mass flow. 3) An energy balance model. Theoretical comparison of the three
models resulted in favour for the data treatment based on a mass balance model. The
statistical model is preferred for smaller process sections when focus is on fast model
development and transparency is not needed. The mass balance model has a base in physical
reality and can handle sensor dropouts. The energy balance model got about the same
qualities as the mass balance method, however it is more complex and need tuning of
parameters to work.

The mass balance model is built for the flue gas channel of the heat and power plant. Other
sensors than mass flow sensors were used in equations to calculate mass flows. These blocks
for calculation of mass flow are called soft sensors. The core model is used for simulating
data and in several operations in the data treatment algorithm. The complete data treatment
algorithm is built from standard components such as hypothesis test, classification by

projection matrix, sequential isolation and data reconciliation by least squares followed by
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data estimation. The purpose of using standard components is to assemble knowledge about
the different components for gross error detection, isolation and data reconciliation and how
they work together.

The power plant is equipped with more than the standard monitoring instruments, despite
that, a number of soft sensors had to be developed to make data reconciliation possible. This
point out an important issue: tools for data treatment and diagnosis need to be thought of
early, already in the construction phase. This applies to both power plant components and to
the complete power plant to ensure observability of critical properties and components.

Results from the simulations show that large errors in mass flow can be detected and to
some extent quantified. Mass flow small in magnitude is very hard to detect and isolate when
they are connected to larger mass flows. Both the position of the sensor and precision in the

process model is important for correct detection and isolation.

4 Concluding remarks

This thesis has tested the hypothesis: quantitative and qualitative methods can deliver a data

set in balance from state estimation point of view, despite degradation in process and sensors.

4.1. Conclusions
Measuring mass flow, temperatures and pressures are essential for plant control and

monitoring. Heat and power generation plants are suffering from degeneration in sensors and
process during operation due to e.g. fouling, erosion and corrosion. These processes benefits
from data treatment when it comes to; diagnose purposes, availability of the process, risk
management, allocation of maintenance resources, consistent data for statement of accounts
and overall control.

Robust and accurate process models are one of the most important module in a data
treatment system for reducing gross errors and noise. Process models are usually time-
consuming to build, but give both process knowledge and possibilities to simulate process
states not practical to test in a real process. Using process model libraries cut engineering
effort and time. The accuracy of the model sets the limit for the performance of the tools
using the model as a reference. Further investigation of errors in the process or signals need
an Al-technique such as BN to produce a detailed diagnose.

Large amounts of measurement data are produced every second in a well-instrumented
plant. Measurements can be extracted into information without adding instrumentation

hardware by using simulators and data treatment systems. It is important to point out that
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necessary instrumentation need to be considered in the construction phase of a plant in order
to make full use of process models and diagnose tools.

The data treatment system and its components presented are general for all kinds of flowing
processes. The components needed are sensors to measure the state and a process model. The
tasks of detection, isolation, and data reconciliation can be solved by different methods and
the combinations are numerous.

Hypothesis tests can help to reduce the computation times for a data treatment system by
only starting the isolation algorithm when a gross error is detected. Detection tests can be
disregarded when the number of sensors is small. The overall power of hypothesis tests are
weak for large number of sensors. Hypothesis tests also introduce the problem of false alarms
and missed errors, thus the advantages of such test need to be considered before introducing
it.

Systematic errors (gross errors) generally make most tools unusable for state estimation and
noise reduction. Isolation of gross error is therefore one of the key components in a data
treatment system. Using the high accuracy of NLP solutions for isolation is possible due to
development of powerful computers and efficient solution algorithms.

Data reconciliation enhances the overall accuracy of the measurements if it is preceded by
efficient elimination of gross errors. Degradation in sensors and process affect how to weigh
the measurements according to each other in the data reconciliation algorithm. The covariance
matrix is often used for this task. This method is fast and easy but not always reliable
regarding estimation of covariance from data containing errors. Letting the user set the
weights is a solution to the problem, but the updating becomes time-consuming.

Bayesian networks are a promising complement to data reconciliation because of its ability
to incorporate both human knowledge in the framework and for the learning of probabilities
from data. The network got capability of learning on variables common for the plant operator

and thereby opens up the data treatment system for operator interaction.

4.2. Future work
How a system incorporating qualitative and quantitative tools for treating systematic errors

in signals and the performance of the tools have been investigated in this thesis.

The possible combinations of tools for data treatment are too many to be investigated
systematically by comparative studies. A theoretic study is needed to reveal how different
tools can interact to utilise the sensor and expert knowledge in a more efficient manner.

Dynamic models can provide useful information for diagnostic purposes and will be
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investigated in further work on a thermal plant component. Degradation in process and
sensors include both expected and unexpected changes and some degree of adaption is
needed. How adaption can be integrated in the total data treatment structure will be studied in

a heat and power simulation environment.
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